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ABSTRACT: 

The development of light and small sensors, like Lidar and hyperspectral sensors, has gained popularity over the last few years. In 

this paper we present the experience of UFPR (Brazil), in collaboration with KIT (Germany), on the use of a UAV system carrying a 

hyperspectral sensor for land cover studies. The sensors were integrated with the traditional IMU-GNSS systems to record data from 

a quadricopter. The study focuses on band selection, aiming at reducing computational effort and statistical limitations. For this 

purpose, the principal components of the multispectral image are computed. The best principal components are then selected 

according to the explained original variance, as described by the relative size of the eigenvalues. Then, each principal component is 

analyzed searching for contrasting spectral regions, described by consecutive positive and negative coefficients. The most 

representative band of each spectral region is the selected according to its information contents and contribution to the computation 

of the respective eigenvectors. The method is tested using images collected with the FireflEYE 185 Cubert camera with 125 channels 

in the wavelength between 450 nm and 950 nm, flying over the experimental Canguiri farm in Curitiba, Brazil. Finally, we discuss 

the advantages of the method and its limitations.  

1. INTRODUCTION

The use of UAV (unmanned aerial vehicles), supported by 

advances in image processing and photogrammetry, is well 

established in Cartography. This practice is only possible 

because of the reduction of imaging devices size, weight and 

energy consumption, as well as advances in battery size and 

power(Colomina and Molina,  2014). As Kelcey and Lucieer 

(2012) point out, UAV technology can be not as a concurrent 

for remote sensing, but more as a complementary tool, because 

it provides a detailed view of the study area with high spatial 

resolution. The cartographic role of UAV has increased in the 

last decade. In 2017, the ISPRS organized the International 

Conference on Unmanned Aerial Vehicles in Geomatics in 

Bonn, showing that this practice gained relevance within the 

research fields of photogrammetry and remote sensing. 

As new sensors are developed and improved, the possibilities 

for UAVs increase. The common practice of carrying cameras is 

no more restricted to the visible spectrum, but even 

hyperspectral sensors are currently available. hyperspectral 

remote sensing offers the availability of more than a hundred of 

narrow spectral bands. Hyperspectral remote sensing is based 

on the measurement of electromagnetic radiation in a high 

number of narrow, contiguous spectral bands. In this context, 

the narrowness and contiguous nature of the measurements is 

more relevant than the number of bands.  

The main advantages provided by hyperspectral sensors are 

related to identifying materials according to a detailed spectral 

description of the surface (surface material identification) and to 

distinguishing between spectrally similar surfaces (Material 

differentiation). Both practices are part of general mapping and 

monitoring activities. For example, concerning vegetation 

studies, it becomes possible to map species (Li et al, 2017) and 

monitoring plant health (e.g., Gerhards et al.,2019). 

Hyperspectral image interpreting requires the understanding of 

the detailed spectral properties of the materials and can be 

strongly affected by atmospheric disturbances, illumination 

changes and spectral mixing. The high number of spectral bands 

increases detail and information (Benediktsson and Ghamisi 

2015), but it also may reduce the classification accuracy as the 

number of bands increases too much. This problem is known as 

the Hughes' phenomenon (Hughes 1968), and is caused by the 

limited number of samples versus the number of available 

bands.  

There are two approaches for dimensionality reduction (Serpico 

et al. 2003): selection of the most relevant subset of spectral 

bands (feature selection) and computation of a reduced set of 

new significant variables, combination of the original ones, 

(feature extraction).  Examples of the first approach are 

described in Su et al. (2016) or Fauvel et al. (2015).   To the 

second group belongs the work of Ren et al. (2014) or Zhong et 

al. (2015). Ren et al. (2014) proposed the use of the Modified 

Principal Components method to reduce the dimensionality. 

This method consists of maintaining locally structured elements 

which only appear in a small number of bands to improve the 

discrimination when feature bands are extracted as principal 

components.  

In this paper it is introduced a feature extraction approach to 

reduce the dimensionality of hyperspectral data by analyzing the 

coefficients of the eigenvectors computed from the variance-

covariance matrix of the hyperspectral image. Although this 

method is based in the principal components feature extraction 

method, it introduces a novel band selection approach that is 

based on the analysis of the series of coefficients and the 

identification of the most relevant bands considering the 

contribution of each band to the principal components set and 

the variance explained by the principal components. 

Principal Components Transform (PC) is widely used to analyse 

hyperspectral images, because this technique allows computing 

a reduced uncorrelated set of variables that are linear 

combination of the original ones. The special property of the 

Principal Component Transform is the fact that the small set of 

computed variables stores almost all the explainable variance of 

the original set. In this sense, a small set of variables can be 
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used to represent the original data with a minimal loss of 

information. 

 

Although the Principal Component Transform provides a set of 

uncorrelated variables, their computation requires the use of all 

available bands, including spectral neighbouring bands that are 

highly correlated. This article discusses a variation of the use of 

the Principal Components Transform for feature selection when 

dealing with a very high number of contiguous spectral bands 

collected using a hyperspectral sensor on an UAV (Unmanned 

Aerial Vehicle). The difference between using hyperspectral 

data collected from a satellite and using an UAV is mainly the 

reduction of the atmospheric effects because the UAV is very 

close to the surface. Therefore, absorption bands like those 

caused by water or ozone are not present in the UAV data and 

the spectral series is more continuous. 

 

 

2. METHOD 

To compute the coefficients of the Principal Components 

Transform it is necessary to compute the variance-covariance 

matrix of the hyperspectral image. For example, using an image 

with nb bands require the computation of a nb x nb covariance 

matrix VC(nb x nb). 

 

The covariance matrix stores information about the 

interdependency between the spectral bands that can be 

estimated by the correlation. The correlation matrix can be 

computed as: 

 

        
       

             
  (1) 

 

With i and j = 1...n, where n is the number of spectral bands. 

 

As the variance-covariance matrix is a real, positive, semi-

definite matrix it is possible to compute its eigenvalues (λ) that 

are always greater than or equal to zero, according to equation 

2. 

 

 det (VC- λ I) =0  (2) 

 

Finally, the eigenvectors associated to each computed 

eigenvalue λ are the vectors v  that satisfy: 

 

             (3) 

 

The eigenvalues and eigenvetors can be used to compute the 

principal components, according to Equation 4.  

 

  PC = X * E  (4) 

 

Where X: (x1 x2 x3... xnb) = original variables (spectral 

bands). 

CP: (CP1 CP2 CP3… CPnb) = transformed features. 

E = nb x nb matrix where each column stores an 

eigenvector. 

 

The sum of the eigenvalues is equal to the total variance of the 

original set. The variance explained by each principal 

component is given by the ratio between the size of the 

associated eigenvalue and the total variance, as shown in 

Equation 5. 

 

   
  

   
 
   

    (5) 

 

with  i=1,2,3...nb  

 

The component related to the highest ai  (equation 4), is called 

the first principal component. Sorting the components according 

to the explained variance (ai) allows identifying the main 

(principal) components and discarding the less important. 

 

The ith-component can be computed as: 

 

               
 
     (6) 

 

Where vij is the jth-coefficient of the ith-eigenvector and xj is 

the digital value in the jth-spectral band. 

 

The relative sizes of the coefficients provide information about 

the relative importance of the associated variable. Figure 1 

displays an example of the coefficients of the first principal 

component of a real image. There are positive coefficients for 

lower bands and negative coefficients higher bands. So, it can 

be deduced that the component reflects the contrast between 

two spectral regions. Nevertheless, the use of a weighted sum of 

all bands in the first spectral region compared to the weighted 

sum of the bands in the second region includes redundant 

information, as spectrally close bands are highly correlated. 

Therefore, instead of using the weighted sum, we propose the 

use of a representative band, the one associated to the maximum 

of each region, one for the visible and one for the near infrared, 

according to the computed weight. 

 

 
Figure 1. Example of a series of coefficients used to compute a 

principal component (eigenvalue coefficients). 

 

A function is used to estimate the principal component weights 

variations along the spectrum F(x) and its local minima and 

maxima are computed. These points are located at x values that 

have zero slope (equation 7) 

 

   
    

    
      (7) 

 

The value of the second derivate gives information about the 

type of extreme point, maximum or minimum. 

 

    
     

    
   

          
          

     (8) 
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So, selecting the local minima and maxima it is possible to 

detect the most significant spectral bands used in each 

component. 

 

The relative contribution of the selected variable to the 

computation of the principal component is given by its size 

compared to the sum of the absolute value of all coefficients, as 

shown in equation 9.  

 

   
    

     
 
   

    (9) 

 

Considering Figure 2, where the absolute value of the 

coefficients is represented, the sum of all coefficients is equal to 

the area between the blue curve and the x-avis. Now, if two 

coefficients are selected to represent this component, it would 

be reasonable to estimate their contribution as the sum of all 

neighbouring coefficients that each one represents. For 

example, in Figure 2, the relative weight of vi would be equal to 

the gray area divided by the total sum of the coefficients (all 

areas).  

 

 

 Figure 2. Example of the absolute value of a series of 

coefficients. 

 

   
   
 
   

   
 
   

    (10) 

 

Finally, the total contribution (co) of a selected band is given by 

its contribution to the computation of the component (w) 

weighted by the contribution of the component ( ) 

 

               (11) 

 

 This value can be used to select the most relevant bands within 

a given set of hyperspectral bands. 

 

3.  MATERIAL AND STUDY AREA 

To evaluate the proposed method hyperspectral data were 

obtained using a FireflEYE 185 Cubert GmbH camera with 125 

channels in the wavelength range from 450 nm to 950 nm. The 

camera takes hyperspectral images in a 50x50 frame and also a 

100x100 panchromatic image. The camera was installed on a 

UAV (coaxial octocopter) that flew over the experimental 

Canguiri farm of the Federal University of Paraná. The sensor 

was mounted on a two axis gimbal. Ancillary devices were used 

to support the navigation, such as a RTK GNSS system. The 

FireflEYE 185 collects images in the wavelength range between 

450-950nm using 125 bands. 

 

4.  RESULTS 

To illustrate the process and the results, we use a small 50x50 

image with 125 bands, as displayed in Figure 3. Figure 3a 

displays a RGB combination obtained over a crop field. Part of 

a road (right) and a crop field (left) are visible in the image. 

Figure 3b displays the correlation matrix of the image, 

transformed into a 3D grid. It is interesting to note that there are 

some regions of low covariance values around the 70th-80th 

spectral band. Low correlation values are found at the extremes 

of the matrix, where the bands are spectrally far.  

 

Figure 3a also displays the location of two soil pixels and three 

vegetation pixels over a false-colour composite. The digital 

values of these pixels were read and are displayed in figure 4. It 

is visible that the digital values of vegetation are lower than 

those of soil in the first spectral bands (visible) but are higher in 

the last ones (near infrared). Therefore, there is an inversion 

around 735 nm that is also visible in the correlation matrix. 

 

 

 
(a) 

 
(b) 

Figure 3. Example of a hyperspectral image (RGB composition) 

and its correlation matrix. 
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Figure 4. Digital values of selected pixels 

 

Now, after computing the eigenvalues and eigenvectors, it is 

possible to sort the principal components according to the 

explained variance. In the example, six components are enough 

to explain 99,9% of the original variance, as shown in Table 1. 

 

Component Eigenvalue Percent Cum.  Percent 

1 1790820,846 81,96 81,96 

2 378840,9971 17,34 99,30 

3 7668,3801 0,35 99,65 

4 4344,3382 0,20 99,85 

5 889,3248 0,04 99,89 

6 373,1741 0,02 99,91 

Table 1. Variance explained by the first components of a 

hyperspectral UAV image. 

To illustrate the method, only the first four components will be 

analyzed. This will avoid the pollution of the graphs. Figure 5 

displays the coefficients of the first four principal components. 

The first component displays the contrast between the visible 

and infrared. The second one is more the sum of all bands, 

giving emphasising the red/red-edge region. The third 

component shows the contrast between the red-edge and the 

other bands and the fourth one involves four spectral regions. 
  

    The red dots in figure 5 show the local minima and maxima 

computed using the proposed approach. The selected bands are 

located at: [560   688   740   772   800   916]nm.   

  

 
Figure 4. Selected spectral bands overlaid on the coefficient 

series. 

  

4.1 Verification 

It is expected that the set of selected bands has lower 

correlation, since it was derived from the Principal Components. 

Therefore, the correlation values are displayed in table 2. The 

correlation values are mostly low, but some higher correlations 

are present and highlighted in bold. Traditionally, spectral close 

bands are correlated and this not a surprise. The positive side is 

that the selected set includes uncorrelated bands, with very low 

correlation, almost null in some cases.  
 

Bands 28 60 73 81 88 117 

28 1      

60 0,97 1     

73 0,13 -0,05 1    

81 -0,43 -0,6 0,78 1   

88 -0,48 -0,64 0,75 0,99 1  

117 -0,62 -0,74 0,63 0,94 0,96 1 

Table 2.  Corrleation between the selected spectral bands. 

 

To assess how the overall correlation was reduced, the mean 

correlation was computed for the original and for the selected 

set of bands. 

 

       
                 

   
  
   

  
                (10) 

 

Where nb = number of spectral bands; 

acorr(i,j) = absolute value of the  correlation 

between band i and band j; 
NV= number of non zero correlation 

coefficients. 

 

In the original set there were 125 spectral bands and the mean 

correlation was 0.778. When only the selected bands are 

considered (6 bands), the mean correlation is lower, 0.648. This 

is a reduction of 16,76%. 

 

5. CONCLUSION 

The use of hyperspectral images obtained from UAVs faces the 

challenge of dealing with a great amount of data. In this paper it 

was introduced a feature extraction approach based on the 

Principal Component Transform and the analysis of the 

eigenvectors coefficients. Although the Principal Component 

Transform provides a set of uncorrelated variables, their 

computation requires the use of all available bands, including 

spectral neighbouring bands that are highly correlated. The 

proposed method is a variation of the use of the Principal 

Components Transform for feature selection when dealing with 

a very high number of contiguous spectral bands. 

The identification of selected bands according to the variation 

of the coefficients of the eigenvectors summarizes the main 

trend that the principal component traduces, but with very few 

spectral bands.  

The use of a weight that is derived from the relative size of the 

coefficient within the principal component formula and the 

relative size of the eigenvalue is also a valid option that guides 

the selection. 

As this is the first experiment with the proposed method, more 

experiments are necessary, including other hyperspectral 

images. 
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