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ABSTRACT: 

Surface soil moisture (SSM) dry-downs have been employed to compare independent data sources on the dynamics of water in soils, 
including such remote sensing, land surface models and in-situ measurements, which are often difficult to contrast with standard 
methodologies. The soil drying approach summarizes the soil response to climate as well as surface conditions during a dry period. 
In this work it is estimated as the SSM e-folding decay, named as dry-down time scale. This is the first assessment over eastern 
Cordoba, Argentina, a region with a very high cultivated land fraction that was subject of important agricultural changes in the last 
decades. SMOS SSM product (derived from microwave measurements at L band) is validated with in-situ SSM measurements 
provided by the National Commission for Space Activities during 2012-2018. Both products agree in showing that the austral spring 
season has the largest number of dry-down events for the whole period. The dry-down time scale sensitivity to the chosen detection 
method as well as the data sampling frequency is larger in summer than in spring. A faster soil drying in SMOS than in In-situ SSM 
is found, likely as a consequence of the shallower sensing depth of the first. This dependency seems to be more important than the 
temporal sampling frequency in the SSM data. 

* Corresponding author 

1. INTRODUCTION

Surface Soil Moisture (SSM) represents a low percentage of 
global water (Gleeson et al., 2015) but vastly affects energy, 
carbon and water balance and has an important influence on 
land surface energy partitioning. Thus, the knowledge of large-
scale soil moisture spatio-temporal dynamics is essential for 
various research fields  such as climate and their interaction 
with the land surface (e.g. Seneviratne et al., 2010) or flood and 
drought monitoring (e.g. Liu et al., 2018)among others.  

In particular, the study of soil drying or dry-down is a way of 
approaching soil moisture dynamics assessing in an integrated 
and dynamic way, the soil response to meteorological 
conditions, geophysical soil properties and land cover. The dry-
down is a dissipative process that can be quantified by the time 
at which the soil dries by drainage/runoff, infiltration, and 
evapotranspiration after a soil water input associated to 
irrigation, run on, raise by capillarity from groundwater or, most 
frequently, rainfall. Here, we study the dry-down through the 
surface soil moisture (SSM) spatio-temporal evolution during 
periods without rainfall.  

Recent studies have explored the SSM dry-down approach 
using Land Surface Models (LSMs), Remote Sensing Products 
(RSPs) and In-situ measurements. They highlight that the dry-

down time scale is shorter in RSPs than in ground 
measurements due to the difference in penetration depth 
(Rondinelli et al., 2015; Shellito et al., 2016), that the SSM 
drying is faster on sandier soils and arid regions at the global 
scale (McColl et al., 2017), and that it is faster in satellite data 
than in LSMs (Shellito et al., 2018; Piles et al., 2018). SSM 
dry-down studies have been implicitly taken into account for the 
modelling of surface water loss functions (e.g.Laio et al., 2001); 
now updated through RSP new data availability (Akbar et al., 
2018; Jalilvand et al., 2018). 

In this context, this study aims to answer the following 
scientific questions: 1) Is dry-down a useful framework for 
comparing SSM spatio-temporal dynamics of RSPs and In-situ 
data?; 2) How well do these two sources of SSM data agree on 
the dry-down time scales?; 3) Which is the main constraint to 
characterize SSM dry-downs? 

2. DATA

2.1 Study area 

The study region is located around 33ºS of latitude and 62ºW of 
longitude in the eastern Cordoba Province, Argentina (Fig.1), 
and it includes the Monte Buey Core Site for validation of 
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satellite missions, like SAOCOM (see 2.2) and SMAP (NASA) 
(Thibeault et al., 2015). 
It has a continental temperate climate, having humid summers 
(mean of 4.2mm/day) with temperatures that reach 31ºC in 
January, and drier winters (mean <1mm/day) with temperatures 
of 4ºC in July. It is part of the Pampas Plains, a region with a 
high productivity of agriculture, cattle rising and industry, 
which has experienced considerable land cover change over 
recent decades (Salazar et al., 2015). Due to its flat topography 
and its latitude, it is a region with high and reliable coverage of 
satellite derived data. For more information about the region see 
Thibeault et al. (2015). 
 
2.2 In-situ surface soil moisture data 
 
Ground measurements were acquired by the Telemetric 
Network of Soil Moisture of the SAOCOM Mission, and 
provided by the National Commission for Space Activities 
(ComisiónNacional de ActividadesEspaciales, CONAE, 
Argentina, www.conae.gov.ar).  
 
This soil moisture network consists of 66 sites and 100 sensors 
distributed over the Pampas region in Argentina with recording 
data since 2012. Hydra Probe II (Stevens®) sensors measured 
the soil dielectric constant with hourly time step at different soil 
depths for estimating soil moisture, soil temperature and 
salinity. The accuracy of this sensor is ±0.01m³/m³. For this 
study, SSM volumetric (m3/m3) values at a depth of 5 cm have 
been selected from 40 sensors in the eastern Cordoba Province 
(Figure 1). This data was aggregated at daily scale in 29 sites. 
The reason for having fewer sites than sensors is due to the 
replacement of instrumentation related to technical problems, 
complete breakdown or robberies. For more information about 
the network see Thibeault et al. (2015). 
 
2.3 SMOS surface soil moisture data 
 
The Soil Moisture Ocean Salinity mission (SMOS, 2010-
ongoing, Kerr et al., 2012) is dedicated to estimating surface 
(top 5 cm) soil moisture and ocean salinity using brightness 
temperatures measured at L-band by the MIRAS instrument 
(Microwave Imaging Radiometer Aperture Synthesis, 1.4 GHz, 
passive microwave, ground resolution ~25 km). The baseline 
SMOS soil moisture retrieval algorithm is based on the L-MEB 
model (L-band microwave emission of the biosphere, Wigneron 
et al., 2007) and it adopts a forward modeling approach to 
simultaneously estimate soil moisture and vegetation optical 
depth. The importance of SMOS is that being an L-band 
radiometer, the soil emissivity is less attenuated by vegetation 
cover, allowing soil moisture retrievals even below moderately 
dense vegetation. 
 
For this work, we used ascending passes of SMOS Soil 
Moisture Level 3 v.2 daily product distributed by the Barcelona 
Expert Centre. This product is obtained by quality-filtering and 
re-gridding of the SMOS L2 data v.620: grid points affected by 
RFI and/or with soil moisture Data Quality Index (DQX) 
greater than 0.07 are discarded and a DQX-inverse weighted 
average is applied to bin the data from its native grid to the 25 
km EASE2 equal-area grid. Data and further details are 
available at http://cp34-bec.cmima.csic.es/. 
 
Figure 1 shows the chosen SMOS grid-cells as Pixel2, Pixel4, 
etc. (yellow pins), selected for sharing location with the in-situ 

data. The period of analysis begins in 2012 due to availability of  
in-situ data and finishes at the end of 2018.  
 

 
Figure 1. Region of study in central Argentina (white circle in 

the inserted map). Soil moisture sensors and chosen SMOS grid 
cells are indicated by red-black circles and yellow pins with 

assigned names respectively. Bold and underlined SMOS names 
highlight those grid points with the higher number of sensors. 

 
 

3. METHODS 
 
The following methods were applied for each season separately, 
namely DJF (1st December to 28th February) for austral 
summer, MAM (1st March to 31st May) for austral autumn, JJA 
(1st June to 31st August) for austral winter and SON (1st 
September to 30th November) for austral spring, from 2012 to 
2018. When annual values are shown they are the addition of 
seasonal ones. 
We are aware of the complexity that exists between the spatial 
behaviour of the SMOS footprint and single in-situ 
measurements. In this work, we decided not to get a unique 
representative soil moisture time series per SMOS pixel because 
(1) we want to get a ࣎statistical analysis per pixel but (2) mainly 
because the spatial average among soil moisture time series 
would reduce the variability which could lead to a non-
exponential evolution in the drydown process.  
 
3.1 Dry-down detection 
 
We have used positive increments in the SSM time series as a 
proxy for water input to the system. For SMOS, we defined a 
dry-down as an event starting on a day when there is a SSM 
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increase of at least 0.1 m3/m3 (2.5 times the product target 
accuracy) between two consecutive SSM estimates and ending 
when there is an increase of SSM larger than 0.04 m3/m3 
(product target accuracy). 
For in-situ data, the dry-down start is also 0.1m3/m3, but ends 
when an increase larger than 0 m3/m3 occurs (hereafter In-situ 
database). For studying the influence that the detection method 
and the sampling frequency have on results, we created a new 
data series where the in-situ data was resampled by SMOS data 
availability. Dry-down detection in this new data series was 
carried out using both 0 (In-situ_mSMOS) and 0.04m3/m3 (In-
situ_mSMOS_004) as ending conditions.  
Resulting dry-downs of less than 5 days long and/or with less 
than 4 SSM values were excluded from the analysis in all 
databases. 
 
As an example, Figure 2 shows some dry-downs in 3 SMOS 
pixels. Although the dynamic ranges are different (larger in 
SMOS) both products tend to detect the same dry-downs in 3 
different periods, with SMOS having a dry bias in 2 of them. 
This dry bias was also seen in Thibeault et al. (2015). 
 

Figure 2. Surface soil moisture (SSM) dry-downs for In-situ 
(full line) and SMOS (*) data, during SON 2013. In-situ / 

SMOS 5, 9 and 12 refers to all in-situ /SMOS SSM dry-downs 
within Pixel5, Pixel9 and Pixel12 respectively. 

 
3.2 Modelling methodology 
 
SSM dry-down has been modeled by a decreasing exponential 
function since the 80`s (Delworth, Manabe, 1988). Recent 
studies have used this approach for modeling SSM dry-down in 
RSPs (Rondinelli et al., 2015; Shellito et al., 2016), and it has 
been suggested that this exponential model is correct on water-
limited soil conditions or stage-II (McColl et al., 2017; Shellito 
et al., 2018). During the dry-down the SSM can be modeled by 
the following equation 
 
   SSM(t)=A*exp(-t/)+SSMf  (1) 
 
where A = amplitude of the dry-down (m3/m3) 
 t = time since the beginning of the dry-down (days) 
  dry-down time scale (days) and =࣎ 
 SSMf = equilibrium value (m3/m3) 
 
In this work, we just focused on the dry-down time scale as an 
indicator of top soil drying velocity, although its unit is given in 
days. Large ࣎ values refer to slow soil drying and small ࣎ values 
refer to fast drying. For each detected SSM dry-down, we 
applied a nonlinear curve-fitting to find the parameters that best 
fit the data to equation 1 (in a least-squares sense) using a 
subspace trust-region method based on the interior-reflective 

Newton method (e.g. Coleman and Li, 1996). We also 
constrained the fitting parameters to avoid spurious values: 
SSMf has to be lower than the lowest soil moisture value 
observed during the dry-down and ࣎ values must not be larger 
than the length of a season (90 days). 
 
For each SMOS pixel and season we got a distribution of ࣎ 
values obtained for all years. Left column of Table 1 shows the 
analyzed SMOS pixels together with the amount of in-situ sites 
embedded in it (in parenthesis). Therefore, in-situ ࣎ 
distributions also include the spatial variability among sites in 
each of the analyzed pixels. 
 
 

4. RESULTS AND DISCUSSION 
 
4.1 Number of seasonal dry-down events 
 
Table 1 shows the amount of in-situ and SMOS dry-down 
events which have an associated ࣎, taking into account the 
influence of the sampling frequency and the dry-down detection 
method. This amount is given per season and for the whole 
period (columns), per SMOS pixel (rows) and per dataset in the 
following order: In-situ, In-situ_mSMOS, In-situ_mSMOS_004 
and SMOS. As expected, there are more dry-down events where 
there are more in-situ sites as in the case of Pixel5, Pixel9, 
Pixel11 and mostly in Pixel12 where the Monte Buey validation 
core site is located (see section 2.1). 
 

Pixel names 
(#IDs) 

DJF MAM JJA SON Annual 

Pixel2 (1) 1, 2, 2, 0 2, 3, 3, 0 2, 1, 1, 3 5, 6, 6, 11 10, 12, 12, 14 

Pixel4 (1) 1, 0, 1, 6 2, 2, 2, 0 2, 1, 1, 1 7, 7, 9, 9 12, 10, 13, 16 

Pixel5 (5) 7, 12, 14, 3 8, 8, 8, 6 11, 7, 6, 4 19, 18, 19, 13 45, 45, 47, 26 

Pixel6 (2) 1, 2, 2, 9 4, 1, 1, 4 5, 2, 2, 2 6, 2, 2, 14 16, 7, 7, 29 

Pixel8 (1) 0, 0, 0, 6 1, 2, 3, 5 1, 0, 0, 3 2, 3, 4, 8 4, 5, 7, 22 

Pixel9 (4) 5, 3, 3, 5 7, 10, 11, 3 10, 7, 6, 0 18, 12, 13, 17 40, 32, 33, 25 

Pixel11 (5) 10, 10, 12, 9 14, 7, 9, 2 15, 3, 2, 1 19, 7, 7, 9 58, 27, 30, 21 

Pixel12 (10) 21, 13, 17, 9 29, 16, 26, 1 31, 8, 9, 0 36, 27, 31, 14 117, 64, 83, 24 

Table 1. Number of dry-down events for each SMOS pixel, 
season and the whole period (name as annual) in the following 

order: In-situ, In-situ_mSMOS, In-situ_mSMOS_004 and 
SMOS. Numbers between brackets are the amount of in-situ 

sites embedded in each SMOS pixel. In bold are values larger or 
equal than 30. 

 
When In-situ data is resampled temporally by SMOS data 
availability, the amount of dry-down events should be reduced 
since there are less data leading to poor ࣎ estimates. This is the 
case of the JJA winter season where dry-downs are usually long 
due to less water atmospheric demand. However, DJF and 
MAM, and in lesser degree SON, show some grid points where 
the behaviour is the opposite. This is explained by the fact that 
resampling eliminates some possible dry-downs (not satisfying 
conditions in 3.1 and 3.2) but adds others when these dry-
downs have short to intermediate lengths (Ruscica et al., 
submitted). 
 
A less restrictive dry-down detection method should result in 
the same or a higher amount of number of events. Looking at 
In-situ_mSMOS and In-situ_mSMOS_004 values this is what 
happens in most of the cases in SON. However, DJF and MAM 
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and mostly JJA do not show a clear behaviour. This is probably 
due to the small size of samples.  
 
In a seasonal analysis, SON stood out as the season where SSM 
dry-downs are more prone to occur over almost all pixels (Table 
1). MAM and JJA on the other hand are seasons with fewer dry-
down events in SMOS and in consequence they will be 
discarded from the following analysis. Pixel5 and Pixel9 will 
not be analyzed in DJF for the same reason. 
 
4.2 In-situ surface soil drying estimates 
 
Through equation (1) we obtained the dry-down time scale or ࣎ 
with large (small) values referring to slow (fast) soil drying. 
Figures 3a and 3b show the ࣎ distribution for DJF and SON 
respectively. There are 4 boxplots per panel which, from left to 
right, summarize the In-situ (1st), In-situ_mSMOS (2nd), In-
situ_mSMOS_004 (3rd) and SMOS (4th) ࣎ distributions. 
 
In general, we can see an asymmetric behavior around the 
median, with a long upper tail and most of the events 
concentrated within smaller values, indicating a positive 
skewness in the distributions. This pattern was also found in 
other studies (McColl et al., 2017, Ruscica et al., submitted).  
 
Comparing seasons, DJF shows stronger differences among the 
4 datasets than SON. 
 
4.2.1 Influence of SMOS’s sampling frequency: The 
comparison between In-situ (1st) and In-situ_mSMOS (2nd) 
boxplots allows us to estimate how much the soil drying 
detected by the SSM ground measurements is modified for 
having a non-daily temporal resolution, i.e. in this case given by 
SMOS available data.  
 
SON does not show a clear result in the median ࣎ since the two 
western grid cells show lower values with resampling and the 
two eastern grid cells show the opposite effect. In addition, this 
is not explained by the number of events since it diminishes in 
all grid cells. However, we can clearly observe a larger 
interquartile range (IQR) and extremes for resampled data, 
suggesting that a SSM temporal resolution lower than a day 
increases the uncertainty in ࣎ estimates.  
 
DJF on the other hand, shows that resampling tends to reduce 
the soil drying velocity giving larger median ࣎ values, although 
the difference is just marked for Pixel11. Contrary to SON, 
resampled data show here a smaller IQR than daily one. 
 
4.2.2 Influence of dry-down detection method: The 
comparison between In-situ_mSMOS (2nd) and In-
situ_mSMOS_004 (3rd) boxplots is done to quantify how much 
the ࣎ estimates depend on the dry-down ending criteria, that is 
usually related to the measurement error (section 3.1).  
 
As expected, a less restrictive dry-down end criteria (0.04 
instead of 0 m3/m3) results in a larger IQR and longer whiskers 
tails in the distributions in both seasons. Basically, it includes 
dry-down events - or adds more days to the ones already 
included - with small increases of SSM, changing the 
exponential model parameters. 
SON boxplots show that there is less difference among these ࣎ 
distributions (median, IQR and extremes) than those seen in the 
previous section regarding resampling. 

 

 
Figure 3. Dry-down time scale (࣎) distributions in Pixel11 and 

Pixel12 in DJF (Fig.3a) and Pixel5, Pixel9, Pixel11 and Pixel12 
in SON (Fig.3b), for  In-situ (1st), In-situ_mSMOS (2nd), In-
situ_mSMOS_004 (3rd) and SMOS (4th) in 4 selected SMOS 
pixels. Median and IQR values are represented by the red line 
and the blue box respectively. Numbers close to each boxplot 

show (from top to bottom): number of drydown events, 
percentiles 75, 50 (median) and 25 of each distribution.  

 
For DJF, we can see the same effect over the median ࣎values, 
however, this is not so clear for IQR. For IQR we can see that 
Pixel11 shows a larger difference between In-situ_mSMOS and 
In-situ_mSMOS_004 than between In-situ and In-
situ_mSMOS, but for Pixel12 it is the other way around. 
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4.3 Validation of surface soil drying estimates 
 
How comparable are SMOS’ and CONAE’s SSM dry-down 
estimates? In-situ_mSMOS_004 (3rd) and SMOS (4th) 
boxplots in Fig.3 have to be compared in order to correctly 
answer that question since they share the sampling frequency 
and detection method. We can see a different relationship 
between these datasets in SON and DJF. SMOS ࣎ distributions 
are much thinner (wider) than in-situ_mSMOS_004 in SON 
(DJF). This can be due to the effect that resampling has on in-
situ data in SON (section 4.2.1) or that SMOS soil drying in 
summer is more uncertain that in spring. 
 
However, both seasons show that most of the pixels show 
smaller median ࣎ values in SMOS than in the rest of the 
datasets. In other words, the soil as seen by the satellite dries 
faster than as measured by in-situ probes as other studies have 
shown (Rondinelli et al., 2015; Shellito et al., 2016). The most 
likely cause of this result is the effective depth analyzed with 
each approach. In-situ probes are installed 5 cm beneath the soil 
surface, and sense a volume of 1 litre (1L.) around them, 
making the effective sensing depth approximately between 3 
and 7 cm., whilst microwave sensors measure the very top soil 
radiation emission up to 5 cm, and their sensing depth is 
dependent on soil water content, i.e. sensing depth is reduced 
when soil water content increases. 
 
 

5. CONCLUSIONS 
 
Soil moisture dynamics knowledge is important for improving 
weather forecasts, drought and climate predictions amongst 
other applications. In this study, we focused on the decreasing 
exponential dry-down approach where we estimated the time  at 
which the soil gets dry (defined as ࣎ dry-down time scale), 
during a period with no rainfall. An advantage of the time scale 
approach lies in its independency of SSM absolute values or 
any reference value as other metrics do (e.g. autocorrelation 
time scale, Koster and Suarez (2001)) and it should be not 
affected by rescaling or bias correction methods.   

 
Surface soil moisture (SSM) data was taken from SMOS L band 
satellite product and from CONAE’s Telemetric Network of 
Soil Moisture of the SAOCOM Mission, during 2012-2018. 
Both products agree that the austral spring (SON) has the 
largest number of dry-down events. We have found that SMOS 
has a small amount of dry-down events in MAM and JJA 
seasons, but for different reasons (not shown). In JJA, SMOS 
SSM time series did not satisfy the detection methodology 
conditions. On the other hand, MAM SSM time series did 
satisfy the detection methodology, obtaining dry-down events, 
however, most of them did not result in a good fit to the 
exponential decay model. As a consequence, for future studies, 
we should extend the period of analysis, incorporate other 
satellite information and/or define a different detection 
methodology. 
A faster soil drying in SMOS than in in-situ observations was 
found as a consequence of a shallower sensed depth in satellites 
(Rondinelli et al., 2015; Shellito et al., 2016). This result is 
independent on taking sampling frequency into account or not.  
This first assessment of in-situ dry-downs will complement the 
work of Ruscica et al. (submitted) where several satellite 
products and a land surface model were used for the dry-down 
exploration at a regional scale over southeastern South America. 

In parallel to this work, we are exploring how reliable is the use 
of ࣎ as an indicator of flooding, since land surface would dry 
slower under flooded conditions.  
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