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ABSTRACT:

Random Forests have continuously proven to be one of the most accurate, robust, as well as efficient methods for the supervised

classification of images in general and polarimetric synthetic aperture radar data in particular. While the majority of previous work focus

on improving classification accuracy, we aim for accelerating the training of the classifier as well as its usage during prediction while

maintaining its accuracy. Unlike other approaches we mainly consider algorithmic changes to stay as much as possible independent

of platform and programming language. The final model achieves an approximately 60 times faster training and a 500 times faster

prediction, while the accuracy is only marginally decreased by roughly 1%.

1. INTRODUCTION

Polarimetric Synthetic Aperture Radar (PolSAR) measures am-

plitude and phase of the echo of a microwave pulse backscattered

at the ground by using different polarisations during transmission

and/or reception. In contrast to optical and hyperspectral sensors,

it operates independently from daylight and the electromagnetic

properties of the used microwave allow to penetrate clouds, dust,

and to some degree even vegetation. These properties have lead

to the launch of many modern sensors providing PolSAR data,

i.e. images containing complex-valued vectors in each pixel, in

ever increasing spatial, spectral, and temporal resolution.

As the measured echoes depend on several surface characteris-

tics such as moisture, roughness, and object geometry, PolSAR

images are well suited for the (automatic) generation of semantic

maps of land use/cover by pixelwise classification. This typically

involves the extraction of hand-crafted image features and feed-

ing them as input to a supervised machine learning method that

fits a generic model to the training data. The work in (Hänsch and

Hellwich, 2017) proposed to apply patch-based Random Forests

(RFs) directly to PolSAR images without any computation of pre-

defined features. Instead, the tests of the internal nodes of the

decision trees are directly defined over image patches containing

Hermitian matrices. The resulting RF equals in accuracy to a RF

based on numerous polarimetric features extracted from a Pol-

SAR image and shows stable performance on multiple data sets.

However, neither computation time nor memory have to be spent

on the explicit computation of image features.

Remotely sensed images, in particular modern PolSAR data, have

often an image size in the megapixel range and thus require not

only accurate but also efficient algorithms for their analysis. RFs

are per se rather efficient classifiers as the tree structure of the

individual baselearners divides the data in each level. In this way

only a few processing steps (usually 10 − 100) are necessary to

estimate the target variable. Nevertheless, training a RF and using

it for prediction can take several minutes to hours depending on

the degree of optimization and the size of the data set.
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As RFs are a widely used machine learning framework, there ex-

ist several open-source as well as commercial implementations

which at least partially strive for computationally efficiency, e.g.

randomForest (implemented in R and not optimized for high di-

mensional data (Liaw and Wiener, 2002)), party (R package of

general recursive partitioning (Hothorn et al., 2006)), Willows

(can deal with many samples but not many features (Zhang et

al., 2009)), Random Jungle (available only as C++ executable

(Schwarz et al., 2010)), scikit-learn(Pedregosa et al., 2011), Ran-

domForests (commercial software (Systems, 2013)), bigrf (opti-

mized for classification of very large datasets (Lim et al., 2014)),

randomForestSRC (includes classification and regression trees (Ish-

waran and Kogalur, 2015)), the Rborist package (another R im-

plementation (Seligman, 2015)), and ranger (platform indepen-

dent, designed for the analysis of high dimensional data (Wright

and Ziegler, 2017)). Other work have proposed to use different

hardware for acceleration, such as multi-core CPUs (Boström,

2011), distributed CPUs (Shotton et al., 2011)), FPGAs (Cheng

and Bouganis, 2013), or GPUs (e.g. (Sharp, 2008, Schulz et

al., 2016)). While these work make significant contributions,

they mainly focus on efficient implementations or specific hard-

ware architectures and only seldom consider algorithmic adap-

tations. Furthermore, they provide implementations of the stan-

dard, multi-purpose version of RFs and cannot easily be adapted

to images in general and PolSAR images in particular.

This work investigates multiple strategies to decrease computa-

tion time during both, training and prediction, while maintaining

accuracy. A RFs computation time is mainly determined by two

factors: First, the time cost to create an internal node during train-

ing and to apply its test function during prediction. Second, the

expected value of the length of a path a sample has to take through

the trees, i.e. the number of nodes - and therefore tests - it has to

pass. While previous optimization approaches select node tests

solely to achieve an optimal (but greedy) performance, we take

computation time explicitly into consideration. While Section 2

briefly revisits training and prediction procedures of RFs with a

focus on the specific parts tailored towards the use case of classi-

fying PolSAR images under time constraints, Section 4 discusses

the acceleration strategies and their experimental results.
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2. RANDOM FORESTS

A Random Forest (RF, (Ho, 1998, Breiman, 2001)) is a set of

multiple decision trees that act as baselearners in an ensemble.

By fusing the decision of the individual trees, the advantages

of single decision trees (e.g. being applicable to different kinds

of data, interpretability, simplicity) are kept, but their limitations

(e.g. high variance, prone to overfitting) are avoided. One of the

main factors for the success of this strategy is the diversity of the

ensemble, i.e. creating accurate but still different baselearners. In

the case of RFs, this is usually achieved by using a certain degree

of randomness during tree creation.

While a detailed discussion of Decision Trees and Random Forests

is beyond the scope of this paper it can be found e.g. in (Crimin-

isi and Shotton, 2013). The following subsections repeat the most

essential parts of tree creation, training, and application of the RF

introduced in (Hänsch and Hellwich, 2017) that play a role in the

optimization of the computation time as discussed in Section 4.

2.1 Tree creation and training

Each tree in a RF consists of several internal nodes including a

single root node and multiple terminal nodes. If used as a su-

pervised learning framework, tree creation and training rely on

a training set D = {(x,y)i}i=1,...,N of N samples x. The su-

pervised signal consists of the known value of the corresponding

target variable y, i.e. a semantic label in the case of classification.

Starting at the root node, each non-terminal node applies a binary

test to all data points that reach that node and propagates them to

the left or right child node depending on the test outcome. The

recursive application of the creation of internal nodes stops if the

maximum tree height is reached, the current node contains too

few samples, or samples of only one class (among others).

2.2 Node Tests

The node tests of the decision trees give RFs their generality as

they can be redefined for different data without the need of chang-

ing the overall framework. The work of (Lepetit and Fua, 2006,

Fröhlich et al., 2012) introduce specific node tests for images that

implicitly analyse the local spatial structure by performing com-

parisons between random pixel pairs within a patch and are ex-

tended in (Hänsch and Hellwich, 2017) to the characteristics of

PolSAR images. A node test of the RF in this work takes the form

ψ(x) < θ? (1)

where x is aw×w patch of local sample covariance matrices of a

k-channel PolSAR image (i.e. x ∈ C
w×w×k×k), the projection

function ψ : Cw×w×k×k → R is defined below, and θ ∈ R a

threshold (see Section 2.3).

The projection function ψ selects one to four matrices Ci ∈ x

and computes their spectral distances by Eq. 2-4 where C̃ is a

covariance matrix randomly sampled from the image.

ψ1p = d(C1, C̃) (2)

ψ2p = d(C1,C2) (3)

ψ4p = d(C1,C2)− d(C3,C4) (4)

These projections enable a spectral and textural analysis of the

local neighborhood and are based on a distance measure defined

over the space of Hermitian matrices as for example the Euclidean

distance of the real-valued elements of the main diagonal (Eq. 5),

the distance induced by the Frobenius norm (Eq. 6), the Wishart

(Eq. 8) and revised Wishart (Eq. 11) distance as well as their sym-

metric counterparts (Eq. 9 and 12), the Bartlet distance (Eq. 10),

as well as geodesic distances (Eq. 13 and 14). While (Hänsch

and Hellwich, 2017) provides a discussion of their basic princi-

ples and properties, it should be noted that at least some of those

distances are partially based on computationally expensive oper-

ations such as matrix functions (e.g. the matrix logarithm).

dE(A,B) =

√

√

√

√

k
∑

i=1

(aii − bii)
2

(5)

(6)
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=

√
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k
∑
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k
∑

j=1

|aij − bij |
2

(7)

dW (A,B) = ln(|B|) + Tr(B−1
A) (8)

dWS(A,B) =
ln(|AB|) + Tr(AB−1 +BA−1)

2
(9)

dBa(A,B) = ln
|A+B|2

|A||B|
(10)

dRW (A,B) = ln

(

|B|

|A|

)

+Tr(B−1
A) (11)

dRWS(A,B) =
Tr

(

AB−1 +BA−1
)

2
(12)

dG(A,B) = || ln(A− 1

2BA
− 1

2 )||F (13)

dLE(A,B) = || ln(A)− ln(B)||F (14)

2.3 Split Point Definition

While there are several ways to define the split point θ in Eq. 1

(see e.g. (Hänsch and Hellwich, 2015)), this paper investigates

four variants that span a range from simple random sampling to a

fully-optimized selection. Given samples x ∈ Dn ⊂ D at a node

n, the split point θ of this node can be determined by one of the

following four methods:

• Uniform sampling:

θ ∼ U

(

min
x∈Dn

(ψ(x)), max
x∈Dn

(ψ(x))

)

(15)

where U(·, ·) is the uniform distribution.

• Median based:

θ = median (Dn) (16)

• Inter class:

θ =
xc1 + xc2

2
(17)

where xc1 ,xc2 are two random samples of two random, but

different classes c1 6= c2 .

• Grid search:

θ = argmax
θ∗

∆I(Dn, θ
∗) (18)

where ∆I(Dn, θ
∗) is the drop of impurity defined below in

Eq. 19 achieved by split point θ∗ on the local data set Dn.
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2.4 Optimized Test Selection

A common optimization strategy that aims for stronger baselearn-

ers and thus increased performance of the whole ensemble is to

create multiple test candidates and select the best test based on

the drop of impurity ∆I (Equation 19):

∆I = I(P (y|Dn))−
∑

i∈{L,R}

|Dni
|

|Dn|
I(P (y|Dni

)) (19)

I(P (y)) = 1−
C
∑

i=1

P (yi)
2

(20)

where nL, nR are the left and right child nodes of node n, respec-

tively, with the respective data subsets DnL
, DnR

(with DnL
∪

DnR
= Dn and DnL

∩DnR
= ∅). The node impurity I(P (y))

is measured by the Gini impurity (Equation 20) of the local class

posteriors P (y|Dn).

2.5 Prediction

For prediction of a query sample by a trained RF, it is propa-

gated through all trees. Starting at the root node, it will reach

exactly one leaf node nt(x) in each tree t. The class posterior

P (y|nt(x)) assigned to these leafs during training, is averaged

to obtain the final class posterior P (y|x):

P (y|x) =
1

T

T
∑

t=1

P (y|nt(x)) (21)

3. DATA

(a) Image data (b) Reference data

Figure 1. Image and reference data for the Oberpfaffenhofen

data set (PolSAR image acquired by E-SAR, DLR).

For the experiments of the next section, a fully polarimetric im-

age acquired by the E-SAR sensor (DLR) in L-band over Oberp-

faffenhofen, Germany, is used. Figure 1(a) shows a false-color

composite. This dataset contains man made as well as natural

structures and is manually labelled with five different classes as

depicted in Figure 1(b): City (red), Road (blue), Forest (dark

green), Shrubland (light green), and Field (yellow).

The total image size is 1390 × 6640px and contains more than

6M labelled samples. The image data is divided into five different

folds, training data are randomly sampled from four stripes while

the (complete) fifth stripe is used for testing resulting in roughly

1.8M query pixels.

The balanced accuracy is measured as the average detection rate

per class for each fold, while the final accuracy estimate is the

average over all folds.

4. ACCELERATION

A RF with the parameters stated in Table 1 is used as the initial

model. It is trained on 4K samples per class randomly drawn

from the respective training regions (i.e. 20K samples in total)

and achieves a balanced accuracy of 87%.

Number of trees: 30

Maximal tree height: 50

Minimal samples to continue splitting: 10

Split point definition: Grid search

Number of test candidates: 100

Number of threads: 1

Table 1. Parameter settings

The influence of tree height and number of trees on computation

time and accuracy is well known (see e.g. (Hänsch, 2014)) and

thus excluded from the discussion in the following subsections.

4.1 Multithreading
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Figure 2. Change in training and prediction time by using

different number of threads

In contrast to other approaches such as Boosting, the individual

trees within a (standard) RF are trained completely independent

of each other. Also during applying a RF, the predictions of a

single tree are independent of the other trees. Only after the tree

predictions are made, they need to be fused (usually averaged)

which might introduce dependencies among the trees. If the trees

have their own part of the memory to store their predictions, these

dependencies are strongly minimized and only occur after the in-

dividual tree predictions are finished.

Consequently, Random Forests are very well suited for multi-

threading. Theoretically, each tree can be trained and used for

prediction in its own thread which runs completely independent

of the threads of the other trees.

However, RF training requires intense memory access which makes

thread scheduling computationally demanding, in particular if

CPU cache cannot be exploited to the full extend. Nevertheless,

using a certain number of threads does lead to a decrease of com-

putation time, but how many threads should be used and how big

the gain really is depends a lot on the used computer architecture

and the specific implementation.

Figure 2 shows the training and prediction time of a RF using

a single thread and using five parallel threads. Both times have

been decreased by more than 50% (from 10276sec to 4472sec for

training and 16897sec to 8217sec for prediction) which does state

a considerable gain, but not as much as one might have expected.

Using more than five threads did not lead to further time improve-

ments for the used implementation as the number of cache misses

and internal mutex locks due to memory allocations increases.

Multithreading has no influence on the achieved accuracy.
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4.2 Feature Pre-computation
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Figure 3. Change in training and prediction time by using

precomputed features.

Many of the node tests in Section 2.2 are based on matrix prop-

erties such as determinant, trace, and inverse, or apply matrix

functions such as the matrix logarithm. While the PolSAR image

patches are processed by the trees, these operations are applied

thousand to millions of times and at least partially to the same

matrices, i.e. the covariance matrices contained in the individ-

ual pixels. These operations, however, are computationally very

demanding, as for example the computation of the matrix loga-

rithm involves an eigenvalue decomposition of the corresponding

matrix.

One possibility to speed up processing considerably is to precom-

pute at least some of those entities. In the current implementation

we decided to represent the data in its eigenvalue decomposition,

which only has to be computed once while the data is loaded

from the hard disc. This causes an increased memory footprint

of the data: The covariance matrices are Hermitian and consist of

only six unique elements of which three (the main diagonal) are

real valued. Thus, nine floats are sufficient to represent a given

covariance matrix. The eigenvalue decomposition, however, re-

quires 21 floats: Three for the real-valued eigenvalues and six for

the three real and imaginary parts for each of the three eigenvec-

tors.

However, the gained decrease in computation time during train-

ing and prediction is significant as Figure 3 shows. Both times

are reduced to roughly 14% of the original time (training from

4472sec to 650sec and prediction from 8217sec to 1096sec). The

different data representation has no influence on the achieved ac-

curacy.

4.3 Node Optimization

The methods discussed in Section 4.1 and 4.2 have only an influ-

ence on the computation time during training and prediction, but

neither alter the topology of the trees nor the quality of the leaf

predictions and thus the classification accuracy stays unaffected.

The approach evaluated in this section, however, does have an

influence on the accuracy of the resulting RF, stating to some

extend a tradeoff between an increase of computational efficiency

and a decrease in performance.

There are different ways to define the split point within the node

tests of a decision tree as briefly explained in Section 2.3. This

section discusses four different variants, namely uniform sam-

pling between the minimal and maximal value of the projected

data, the median of the projected data, a grid-search of the opti-

mal split point (according to the drop of impurity measured by

Gini), and an inter-class split point definition, which randomly
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Figure 4. Influence on computation time, tree topology, and

accuracy by optimized test selection.

draws one sample of two different classes and defines the split

point as their average value.

It should be noted that these split point definitions state differ-

ent degrees of optimization: While uniform sampling does not

perform any kind of optimization, the splits defined by the me-

dian of the projected values are at least data-optimal in the sense

that they are (if possible) of equal size and thus lead to balanced

trees. Balanced trees are advantageous as they perform the maxi-

mal amount of tests to all data points while keeping the minimum

tree height. However, no class information is taken into account

and thus the defined split points are independent from the given

classification task. Since inter-class splits randomly draw a sam-

ple from the given class distribution, there is a high chance that

the corresponding data point is from a feature area with the ma-

jority probability mass of the corresponding class likelihood. By

defining the split point to be in between two samples of differ-

ent classes, there is a high potential to separate those two classes

very well. Performing a grid search of the optimal split point is

the strongest form of optimization.

Those four different kinds of node tests come with different time

complexities as well. While uniform sampling requires only the

computation of the minimal and maximal value within the given

data set at a specific node, the median based split point defini-

tion requires a sorting operation (only a partial sorting, though, as

only the center element of the completely sorted array has to be

determined). The inter-class splits only draw one sample of two

classes and compute their average. It is thus very efficient, while

grid search is computationally very demanding as it requires the

computation and evaluation of multiple splits.

Training and prediction time of a decision tree are, however, not

only determined by the computational cost to create a node test,

but also on how many of those node tests have to be applied to

the data. This effect can be seen in Figure 4. Both, median and

uniform split point selections have on average a linear time com-

plexity, inter-class is very efficient, while grid search is computa-

tionally demanding. Nevertheless, median based split points lead

by far to the fasted training only followed by the much more effi-

cient inter-class sampling. The reason is that median based splits

result in very balanced trees and thus to the shortest average path

length (roughly 11 in this example). While the creation of indi-
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vidual nodes might take longer time, fewer of them have to be

applied to the data. The same reason causes uniform sampling to

have the largest training time: The defined splits are very unbal-

anced which causes the creation of higher trees (most of the trees

reach the maximal tree height of 50 in this example) and thus

an increased average path length. For all methods, the training

time increases almost linearly with the number of test candidates

per node. Interestingly, if many test candidates are used, trees

created by uniform sampling become faster during training than

trees based on grid search. In this case, the optimization helps to

avoid unbalanced splits which equalizes the overall path length

(decreased for uniform sampling from 50 for 1 test candidate to

30 for 100 test candidates) and leads to a larger influence of the

individual split point selection costs. Grid-search, inter-class, and

median split points already lead to well balanced splits so that

multiple candidates do not influence the path length much.

The prediction time is not directly influenced by the type of split

point definition or the number of test candidates per node as those

optimizations are only carried out during training. However, the

creation of better and in particular more balanced trees does re-

duce the prediction time as less tests have to be applied to the

data. This effect is strongest for the uniform split point selection,

but is also evident for inter-class and median based splits.

The accuracy of all methods increases considerably with an in-

creased number of test candidates. If only one test candidate is

used, the strong optimization of grid search pays off, leading to

the highest accuracy, followed by inter-class split point definition

which takes the class label into account as well. There is no sig-

nificant difference between uniform sampled and median-based

split point selection if node tests are not optimized. However,

if multiple split candidates are used, the difference between grid

search, inter class, and median based splits shrinks significantly

until there is barely a difference anymore for 100 tests. Thus,

while median based split point selection needs roughly only 40%
of the training and prediction time of grid-search, it does achieve

the nearly same accuracy.

4.4 Constrained Node Optimization
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Figure 5. Influence on computation time and accuracy by

constrained node optimization.

While optimized test selection as evaluated in Section 4.3 does

increase the performance significantly, it is questionable whether

the same amount of optimization has or can be carried out every-

where in the tree. Nodes at higher tree levels, close to the leafs,

contain only a small fraction of the original samples. Most of

the “easy” decisions are already made at that point and very of-

ten further splits are dominated by noise either in the data or in

the labels. Finding an optimal split based on samples, which are

very similar to each other (otherwise they are unlikely to have

been propagated to the same node so high in the tree), is a very

hard task. The corresponding decisions will show a high degree

of variance due to the stronger influence of noise and the small

amount of samples. That is why it might be reasonable to restrict

optimized test selection to nodes that have a certain amount of

samples and to skip it for nodes with too few data.

Figure 5 shows the influence of this optimization strategy for dif-

ferent minimal amounts of samples a node have to obtain in order

to perform optimized test selection. As expected, the higher the

threshold on the number of samples is, the faster is the training.

However, the prediction time increases, which already indicates

that inferior tests are selected, i.e. tests that lead to less balanced

trees and thus to an increased average path length. This conse-

quently leads to a decreased accuracy of the tree. The effect is

relatively small for a minimal number of 20 samples, where ac-

curacy stays constant. Training time decreases to 95%. However,

prediction time is increased by 5% as well.

Thus, at least for median based split-point definition, constraining

the optimized test selection does not state a meaningful strategy

to improve time performance while maintaining accuracy.

4.5 Time-sensitive Node Optimization
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sensitive node optimization.

So far, optimized test selection only took the obtained drop of

impurity into account and selected the test that leads to the purest

child nodes given the training data of the current node. However,

different node tests, in particular the different distance measures

discussed in Section 2.2, have different time complexities. The

computation time can be included as another objective function

during test selection, e.g. by recomputing the test score as

s = ∆I · t−β
(22)

where ∆I is the drop of impurity (Eq. 19), t is the time needed

to perform this test on the training samples, and β is a weight

that controls the influence of the computation time on the final

score. If, for example, β = 1, then a test that needs twice the

computation time of another test, has to have twice the drop of

impurity in order to be still competitive.

Figure 6 reports the changes in computation times and accuracy

for different weights, ranging from β = 0 (i.e. computation time

is not considered at all) to β = 2 (i.e. computation time dom-

inates the final score). As expected, the larger β (i.e. the more

importance is given to the computation time), the more does the

prediction time decrease. However, it appears that at least for the

used test functions, faster tests are also weaker in performance.
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Thus, if they are selected with a higher probability, the accuracy

of the forest decreases as well. The selection of inferior tests also

leads to a slight increase of the training time.

While the increase of training time and decrease of accuracy are

only marginal for β = 0.1 (i.e. less than 3% increase of train-

ing time and accuracy changes from 86.8% to 86.6%), prediction

time increased considerably from 443sec to 235sec, i.e. roughly

50%. Thus, as long as not too much importance is given to com-

putation time and accuracy remains the dominating factor, com-

putational efficiency can successfully be included into the opti-

mization function.

4.6 Subsampling
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Figure 7. Influence on computation time and accuracy by

subsampling.

RFs, at least in their standard formulation, already perform a

tree-wise subsampling due to bagging (Breiman, 1996): In order

to increase the diversity of the ensemble, N samples are drawn

with replacement from the original training set of size N . This

does not lead to a decreased training set size, but to the repetition

of around 33% of samples which can lead to faster processing

(depending on the implementation). Some RF implementations

(including the one of this paper) actually perform subbagging,

i.e. real subsampling by drawing only around 2/3 of the original

training samples without replacement.

This section investigates subsampling that is additionally per-

formed in each node, i.e. each node n performs split point com-

putation and optimized test selection only on a random subset of

size Ns ≤ Nn of the original Nn samples of that node. The fi-

nally selected test, however, is applied to all Nn samples as the

whole data set has to be propagated to the child nodes which will

perform the further splitting based on a different random subset.

Figure 7 illustrates the influence of differently sized subsets on

computation time and accuracy. Subsampling has an adverse ef-

fect on accuracy which is only marginal for larger random sets

(i.e. for Ns = 1000 accuracy changes from 86.8% to 86.6%
while training time decreases to 70%), but quite severe for small

sets (i.e for Ns = 10 accuracy changes from 86.8% to 84.4%
while training time decreases to 40%).

4.7 Structured Prediction

RFs are able to perform structured prediction, i.e. instead of esti-

mating a single posterior distribution (usually for the center pixel

of an image patch), they can provide an estimation of the spatial

posterior distribution around a query sample. Those structured

predictions are usually used to increase the number of estimates
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Figure 8. Influence on computation time and accuracy by

structured prediction.

per pixel for the final averaging in order to provide a better per-

pixel estimate. However, they can be used to speed-up the pre-

diction time as well: Since a structured label already provides

an estimation of the semantic information of the spatial neigh-

borhood of a sample, not all pixels of the query image have to

be propagated through the forest. It is possible to skip a certain

amount of pixels in between two estimates and use their struc-

tured prediction to fill the gaps.

Figure 8 shows the influence of different sizes of the estimated

posterior patches and the distance between two estimates. Nat-

urally, an increased distance between query samples leads to a

tremendous decrease of prediction time since even for a gap of

one pixel one 25% of the samples have to be used for prediction.

The training time increases only marginal as most of the compu-

tational effort is spent on optimized test selection and propagating

the samples through the trees, while the actual estimation of the

leaf information is a simple histogram computation. If only every

third pixel is used during the estimation (i.e. a gap of two pixels

between two queries), the prediction time decreased by roughly

75% (averaged over all patch sizes). However, structured predic-

tion in this setup mostly has a adverse effect on accuracy. If every

pixel is queried and the patch size is small (i.e. 3 × 3 instead of

1 × 1) accuracy stays unchanged, but decreases for larger patch

sizes. If only every third pixel is queried with a patch size of

3× 3, accuracy decreases slightly from 86.8% to 86.2%, but can

partially recovered by using overlapping patches of size 5 × 5.

Larger patch sizes or distances between query samples decrease

accuracy significantly.

Thus, if moderate distances between query samples are used as

well as small patch sizes, a considerable speed-up regarding pre-

diction time can be achieved, while training time and accuracy

stay almost unaffected.

4.8 Final Model

Based on the previous subsections, the initial model stated in Ta-

ble 1 is changed in the following way:

• Multithreading (Section 4.1) as well as feature precompu-

tation (Section 4.2) are used as they are only beneficial to

both training and prediction times while having no effect on

accuracy.

• Node optimization (Section 4.3) is changed from grid search

with 100 test candidates to median based split point defini-

tion with 100 test candidates, using a more efficient split

point definition and more importantly leading to very bal-

anced trees and thus the shortest expected path length. Ex-

periments show a considerable decrease in computation time

during training and prediction, while accuracy is maintained.
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Figure 9. Class posterior of the test samples (acquired over all

folds) of the initial (left) and final (right) model.

uncertain (H=1) certain (H=0)

(a) Entropy of class posterior as measure of uncertainty

(b) Correct (green) and wrong (red) classification according to reference

data (pixels with no available reference label are denoted in black, see

Figure 1(b).)

Figure 10. Correctness of the classification result for the initial

(left) and final (right) model.

• Limiting the test optimization to nodes with a specific sam-

ple size (Section 4.4) is rejected as only marginal gains in

computation time could be achieved during training, while

prediction time and accuracy are adversely affected.

• Computation time is included into the objective function of

the node optimization (Section 4.5), but only with a rela-

tively small importance factor of β = 0.1.

• Moderate subsampling (Section 4.6) is performed in each

node with a subset of size Ns = 1000 as it leads to a con-

siderable speed-up during training with marginal (negative)

effects on prediction time and accuracy.

• Structured prediction (Section 4.7) is performed with a spa-

tial distance of two pixels (i.e. every third pixel is used) and

a patch size of 5× 5 pixels.

Compared to the initial model, training time is decreased from

10276sec to 178sec (i.e. to 1.7% or equivalently by a factor of

58), prediction time is decreased from 16897sec to 34sec (i.e.

to 0.2% or equivalently by a factor 500), while accuracy is only

marginally decreased from 87% to 85.8%.

Figure 9 shows the class posterior (of the test data) of the initial

model on the left and of the final model on the right side (obtained

from the different folds). The difference of the balanced accuracy

values already indicated that there are barely any changes in the

final (discrete) classification decisions. The visual representation

of the class posterior qualitatively confirms that not only the final

classification stays consistent but also the intermediate estima-

tions of the posterior distribution. This is further confirmed by

Figure 10(a) which shows the entropy of the class posterior for
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both models, which is one for a uniform distribution (maximal

uncertainty) and zero for a posterior where only a single class ob-

tains 100% of the probability mass (minimal uncertainty). Fig-

ure 10(b) illustrates that both models make highly accurate deci-

sions while the remaining errors are consistently distributed.

5. CONCLUSION

This paper investigates and discusses several strategies to accel-

erate training and prediction of RFs which are specifically tai-

lored towards the semantic pixel-wise labeling of PolSAR im-

ages. The experiments show that in particular an efficient rep-

resentation of the PolSAR data as precomputed Eigenvalue de-

composition enables a tremendous decrease of computation time

during both, training and prediction, as most of the applied po-

larimetric distance measures in the node tests can be computed

more efficiently and repeated calculations of the eigenvalues are

avoided. A careful choice of the split point definition leads to

a further decrease of the computation times, in particular if me-

dian based split points are used. As it is not only possible to

compute these split points efficiently but they also result in max-

imally balanced trees and thus the shortest expected path length.

Subsampling or restricting the test optimization to nodes of a cer-

tain size has to be used with care - if at all - as it bears the risk

to decrease classification performance without much gain in ef-

ficiency. Computation time can be explicitly included into the

optimization framework and leads to faster but equally accurate

trees if the class impurity remains the dominant factor. Finally,

structured prediction can be used to speed-up the prediction pro-

cess by an order of magnitude at the cost of a moderate decrease

in accuracy.

The final model that applies multithreading, feature precomputa-

tion, median based split point definition, node-wise data subsam-

pling, time-sensitive test selection, and structured prediction is 58
times faster during training and 500 times faster during prediction

while maintaining 98.6% of accuracy.

Future work will focus on a stronger exploitation of paralleliza-

tion of the individual trees by preallocating the necessary memory

and reducing the risk of cache misses as far as possible.
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