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ABSTRACT: 

 

Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived 

from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such 

as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the 

integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. 

Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing 

images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage 

data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatio-

temporal resolution (30m, 8day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation 

cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) 

ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical 

components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area 

are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics 

of spontaneous urbanization, landscapes are fragmented and have less spatial dependence. 

 

1. INTRODUCTION 

Impervious surface area and vegetation cover are important 

biophysical indexes used to characterize the urban surface 

features. They can be used for the quantitative description of 

urbanization degree, evaluation of ecological environment 

effect, construction of ecological environment model. The 

impervious surface ratio refers to the proportion of the area 

occupied by impervious surfaces such as asphalt and cement per 

unit area, representing the degree of human activities(Chester 

L,1996a). Vegetation coverage can be defined as the vertical 

projected area of vegetation per unit area, characterizing the 

natural ecological environment(Gitelson A A,2002a). The 

application of impervious surfaces and vegetation coverage to 

landscape pattern analysis can not only characterize the land 

cover characteristics but also characterize the differences in the 

biophysical composition of the same land use types. 

 

Although remote sensing technology has acquired a large 

amount of remote sensing data, due to the restriction of 

technical conditions, researchers must choose the time-space 

scale when using remote sensing data for terrestrial ecosystem 

monitoring (Price J C,1994a). At present, the resolution of 

remote sensing data can be roughly divided into two types: one 

is the data with high spatial resolution and low temporal 

resolution, such as TM, ETM +, ASTER, etc. These types of 

data have high recognition accuracy and long revisit period. 

Cloud weather images are difficult to obtain, there are some 

problems such as discontinuity of dynamic monitoring of urban 

surface features, and the other is low spatial temporal resolution, 

such as AVHRR and MODIS, which have better timeliness, but 

lower spatial resolution leads to primitive image quality is not 

ideal, making the urban surface feature estimation data subject 

to high uncertainty and eventually, impacting many applications 

evaluation results. Therefore, using a single means to obtain 

remote sensing data to estimate the vegetation coverage in a 

certain area can easily lead to an unsatifacory spatiotemporal 

resolution; if the quality of the original remote sensing image is 

not ideal, the estimation data will be greatly uncertain, and 

affect other results of application evaluations. 

 

Therefore, the fusion of different scales of remote sensing data 

to estimate the urban surface features will help to improve the 

current spatial and temporal resolution of data, the status of the 

weak surface dynamic monitoring. In this paper, Xi'an, the 

capital city of Shaanxi province, China,was chosen as the study 

area. Based on the ESTARFM model, the vegetation cover and 

impervious layer were estimated based on remote sensing data. 

Then the temporal and spatial variation of vegetation coverage 

in Xi'an area were analyzed. The spatial differentiation measure 

was carry out as a supplement to the traditional landscape 

pattern analysis based on landscape types. 

 

2. STUDY AREA AND DATA PREPROCESSING 

2.1 Study area and data source 

Xi'an is located in the Guanzhong Basin in the middle of the 

Weihe River basin, covering the area of 10108 km2 with 

longitude and latitude ranging from 107.40E to 109.49E and 

33.42N to 34.45N respectively. The east-west length is about 

204km and the north-south width is 116km, including ten 

districts (Chang'an, Baqiao, Yanta, Xincheng, Lianhu, Weiyang, 

Yanliang, Lintong, Gaoling and Huyi ) and two counties 

(Lantian and Zhouzhi)). The overall topography of Xi'an is 

characterized by a large difference in elevation between the 

north and south and a clear landscape of East and West plains 

and tableland. Among them, Li Shan is the hilly region in the 

east, the Qinling Mountains in the south and the flood plain in 

the Weihe river basin in the west and north. 
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The data used in this paper include: Landsat8, MODIS09A1. 

The data list is shown in Table 1.  

Data Get Time 

Spatial 

resolution

（m） 

Time 

resolution

（day） 
Attributes 

Landsat

8 OLI 

2014 

cloudless 

data 

30 16 DN value 

MODIS

09A1 

2014 

cloudless 

data 

500 8 
Surface 

reflectivity 

Table 1.The list of data used in the study 

2.2 Data preprocessing 

2.2.1 Landsat 8 data preprocessing: Landsat8 data was 

downloaded from the USGS GLOVIS (http://glovis.usgs.gov/) 

website and the map projection is UTM-WGS84 projection 

coordinate system for correction of landsat8 images and 

atmospheric correction to eliminate various aberrations in 

radiance, including Sensors detect differences in system 

performance, atmospheric, solar elevation, and terrain-related 

errors, and convert the grayscale values of ground targets to 

actual surface reflectance values. Landsat OLI satellite data 

preprocessing process is shown in Figure 1. 

2.2.2 MOD09A1 data preprocessing: MODIS09A1 is a 

terrestrial Level 3 standard product that uses MODIS 

Reprojection Tool (MRT) to preprocess MOD09A1 data. The 

MRT tool was used to convert the HDF format to the GEOTIFF 

format, transform the SIN map projection into a WGS / 

UTM1984 49N projection, and select the Nearest Neighbor to 

stitch and resample the image for the high temporal fusion data 

input of the ESTARFM model Ready. Uses UTM projection 

vector files to crop the stitched image. 

 

Figure 1. Landsat8 data pre-processing flow chart 

 

3. METHODS  

 

3.1 Impermeable layer extraction 

The methods for estimating the distribution of impervious layers 

of remote sensing data are mainly divided into the following 

categories(Li,2016): (1) The impermeable layer extraction of 

medium- and low-resolution remote sensing data mainly 

includes spectral mixed analysis(Ridd M K,1995), regression 

method (Lu D,2014), classification method (Hu X 

F,2009;Zhang Y,2014), index method(Chong Liu,2013); (2) 

Urban impermeable layer extraction of high-resolution remote 

sensing data mainly includes pixel-based method (Goetz S 

J,2003a) object-oriented method (Moran E F,2010), 

multivariate data fusion method (Mohapatra R P,2010). 

3.1.1 V-H-L-S mode: Based on the classical V-I-S mode, 

Wu(Wu C, Murray A T,2003)  improved it by subdividing 

impermeable layers into high-reflectivity and low-reflectivity 

features. The processing flow is shown in Figure2. 

 

Figure 2. V-H-L-S processing flow chart 

3.1.2 Endmember Selection: After converting the pixel's 

DN value to a standard reflectance, the endmember spectra and 

abundance images are extracted from the image using a 

Sequential Maximum Angle Convex Cone (SMACC). It 

provides a faster, more automated way to get the endmember 

spectrum. The SMACC method is based on the convex cone 

model (also known as residual minimization) to identify image 

endmember spectra with constraints. The pole is used to 

determine the convex cone, and then the first endmember 

spectrum is defined; then, an oblique projection with constraints 

is applied to the existing cone to generate the next endmember 

spectrum; and the cone is continuously added to generate a new 

endmember spectrum. This process is repeated until the 

resulting convex cone includes the existing end-cells (to a 

certain tolerance) or until the specified number of end-cell 

spectral classes is satisfied. 

3.1.3 Linear Spectral Mixed Decomposition Mode: The 

reflectivity obtained from remote sensing images is stored in 

pixels, and the size of the pixels depends on the spatial 

resolution of the sensor. At a certain resolution, if it is 

determined that a feature recorded in a pixel is pure, then the 

pixel is called a pure pixel whose reflectivity is completely 

determined by the feature. However, due to the high 

heterogeneity of the Earth's surface, especially the urban surface, 

a variety of reflections with different reflection spectra in the 

same pixel often appear, and the reflectivity of the pixel is 

reflected by various features in the pixel Certain combinations 

of rates determine that such a pixel is called a "mixed pixel." 

Spectral hybrid analysis has been widely used as a classical 

method of impermeable layer extraction based on remote 

sensing images. 

 

Linear Spectral Mixed Analysis (LSMA) is an effective method 

to quantify the urban surface coverage components at the sub-

pixel scale. Spectral hybrid analysis assumes that in low- and 

medium-resolution remote sensing images, each pixel is 

composed of several features that are mixed at different scales. 

Spectral mixing analysis was employed to extract the pure 

spectrum of each feature, that is, the endmember spectrum, and 

calculate the abundance distribution of each feature. Linear 

mixed model is the most commonly used mixed model: 
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Where y is the observed spectral vector of the mixed pixel; m is 

the total number of the endpoints; 
i

 is the spectral vector of 

the ith endmember, 
i

 is the abundance ratio of the end i in a 

single cell;   is the residual difference. 
i

  needs to satisfy 

1

1




m

i

i
  and 10 

i
  . 

 

3.2 Vegetation coverage extraction 

There are many ways of estimating the vegetation coverage 

based on remote sensing data. The most typical and most widely 

used vegetation coverage estimation model - pixel binary model 

is used to inverse the vegetation coverage in the study area. 

3.2.1 The concept of pixel dichotomy mode:Pixel 

dichotomy model (PDM) is a relatively mature method for the 

estimation of vegetation cover. Remote sensing images are 

composed of many pixels, each pixel contains two kinds of 

information, one is vegetation information, the other is soil 

information. In the same way, the spectral information S 

observed by the sensor consists of two parts, one is vegetation 

contribution information 
v

S   and the other is soil contribution 

information
s

S ,which is composed of two parts of linear 

weighting S, which can be expressed as:  

 

                                         
sv

SSS                               (2) 

 

In each mixed pixel, the proportion of the area occupied by 

vegetation is called the vegetation coverage 
c

f of the pixel, and 

the proportion of soil is
c

f1 . Assuming that the pixel 

information of pure vegetation in remote sensing images is 

veg
s and the information of bare soil pixels without vegetation 

cover is 
soil

S , the contributions of vegetation pixels to a mixed 

pixel can be expressed as: 

 

                                              cvegv
fSS *                            (3) 

 

The contribution of soil to pixel is expressed as: 

 

                                        )1(*
csoils

fSS                    (4) 

 

Therefore, the information S observed by the remote sensing 

method is denoted as: 

 

                            )1(**
csoilcveg
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In summary: 

soilveg

soil

c
SS

SS
f




                           (6) 

 

3.2.2 Estimating Vegetation Coverage Using NDVI:NDVI 

is a parameter that is used to express vegetation coverage. Pixel 

dichotomy estimates the vegetation coverage using more NDVI 

values. NDVI is calculated as: 

 

)(

)(
NDVI

REDNIR

REDNIR




                                 (7) 

 

Where: NIR represents the reflectivity of the feature in the near 

infrared band and RED represents the reflectivity of the feature 

in the infrared band. 

The spectral information S at this time is expressed as follows: 

 

)1(**
csoilcveg

fNDVIfNDVIS                   (8) 

 

In other words, the linear weighted summation of vegetation-

covered NDVI and vegetation-free NDVI compose the NDVI of 

each pixel information, where the weight of vegetation-covered 

NDVI in this pixel is 
c

f , which is vegetation coverage, NDVI 

weight without vegetation cover is
c

f1 . veg
NDVI   represents 

the NDVI value of all vegetation pixels, and  
soil

NDVI is the 

NDVI value of all bare soil pixels. 

 

soilveg

soil

c

NDVINDVI

NDVINDVI
f




                         (9) 

 

soil
NDVI is close to 0 in theory, but is affected by the objective 

conditions such as soil moisture, type and roughness, 

soil
NDVI is indefinite, that is, its value changes with time and 

space. Similarly, the theoretical value of veg
NDVI is close to 1, 

but in fact, veg
NDVI  will also change under the influence of 

vegetation growth and neighboring pixels in different periods. 

Therefore, values of
soil

NDVI and veg
NDVI  were determined 

according to experience. 

 

In this paper, a simple method for determining veg
NDVI  and 

soil
NDVI  is adopted, that is, the confidence intervals of 

vegetation coverage are selected through statistical analysis to 

determine the values of veg
NDVI and

soil
NDVI . The 

determination of the confidence interval is based on the 

cumulative percentage of the total number of pixels occupying 

thfe pixel corresponding to the NDVI. The corresponding 

maximum of the cumulative percentage of the interval 

corresponds to veg
NDVI , and the minimum cumulative 

percentage of the interval corresponds to 
soil

NDVI . In this 

paper, the NDVI value corresponding to 5% of the cumulative 

percentage is the NDVI value corresponding to 95% of the 

cumulative percentage, and the vegetation coverage is 

calculated as: 

 

minmax

min

NDVINDVI

NDVINDVI
f

c



                  (10) 

 

Based on this, the flow chart of vegetation coverage calculation 

using pixel-dichotomy NDVI is shown in Figure 3. 
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Figure 3. Pixel dichotomy calculation flow chart 

In this paper, we use ESTARFM (Enhanced Spatial and 

Temporal Adaptive Reflectance Fusion Mode) proposed by 

Zhu(Zhu X, Chen J, Gao F, et al,2010) to enhance the adaptive 

space-time fusion of remote sensing images. The fusion method 

can predict the target pixel, taking full account of the adjacent 

pixels and the target pixel three aspects: First, the geographical 

distance, the second is the spectral difference, the third is the 

time difference. The ESTARFM model inputs the high-spatial 

and high-temporal resolution data of the two periods one after 

the other and inputs the high-resolution temporal resolution 

data of the target period to generate the high-spatial-resolution 

data of the target period. Substituting this data into the model, 

we first determine the size of the window, search for the pixels 

similar to the impermeable layer of the center cell in the two 

phases of Landsat8 impermeable layer data according to the 

spectral correlation, and then combine the MODIS impermeable 

layer The weights and conversion coefficients are given to each 

similar pixel, and then the time weights are calculated according 

to the MODIS data of the above two phases and the target 

period. Finally, the center pixels are calculated according to 

various weights of similar pixels. The specific model steps are 

shown in the figure4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ESTARFM flow chart 

In essence, the ESTARFM model moves the entire image one 

by one by a window size w, thereby determining the prediction 

value of the pixel at the center of the movement one by one. The 

prediction value of the center pixel is expressed as (3.11) 
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Where ),,(
22 bwwrigh TyxR



is the final high-resolution fusion 

data for the prediction period
b

T , and ),,(
22_ bwwhigha TyxR



 

and ),,(
2_ bwzwhighc TyxR



 are the high-resolution data for 

the original and forecast period 
b

T in 
a

T  and 
c

T respectively, 

which is obtained by (3.12); 
'

a
T and 

'

c
T are the time weight, 

Calculated by (3.13). 
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Where: ),(
22 ww

yx is the search window center position, 

which is to be predicted center pixel location, w is the size of 

the mobile window. N is the number of similar pixels,  
i

 is the 

conversion factor, and 
i

 is the distance weight. 

),(),,,(
22

catTyxR
twwhigh

 is the low temporal resolution 

data of the original high space in the
a

T  and 
c

T periods. This 

paper is the Landsat8 impermeable layer data. 

),.(
biilow

TyxR and ),.(
t

TyxR
iilow

  are the low spatial 

resolution data of the original high time in the 
b

T and 

),( catT
c

 periods respectively. This is MODIS impermeable 

layer data. 

 

4. RESULTS AND URBAN IMPERMEABLE LAYER 

ANALYSIS 

The results of the integration of the 225th day in 

2014(20140815)are compared and the coverage of the surface 

area in Xi'an was analyzed. 

 

4.1 Qualitative analysis 

Through the visual interpretation, compared with 500m MODIS 

impermeable layer data, ESTARFM impermeable layer data 

well preserves the spatial distribution details of Landsat8 

impermeable layer data at 30m resolution, such as the image 

texture structure. It can be seen that the ESTARFM FVC data 

generated by ESTARFM effectively combines the advantages of 

the two data, increasing both the spatial difference of Landsat8 

impermeable layer (and vegetation coverage)and the temporal 

change of MODIS impermeable layer(and vegetation coverage). 

The result is shown in figure5. 
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Landsat8 ISA  20140815 

 
MODIS ISA 20140815 

 
ESTARFM  ISA 20140815 

 
Landsat8 FVC 20140815 

 
MODIS FVC 20140815 

 
ESTARFM  FVC 20140815 

Figure 5. The distribution of impermeable layer at study area 

 

4.2 Quantitative analysis 

ESTARFM impermeable layer data of high temporal and spatial 

resolution is the effective addition of the spatial information of 

Landsat8 impermeable layer on MODIS impermeable layer time 

series data, so it can correctly reflect the data of Landsat8 

impermeable layer The spatial information is an important 

criterion to test the effectiveness of ESTARFM impermeable 

layer data. The result is shown in figure6. 

 

 
ISA Difference 20140815 
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Difference Value of  ISA 20140815 

 
FVC Difference 20140815 

 
Difference Value of  FVC 20140815 

Figure 6. The difference between Landsat8 &ESTARFM  

 
Figure 7. Spatial Distribution of Vegetation Coverage in Xi'an 

4.3 Impervious surface and spatial distribution of 

vegetation cover characteristics 

4.3.1 Spatial Features Analysis: Vegetation coverage in 

Xi'an is a good description of the distribution of vegetation. 

This section uses the spatial and temporal characteristics of the 

vegetation coverage data of Xi'an on August 15, 2014 as shown 

in the figure 7 to analyze the spatial characteristics. The average 

vegetation coverage in Xi'an was 62.0% on August 15, 2014. 

Vegetation coverage was divided into 6 grades according to the 

classification code of vegetation coverage, and the grading 

standards were 0-15% (bare land) and 15-30% % of low 

coverage, 35% ~ 45% of low-middle coverage, 45% ~ 60% of 

middle coverage, 60% ~ 75% of middle-high coverage, 75% ~ 

100% of high coverage, There is a more obvious spatial 

distribution of vegetation coverage in Xi'an. Among them, the 

vigorous growth of vegetation around the urban area of Xi'an, 

high coverage and high coverage. The result is shown in 

figure7.Urban centre vegetation coverage is low. Xi'an urban 

area has obvious differences in the aspects of industrial location 

and urban functions, and the difference in the degree and degree 

of urbanization determines the different characteristics of the 

surface coverage. The average area of the watertight surface 

area was between 39.1% and 50.1%. The city centre has a large 

degree of impermeability to water and a low degree of 

impermeability in the suburbs. It can be seen that the spatial 

distribution of vegetation coverage and impermeable layer in 

Xi'an is closely related to the topography and human activities. 

Human beings live in plains with good environment. Affected 

by their frequent production activities, the vegetation coverage 

has declined and the impervious cover Area increases; with the 

city center continues to move closer, the impact of human 

factors gradually increased, interference with vegetation also 

will increase, so the coverage level is reduced. 

 

4.3.2 Correlation Analysis of ISA and FVC: Vegetation 

cover change is an important indicator of regional ecological 

changes. After the original image is decomposed by linear 

spectral decomposition, the vegetation terminal component can 

be used to characterize vegetation abundance. Therefore, the 

relationship between impervious surface and vegetation can be 

studied by studying the correlation between ISA and vegetation 

terminal components. In this paper, the spatial autocorrelation 

analysis of Moran-I coefficients for continuous variables is 

chosen to quantitatively measure the spatial dependence of the 

land cover features on the Moran I coefficients of impervious 

surfaces and vegetation cover of 0.950 and 0.972, respectively. 

The spatial coverage of land cover has the same trend with the 

neighborhood value. The positive correlation of vegetation 

coverage is stronger on the impermeable surface, indicating that 

the vegetation coverage is more spatial congregation. 

 

5. SUMMARY 

Based on Landsat8 (30m, 16day) data and MODIS (500m, 8day) 

data for Xi'an in 2014, Landsat8 data were radiated and 

calibrated, and atmospheric correction and inlay cropping of 

two-track images in the study area were carried out. The 

MODIS data were transformed, stitched, resampled. Taking the 

preprocessed Landsat8 and MODIS images as the data source, 

the vegetation coverage data of the two sensor images are 

obtained according to the pixel dichotomy. Then, ESTARFM 

model was used to combine the temporal advantage of MODIS 

data with the spatial advantage of Landsat8 data to generate 8-

day and 30-m resolution vegetation coverage data and 

impervious data in the study area. Taking August 15 as an 
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example, the spatial characteristics of vegetation coverage in 

Xi'an were analyzed. The results showed that the vegetation 

area in the study area was dominated by high vegetation 

coverage, accounting for 42.9% of the study area. 

 

1. Based on the classification results, there is still a small 

amount of bare soil which is misjudged as impervious surface. 

Some of the bare soil is in fact part of the urban area ready to be 

built as a flat bare land. Due to the nature of its construction, it 

is also a watertight surface, so this part of confusion can be 

ignored and relevant data should be updated 

2. ESTARFM FVC and impermeable surface with high 

accuracy, and can characterize the composition of the surface 

covered by the biological components; 

3. ESTARFM FVC is consistent with Landsat8 FVC in the 

same period, and the overall prediction accuracy is high; 

4. The average water-impermeable surface proportion and 

spatial configuration of each district are different. Due to the 

influence of natural conditions and urbanization mode, the 

urban landscape in Xi'an, which is characterized by typical 

spontaneous urbanization, is fragmented and has less spatial 

dependence . 
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