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ABSTRACT: 

 

Many studies have been conducted in the estimation of forest above ground biomass (AGB) using features from synthetic aperture 

radar (SAR). Specifically, L-band ALOS/PALSAR (wavelength ~23cm) data is often used. However, few studies have been made on 

the use of shorter wavelengths (e.g., C-band, 3.75 cm to 7.5 cm) for forest mapping especially in tropical forests since higher attenuation 

is observed for volumetric objects where energy propagated is absorbed. This study aims to model AGB estimates of mangrove forest 

using information derived from Sentinel-1 C-band SAR data. Combinations of polarisations (VV, VH), its derivatives, grey level co-

occurrence matrix (GLCM), and its principal components were used as features for modelling AGB. Five models were tested with 

varying combinations of features; a) sigma nought polarisations and its derivatives; b) GLCM textures; c) the first five principal 

components; d) combination of models a – c; and e) the identified important features by Random Forest variable importance algorithm. 

Random Forest was used as regressor to compute for the AGB estimates to avoid over fitting caused by the introduction of too many 

features in the model. Model e obtained the highest r2 of 0.79 and an RMSE of 0.44 Mg using only four features, namely, 𝜎˚𝑉𝐻 GLCM 

variance, 𝜎˚𝑉𝐻 GLCM contrast, PC1, and PC2. This study shows that Sentinel-1 C- band SAR data could be used to produce acceptable 

AGB estimates in mangrove forest to compensate for the unavailability of longer wavelength SAR.  

 

1. INTRODUCTION 

Mangrove forest only represent roughly 0.7% of the total world 

forest.  Nevertheless, it stores about 20 petagrams of Carbon in 

its ecosystem (Jones et al., 2014). Mangrove forests also play an 

important role of providing habitat for marine organisms in 

addition to the goods and services they deliver for humans.  

In spite of this, there have been global records stating that there 

is a significant mangrove forest cover loss in the past five 

decades. The rate of loss is estimated to be ~1-2% annually, 

which is greater than the deforestation rate in non-mangrove 

forest classes (Alongi, 2002). The loss is mainly attributed to 

anthropogenic activities such as land conversions (mangrove 

forests to agriculture/aquaculture), over extraction of timber 

products, and coastal population increase, among others. These 

land cover changes lead to the emission of the stored carbon in 

the above and below ground carbon deposits. Hence, there is a 

need to monitor these changes which can be done by accurate and 

large-scale monitoring schemes such as the use of remote sensing 

systems.  

 

SAR or synthetic aperture radar is an active sensor producing its 

own energy to transmit microwave (radio) signals to image a 

particular scene. It is independent of sun illumination, hence, it 

can operate both day and night. Also, it is considered as an all-

weather imaging sensor since cloud cover does not pose an issue. 

Radar sensors use the microwave portion of the electromagnetic 

spectrum ranging from 0.3 GHz to 300 GHz or 1 m to 1 mm in 

wavelength (Toan et al., 2007).   

 

The European Commission (EC) and European Space Agency 

(ESA) initiated the Sentinel-1 mission (launched on April 2014), 

which aims to provide information services for security and 

environmental applications. Information is derived from earth 

observation satellites in conjunction with ground based data. 

Sentinel-1 mission uses a C-band frequency (8 – 4 GHz or 3.8-

7.5 cm). It comprises of two satellites with the same orbital plane, 

namely, SENTINEL-1A and SENTINEL-1B with a revisit time 

of 12 days. Moreover, Sentinel-1 provides a much higher spatial 

and temporal resolution compared to its predecessors such as the 

ERS-1, ERS-2, JERS, SIR-C/X-SAR, RADARSAT, SRTM, 

EnviSAT-ASAR, RADARSAR-II, LIGHTSAR, ALOS-

PALSAR, TerraSAR-X (Attema et al., 2007).  

 

Advantages of using Sentinel-1 images is its short revisit time 

which is favourable in forest change detection applications. Also, 

the said images are free of use and can be easily accessed. 

However, SAR with longer wavelengths (e.g., ALOS PALSAR 

products) is more suitable for forest applications since it is more 

penetrating than shorter wavelengths (e.g., Sentinel-1 SAR 

products). In the case of tropical forests, information below 

canopies such as tree trunks/stem and the underlying 

undergrowth vegetation, deadwood (including standing 

deadwood), and soil organic matter have significant contribution 

to the amount of the above ground biomass and carbon pools 

(Vashum and Jayakumar, 2012). These are considered as the 

primary scatterers in radar applications in forests such that 

elements with half the size of the wavelength (λ) have little 

backscatter produced and induce signal attenuation (Walker, 

2016). Therefore, it is more appropriate to use longer 

wavelengths SAR as it is able to penetrate through vegetation 

canopies. 

 

To compensate for this limitation, more information were derived 

aside from the provided VV and VH polarisation of Sentinel-1. 

Thus, the objective of this study is to extract several statistical 

information from the default information (VV and VH) such as 

the grey level co-occurrence matrix (GLCM textures) and the 
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principal components. This is done to gather more explanatory 

power to be able to derive an accurate model to estimate 

mangrove above ground biomass (AGB). Moreover, Random 

Forest (RF) algorithm was used to model AGB rather than the 

traditional linear regression techniques due to its robustness in 

complex and nonlinear machine learning problems.  

 

2. STUDY AREA AND DATA 

2.1 Field data 

There are two mangrove sites considered in this study. One is 

located in San Juan, Batangas which lies in the southern part of 

Luzon Island, Philippines and the other is in Masinloc, Zambales 

in the northern part of the Philippines. The former site is 

considered to be a dense mangrove forest while the latter is 

sparse. Figure 1 show the two study sites and the inventoried trees 

(red circles) are superimposed in the corresponding Google Earth 

imagery while Figure 2 shows the location map. Field inventory 

surveys were conducted by the Phil-LiDAR 2 - Project 3: Forest 

Resources Extraction from LiDAR Surveys, which was funded 

by the Department of Science Technology (DOST) of the 

Philippines. Every mangrove tree species with a height of ≥ 1.3 

m and DBH of ≥ 5 cm were considered. This threshold was based 

on minimum DBH of sampled trees done by Komiyama et al. in 

2005.   The x and y coordinates of each tree were determined 

using a total station with point reference taken using a survey 

grade GNSS equipment. Field surveys were conducted in March 

and November of 2015 for dense and sparse mangrove forests, 

respectively.    

 

  
 

 
Figure 1. Study sites in San Juan, Batangas (dense mangrove 

forest; above) and in Masinloc, Zambales (sparse mangrove 

forest; below). Red dots indicate inventoried trees 

 

 
Figure 2. Location map of the two study sites 

 

2.2 Sentinel-1 Data 

Two corresponding Sentinel-1A products with a sensing period 

of March 24, 2015 and November 12, 2015 for dense mangrove 

forest and sparse mangrove forest, respectively, were used in this 

study. The product is a level 1 GRD type which has been 

detected, multi-looked, and projected to ground range using 

WGS84 ellipsoid model. The sensor is in interferometric wide 

swath mode with swath width of (250 km) with a geometric 

resolution of (5 m by 20 m). The polarisations available are VV 

and VH.  

 
Figure 3.  𝜎˚𝑉𝑉 ,𝜎˚𝑉𝐻, RGB (𝜎˚𝑉𝑉 , 𝜎˚𝑉𝐻, 𝜎˚𝑉𝑉/𝜎˚𝑉𝐻), and 

zoomed to plot images (left to right) of the dense mangrove 

forest area. 
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Figure 4.  𝜎˚𝑉𝑉 ,𝜎˚𝑉𝐻, RGB (𝜎˚𝑉𝑉 , 𝜎˚𝑉𝐻, 𝜎˚𝑉𝑉/𝜎˚𝑉𝐻), and 

zoomed to plot images (left to right) of the sparse mangrove 

forest area. 

 

3. METHODOLOGY 

The methodology is categorized into the following procedures: 

Sentinel-1 pre-processing, computing for the GLCM textures, 

creating the main data matrix, extracting new information from 

Principal Components Analysis (PCA), selecting important 

features, and modelling AGB using RF. 

 

3.1 Sentinel- 1 pre-processing  

The Sentinel-1 data were pre-processed using the Sentinel-1 

Toolbox (S1TBX) embedded in the SNAP (Sentinel Application 

Platform) software version 5 (SNAP Development Team, 2016). 

The steps included were the application of the orbit file to provide 

accurate satellite and velocity information, radiometric 

calibration for backscatter representation of the reflecting object 

(conversion from DN values to sigma nought values), speckle 

filtering for speckle suppression using Refined Lee adaptive 

filter, terrain-correction using SRTM 3 sec grid to correct for 

SAR geometric distortions, and re-projection from WGS84 to 

UTM Zone 51 N.   

 

3.2 GLCM textures 

The grey level co-occurrence matrix or GLCM textures are arrays 

of values that determines the varying combinations of pixel 

brightness values (grey levels) present in an image (Beyer, 2017). 

These textures are represented using a moving window (9x9) to 

determine the spatial co-occurrence of the pixel grey levels 

(Dorigo, 2012 as cited by Deus, 2016). For each polarisation the 

sigma nought VV (𝜎˚𝑉𝑉) and sigma nought VH (𝜎˚𝑉𝐻), ten (10) 

textures were computed: ASM (angular second moment), 

contrast, dissimilarity, energy, entropy, correlation, mean, 

variance, homogeneity, and max. GLCM textures are generated 

using SNAP (Sentinel Application Platform) software version 5 

(SNAP Development Team, 2016).  

 

3.3 Creating the feature matrix 

Features included in the main data matrix were the aggregated 

raster values of σ˚ polarisation, GLCM textures, and σ˚ 

polarisation derivatives such as: 

 

𝑐𝑟𝑜𝑠𝑠 𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝜎˚𝑉𝐻

𝜎˚𝑉𝑉
   (1) 

 

𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝜎˚𝑉𝑉 − 𝜎˚𝑉𝐻   (2) 

 

𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 =
𝜎˚𝑉𝑉+𝜎˚𝑉𝐻

2
    (3) 

 

Hence, the resulting feature matrix is:  

 

𝑋 ∈ ℝ25
303    

𝑥1
1 … … 𝑥25

1

… … … …
… … … …

𝑥1
303 … … 𝑥25

303

   (4) 

 

𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑠𝑖𝑔𝑚𝑎0 𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑖𝑡𝑠  
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝐺𝐿𝐶𝑀 𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑠 

 

3.3.1 Extracting new information from PCA: Principal 

Component Analysis (PCA) is a multivariate technique wherein 

correlated dependent variables are represented in lower 

dimension but retaining the largest of information possible. This 

is done by transforming the dataset into new variables (known as 

principal components) by rotating the axes orthogonally in which 

the transformed data contains maximum variation possible. The 

principal components (PC) are the eigenvectors of a covariance 

matrix (Shlens, 2003). Aside from reducing the original 

dimension of the data, new information can be derived from the 

principal components since the rotation of the axes provides a 

new perspective of the original data. Hence, the resulting 

principal components will be added as additional features.  

 

The PCA was done in matrix X. First, elements of the said matrix 

were normalized (scaled from 0 to 1) using sklearn’s 

MinMaxScaler version 0.19.1 (Pedregosa et al. 2011) using the 

formula: 

 

𝑥′ =
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛
      (5) 

  

The covariance matrix was computed using the transpose of the 

normalized data. Eigenvectors and eigenvalues were then 

computed from the resulting covariance matrix. The amount of 

variation explained by each PC was determined by dividing the 

respective eigenvalue to the total eigenvalues to get the explained 

variance ratio. These computations were all done using numpy 

module version 1.14.0 (Walt et al., 2011). Figure 5 shows the 

graph of the explained variance ratio of the PCs as well as the 

cumulative explained variance. The said graph said was 

generated using matplotlib module version 2.1.1 (Hunter, 2007). 

 

 
Figure 5. Explained variance ratio of the principal components 

 

Based on Figure 5, using only the first five principal components 

will yield a cumulative explained variance of 95%. Hence, from 

the original 25 features (matrix X), five new features containing 

new information based on the original features can be added. 
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For the field data, AGB values per tree were computed using 

AGB allometric equation (Komiyama et al., 2005 as cited by 

Gevana et. al., 2008) for mangroves: 

 

AGB = 0.247 ρ (DBH2)1.23    (6) 

where     ρ = species wood density (g/m3) 

             DBH = diameter at breast height 

 

Information regarding the species wood density was obtained at 

the Tree Functional Attributes and Ecological Database accessed 

through db.worldagroforestry.org. In cases where the species 

wood density is not listed in the database, the mean wood density 

of the genus was used instead. The target column vector y with 

total AGB as elements was constructed: 

 

𝑦 ∈ ℝ1
303    

𝑦1

…
…

𝑦303

(𝑦 ∈ 𝑡𝑜𝑡𝑎𝑙 𝐴𝐺𝐵 𝑝𝑒𝑟 10 𝑚 𝑥 10 𝑚 𝑔𝑟𝑖𝑑) (7) 

 

Appending matrix X and column vector y, the main data matrix, 

M, was created:  

𝑀 ∈ ℝ31
303    

𝑚1
1 … … 𝑚31

1

… … … …
… … … …

𝑚31
303 … … 𝑚31

303

   (8) 

 

3.4 Modelling AGB using Random Forest 

Random Forest (RF) is an ensemble of decision trees where 

ensemble learning is done by combining weak learners to create 

a strong learner that is robust to over fitting and provides a higher 

accuracy. A bootstrap sample will be drawn that is 70% of the 

total size of matrix M. Random selection is done with 

replacement and will be assigned in a node. At each node, 

features will be selected with size of the square root of the total 

number of features. This will be the training dataset. Coefficients 

of the features will be used in the remaining 30% of the sample 

size (test dataset or the out-of-bag). The node will split to the left 

if the mean square error (objective function) is lower than the 

previous test dataset otherwise, it will split to the right. Hence, 

the out-of-bag of RF is similar to cross validation such that it 

serves as the left out dataset in the leave-one-out method. These 

steps will be iterated up to k times where k is the number of trees 

grown in the forest. Several terminal nodes will be created if its 

objective function cannot be lowered furthermore and the final 

prediction will be the average of these terminal nodes (Raschka, 

2016). Averaging all the predictions of the terminal node cancels 

out the biases since each sample is independent from each other 

and the total sample size is large enough to follow the law of large 

numbers.  

 

Hyper parameters of the RF algorithm were tuned to obtain the 

best settings of the algorithm. Specifically, hyper parameters 

tuned were the optimum number of trees to build when averaging 

the prediction nodes, the minimum samples splitting required for 

each node, and the number of features to be used in a node.  

 

The model that yielded the highest r2 and lowest RMSE was the 

final model proposed in this study. Moreover, the important 

features of the final model were examined such that explanations 

were provided to give insights on how mangroves forest 

structures (dense vs. sparse) affect the features of the data matrix 

(polarisation, textures, etc.) in estimating AGB.  

 

3.5 Selecting the important features  

Important features were determined using the variable 

importance algorithm embedded in the Random Forest algorithm 

(Liaw and Wiener, 2015). The variable importance of the said 

algorithm measures the difference of accuracy before and after 

random permutation of a feature. A feature having a high variable 

importance suggests its contribution to the model’s accuracy 

decreases when it was permutated while those features having 

low variable importance show its contribution to the model’s 

accuracy had no significant difference as that of a randomly 

permutated feature (Strobl and Zeileis, 2008). Values in the 

variable importance are unitless and the higher the values, the 

greater the contribution. Modelling using Random Forest was 

done in Python using pandas module version 0.22 (McKinney, 

2017) for data frame building and sklearn’s 

RandomForestRegressor module version 0.19.1 (Pedregosa et al. 

2011) 

 

4. RESULTS AND DISCUSSION 

4.1 Understanding the data 

The species wood densities (ρ) used for AGB computation were 

0.7316, 0.7143, 0.7842, 0.4288, 0.94, 0.6036, and 0.6721 for 

Avicennia marina, Avicennia officinalis, Bruguierra cylindrica, 

Excoercaria agallocha, Rhizophora mucronata, Sonneratia 

caseolaris, and Xylocarpus granatum, respectively.  Table 1 

shows the total AGB expressed in the corresponding total area. 

Figure 6 shows the histogram of AGB values per 10 m grid for 

the two sites.  

 

Site Total area (Ha) Total AGB (Mg) 

Dense mangrove 2.43 145.04 

Sparse mangrove 2.22 51.07 

Table 1. Total area and total AGB 

 

 

 
Figure 6. Histogram of AGB of the two field sites 

 

The figure above shows that both sites are skewed to the right 

since majority of values are concentrated on the lowest range. 

The total and average AGB with respect to the area is higher in a 

dense mangrove forest as compared to the sparse mangrove 

forest. The overall statistics shows there is a large difference of 

values between the two areas thus, the inclusion of GLCM 

textures could provide significant explanatory power in 

estimating the AGB values for two statistically different areas. 

 

Mangrove species observed are Avicennia marina, Avicennia 

officinalis, Bruguierra cylindrica, Excoercaria agallocha, 

Rhizophora mucronata, Sonneratia caseolaris, and Xylocarpus 
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granatum. For the two field sites, Rhizophora mucronata has the 

highest count with 2450 individuals while Excoercaria agallocha 

has the lowest with 95 individuals. Figure 7 shows the graph of 

count for all species observed in the two field sites.   

 

 
Figure 7. Count of mangroves species 

 

A correlation matrix was computed for matrix M which is 

composed of polarisation and its derivatives, GLCM textures, the 

first five principal components, and the total AGB. A heat map 

generated using seaborn module version 0.8.1 in Python 

(Waskom, 2017) is shown in Figure 8, illustrating the 

multicollinearity among features as well as its correlation to the 

target (AGB). 

 

 
Figure 8. Correlation heat map 

 

It can be noticed that most textures derived from 𝜎˚𝑉𝑉  

polarisations are correlated with each other. Establishing a linear 

relationship using these features will not provide new 

information and could lead to over fitting the model. However, 

the capability of RF to randomly select features assigned for each 

node takes care of this information redundancy. Moreover, there 

is a noticeable difference of correlation between AGB and the 

textures derived from 𝜎˚𝑉𝑉  and 𝜎˚𝑉𝐻 such that, in general, the 

latter has a higher correlation to AGB.  

 

4.2 Hyper parameter tuning and accuracy assessment  

For every model, an intensive hyper parameter tuning was done 

by setting initial value and for each iteration (with increasing or 

decreasing parameter values), the highest accuracy using the 

corresponding hyper parameter settings was determined. The 

optimum number of trees in the RF algorithm is determined to be 

within 900 – 1000 trees. Using number of trees greater than the 

upper limit produces accuracy that has no significant difference 

with the cost of slower computing time while number of trees 

lower than the lower limit leads to an unstable model with 

significant variations in accuracies. The optimum number of trees 

is determined by inspecting Figure 9 which shows that the out-

of-bag (oob) error rate (datasets which is independent from the 

original dataset) levels off as the number trees increases.  

 

 
Figure 9. Out-of-bag error rate 

 

Aside from the optimum number of trees to be grown in an RF 

model, the number of features to be considered when looking for 

the best split was determined. Possible values for this hyper 

parameter are summarized in Table 2.   

 

Max features Hyper parameter value Description 

A “auto” = n features 

B “sqrt” sqrt(n features) 

C “log2” log2(n features) 

Table 2. Hyper parameter values for max_features. Source: 

sklearn RandomForestRegressor module version 0.19.1 

(Pedregosa et al., 2011) 

 

The hyper parameter value for max features was determined to 

be “sqrt”. This was determined by testing which of the possible 

hyper parameter values yield the highest accuracy. This is 

consistent with the recommendation of Brieman and Cutler when 

doing regression using RF.  

 

The RF’s variable importance scheme was used to determine the 

important features of matrix X and is shown in Figure 10. The 

said graph shows a scree plot that is superimposed on the bar 

chart to show where the slope of the curve is levelling off, 

indicating the number of significant features to be considered. 

 

 
Figure 10. Variable importance plot. Boxes represent regions 

and circles represents selected important variables 

 

Based on Figure 10, important features can be grouped into five 

regions (R1 – R5) where each region is determined by the 

similarities of values as shown by a relatively flat slope of the 

line. An abrupt break from the line/slope signifies new region. 

For each region, features with the highest variable importance 

will be selected.  

 

All features in R1 were disregarded due to its low importance. 

For R2, PC2 is selected (black circle) since it is the highest and 

represents the rest of the features in its group. The same thing can 

be inferred for R3, R4, and R5. Hence, four features were 

included in this model. 
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In total, there were five models created and tested in this study 

and each model has unique set of features. This is summarized in 

Table 4. 

 

Model Features used Dimensions 

303 rows x n 

columns 

A σ˚ polarisations and its 

derivatives 

5 

B GLCM textures 20 

C The first five principal 

components of matrix X 

5 

D Combinations of features 

from models a - c 

30 

E Important features in model d 4 

Table 4. Summary of models and respective features 

 

Using the optimum hyper parameters of RF, the accuracies (r2) 

and the RMSE for each model were determined (see Table 5). 

 

Model r2 Test RMSE (in Mg) 

a 0.79 0.51 

b 0.76 0.47 

c 0.76 0.58 

d 0.78 0.46 

e 0.79 0.44 

Table 5. Summary of accuracies and error for each model 

 

Table 5 shows that there is little difference of r2 among the five 

models and this only shows the robustness of RF in handling 

multivariate regression problems. Model e is the best model with 

an r2 of 0.79 and an RMSE of 0.44 Mg where it uses only four 

out of the available 30 features namely; PC2, PC1, 𝜎˚𝑉𝐻 GLCM 

contrast, and 𝜎˚𝑉𝐻 GLCM variance. Figure 11 and 12 show the 

scatter plot and line graph, respectively, of the predicted and 

observed AGB values. 

 . 

 
Figure 11. Observed versus predicted using model e 

 

 
Figure 12. Observed versus predicted using model e 

 

Figure 11 shows that large errors comes from extremely highs 

and lows with respect to the line of best fit. This is shown in 

Figure 12 where these extremes are present in a dense mangrove 

forest. Dense mangrove forest has wider range of values as 

compared to the sparse mangrove forest and the wider the 

fluctuations of values, the harder it is for the model to predict its 

values.   

 

4.3 Making sense of the important features 

Features included in model e as well as the observed AGB have 

values with varying magnitudes. Such that, differences of 

magnitude hinder in understanding the relationship of the 

important features to the observed AGB. To solve this, values of 

features considered as well as the observed AGB is scaled or 

normalized as before using Equation 5.  

 

The selected four features are examined and shown in Figure 13. 

It can be noticed that, trend-wise, GLCM contrast follows the 

behaviour of the AGB for both dense and sparse mangrove 

forests. This is attributed to the fact that contrast tells the 

dispersion between the reference (GLCM diagonal) and the 

neighbour pixels which is in correlation with the observed AGB 

values for both sites.  This is also shown in Figure 8 (correlation 

heat map) wherein positive correlation to AGB is 0.33. The most 

evident change is the divergence of the trend for GLCM variance 

and PC1. There is a higher GLCM variance and lower PC1 for a 

dense mangrove forest while the opposite is true for sparse 

mangrove forest. The negative relationship of GLCM variance 

and PC1 are also reflected in Figure 8 where its direct and indirect 

relationship to AGB are 0.37 and -0.31 respectively. The higher 

standard deviation of AGB values from the dense mangrove 

forest contributes to a higher GLCM variance. Hence, the GLCM 

contrast actually describes the complexity of the structure of the 

two mangrove forest. PC1 explains 42% of the variance of the 25 

features (σ˚ polarisations and its derivatives, and GLCM 

textures). As what can be observed in Figure 13, this explained 

variance ratio is enough to differentiate the AGB values of the 

two mangrove forest sites as it changes according to the 

characteristics of the two areas. Though nothing much can be 

inferred from PC2 as to its relationship with AGB (which 

accounts 27% of the explained variance ratio), it represents 

features of R2 such as PC3, PC4, sigma nought derivatives and 

some GLCM textures (see Figure 10).  

    

 
Figure 13. Line graph of selected features and AGB for both 

sites 

 

The orientation of the incoming linearly polarised field at 45˚ 

to the vertical will yield a maximum cross-polar response 

(Richards, 2009). This is evidenced by examining Figure 10 

where the features that contributes significantly to the model are 

mainly composed of GLCM textures that were derived from 

𝜎˚𝑉𝐻. Therefore, vegetation parameters is sensitive to  𝜎˚𝑉𝐻, a 

cross polarisation, due to the occurring depolarization. This 

observation is also in line with the findings of Thiel (2016) where 

the r2 between 𝜎˚𝐻𝑉 and stem volume is 0.65.  

 

Mangrove forest structure is considered a dihedral corner 

mechanism wherein there is a double bounce in the backscatter 

values due to the trunk to water/ground bounce. This 

characteristic will yield stronger backscattering responses. 

However, foliage in the forest canopies attenuates the backscatter 

produced by the double bounce response. Such that the radar 

wave may not penetrate deeper into the canopy due to the size of 

the wavelength and the high moisture condition. Another factor 
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that influence signal attenuation in mangrove forests is the size 

of the leaves. Objects that are smaller than the wavelength (C-

band is 3.75 cm to 7.5 cm) produces less backscatter (Walker, 

2016). In general, leaf size from the sites ranges from 3 cm to 12 

cm. Since the sparse mangrove forest is mainly composed of 

Rhizophora mucronata with a leaf size of 3 cm to 5 cm (Durst, 

2007), lesser 𝜎˚𝑉𝐻 is observed as compared to the dense 

mangrove forest. Difference between the 𝜎˚𝑉𝐻 of the two 

mangrove forests is shown in Figure 14.  

 

 
Figure 14. 𝜎˚𝑉𝐻 for dense and sparse mangrove forest 

 

5. CONCLUSION 

Sentinel-1 C-band was used to model the total AGB per 10 m x 

10 m grid. Since the energy propagated by C-band SAR (3.75 to 

7.5 cm wavelength) is attenuated by forest canopies due to its 

short wavelength and the information gathered is mainly on the 

leaves and small branches, the cost of obtaining an acceptable r2 

is to extract several statistical features will aid in modelling the 

AGB values. These statistical features are mainly the grey level 

co-occurrence matrix (GLCM) and the first five principal 

components for a total of 30 features. Since more features are 

added, the model is prone to over fitting, thus, Random Forest, 

which is robust to these kind of complex machine learning 

problems, was used as a regressor. RF was also used to identify 

the important features that contributed to the accuracy of the 

model where the best model (model e) which only uses four 

variables, namely, 𝜎˚𝑉𝐻 GLCM variance, 𝜎˚𝑉𝐻 GLCM contrast, 

PC1, and PC2, produced an r2 of 0.79 with an RMSE of 0.44 Mg.       

The significance of these features were mainly due to the 

sensitivity of cross polarized radar to vegetation. In future 

studies, it is recommended that additional samples should be 

added to include wider representations of field observed AGB 

values.  Hence, it is very likely that there will be an improvement 

of the model given that the hyper parameters of the RF algorithm 

is exhaustively tuned.   
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