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ABSTRACT: 

 

Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the 

satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, 

which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellite-

derived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were 

adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction 

with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban 

Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate 

that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2=0.80, 

RMSE=17.49 3/g m ) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 

between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the real-

time and seamless monitoring of ground-level PM2.5. 
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1. INTRODUCTION 

Previous studies have indicated that long-term exposure to 

PM2.5 (airborne particles with aerodynamic diameter of less 

than 2.5 m ) is associated with many health concerns, such as 

cardiovascular and respiratory morbidity and mortality 

(Madrigano et al., 2013). However, the assessment of PM2.5 

exposure is limited due to the sparse and uneven distribution of 

ground monitoring stations. 

 

Satellite remote sensing has the potential to expand PM2.5 

estimation beyond those only provided by ground stations (Li et 

al., 2016). The most widely used satellite parameter is aerosol 

optical depth (AOD) (Hoff and Christopher, 2009). Many 

satellite instruments own the capacity to provide AOD products, 

and have been applied to the  monitoring of PM2.5, for instance, 

the Moderate Resolution Imaging Spectroradiometer (Li et al., 

2017b) and Multiangle Imaging SpectroRadiometer (You et al., 

2015) on board Earth Observing System (EOS) satellites (i.e., 

Terra and Aqua) etc. 

 

However, previous satellite-based PM2.5 estimation usually rely 

on polar-orbiting satellites (e.g., Terra, Aqua). In general, this 

type of satellite provides only one observation per day for a 

given location. This means the polar-orbiting satellite will not 

be able to monitor PM2.5 once again until the next day. Hence, 

the PM2.5 pollution (especially sudden pollution event) may not 

be monitored in real time by polar-orbiting satellite. 

Furthermore, previous studies have suggested that there exist 

diurnal variation of PM2.5 (Guo et al., 2016). The diurnal 

variation of PM2.5 cannot be effectively characterized by the 

polar-orbiting satellites. With a high temporal resolution (e.g., 1 

hour), the geostationary satellite has been attempted to be used 

for the estimation of ground PM2.5/PM10. The results indicated 

that the hourly geostationary observations show great potential 

in the real-time monitoring of PM2.5/PM10 (Emili et al., 2010; 

Paciorek et al., 2008). While these studies still mainly focused 

on PM2.5/PM10 estimation at a daily scale, and the hourly 

estimation accuracy has great room for improvement. 

 

On the other hand, due to the cloud contamination, there are 

many gaps in satellite remote sensing data (Li et al., 2014; Shen 

et al., 2014). The satellite-based PM2.5 estimates are usually 

seamed in space. To address this issue, two main strategies have 

been carried out. Firstly, the satellite AOD products were 

spatially interpolated to improve its coverage (Lv et al., 2016; 

Ma et al., 2014). Secondly, the spatial smooth techniques were 

adopted to fill the missing data of satellite-derived PM2.5 (Just 

et al., 2015; Kloog et al., 2011). For these two strategies, they 

mainly considered spatial correlation information of 

aerosol/PM2.5 for the reconstruction of missing data. There may 

be great uncertainty, especially for large gaps, because of the 

lack of preference data. It should be noted that the valid 

observations at a nearby time may exist, and they are a good 

supplementary for the reconstruction of PM2.5. Whether is it 

possible to fuse the spatial and temporal correlation information 
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of satellite and ground observations for the reconstruction of 

missing PM2.5? 

 

Here arrives at the objective of this study. Firstly, taking 

advantage of geostationary satellite observations with high 

temporal resolutions, we would like to improve the time 

efficiency of satellite-based monitoring of PM2.5 from the daily 

scale to the hourly scale. In addition, a spatio-temporal fusion 

technique is developed to recover the missing data of satellite-

derived of PM2.5 using time series observations of satellite and 

ground stations. Therefore, the purpose of this paper is to derive 

hourly and seamless PM2.5 distributions by fusing the satellite 

remote sensing and ground station measurements. 

 

2. STUDY REGION AND DATA 

2.1 Study region and period 

The study region is Wuhan Urban Agglomeration (WUA), 

which is presented in Figure 1. The study period is a total year 

of 2016. WUA is located in central China (as shown in Figure 

1). To make full use of PM2.5 station measurements, the 

monitors in the range with latitude of 28.4° ~32.3°N and 

longitude of 112.0° ~116.7°E are all included in our analysis. 

WUA is an urban group with the center of Wuhan, covering the 

vicinal 8 cities (Huangshi, Ezhou, Huanggang, Xiaogan, 

Xianning, Xiantao, Qianjiang, and Tianmen).  

 

Figure 1. Study region and spatial distribution of PM2.5 stations. 

  

2.2 Ground-level PM2.5 measurements 

We collected hourly PM2.5 data from the China National 

Environmental Monitoring Center (CNEMC) website 

(http://www.cnemc.cn) and the Hubei Provincial Environmental 

Monitoring Center Station (HPEMCS) website 

(http://www.hbemc.com.cn/). In this study, 77 CNEMC stations 

and 27 HPEMCS stations (104 stations in total) are included. 

The distribution of PM2.5 stations is shown in Figure 1. 

 

2.3 Himawari AOD 

Himawari-8 is one of the third generation of geostationary 

weather satellites, launched on 7th October 2014 carrying the 

new AHI instrument. The Himawari-8 has an observation range 

of 80ºE ~ 160ºW and 60ºN ~ 60ºS, with the center of 140.7ºE 

over equator. The aerosol optical depth product is derived from 

Himawari-8 visible and near-infrared data. This product 

provides information on AOD at 500 nm for areas over oceans 

and land during the daytime. The algorithm references a look-

up table calculated on the basis of an assumed spheroid-particle 

aerosol model (Fukuda et al., 2013). 

 

The Himawari-8 Level 3 hourly AOD data corresponding to the 

ground-level PM2.5 measurements were downloaded from Japan 

Aerospace Exploration Agency (JAXA) P-Tree System 

(http://www.eorc.jaxa.jp/ptree/). This AOD products have a 

spatial resolution of 5 km, and they are available every 1 hour. 

In this study, only aerosol retrievals with the highest confidence 

level (“very good”) were adopted for the estimation of PM2.5. 

 

2.4 Meteorological parameters and land cover data 

The Goddard Earth Observing System Data Assimilation 

System GEOS-5 Forward Processing (GEOS 5-FP) 

meteorological data were used in this study. The reanalysis 

meteorological data have a spatial resolution of 0.25° latitude × 

0.3125° longitude. Hourly specific humidity (SH, kg/kg), air 

temperature at a 2 m height (TMP, K), wind speed at 10 m 

above ground (WS, m/s), and, surface pressure (PS, kPa) from 

this datasets were extracted. Each variable was regridded to 

0.05° to be consist with satellite observations. More details 

about the GEOS 5-FP data can be found at the website 

(https://gmao.gsfc.nasa.gov/forecasts/). 

 

MODIS normalized difference vegetation index (NDVI) 

products (MOD13) were downloaded from the NASA website 

(https://ladsweb.modaps.eosdis.nasa.gov/). This product is 

available at a resolution of 1 km every 16 days, and was 

incorporated to reflect the land-use type. 

 

2.5 Data pre-processing and matching 

Firstly, we created a 0.05-degree grid for the data integration, 

model establishment, and spatial mapping. For each 0.05-degree 

grid, ground-level PM2.5 measurements from multiple stations 

are averaged. Meanwhile, we resampled the meteorological data 

to match with satellite observations. All the data were re-

projected to the same coordinate system. Finally, we extracted 

satellite observations, meteorological parameters on the 

locations where PM2.5 measurement are available. 

 

3. METHODOLOGY 

The main procedure of our method includes two parts, which is 

illustrated in Figure 2. Firstly, a deep learning architecture is 

developed to estimate ground-level PM2.5 using Himawari AOD 

and auxiliary predictors. On this basis, the satellite-derived 

PM2.5 in conjunction with ground-level PM2.5 measurements are 

incorporated into a spatio-temporal fusion model for the 

reconstruction of PM2.5. The details of each part can be seen in 

Section 3.1 and 3.2. 

 

Figure 2. Flowchart describing the procedure for deriving 

hourly and seamless PM2.5. 
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3.1 Deep learning for the satellite-based PM2.5 estimation 

The deep belief network (DBN) model, which is one of the most 

typical deep learning models (Hinton et al., 2006), was 

introduced to represent the relationship between PM2.5, AOD, 

and auxiliary factors. Additionally, the geographical correlation 

of PM2.5 were incorporated into the DBN model (Geoi-DBN) 

(Li et al., 2017a). Because the nearby PM2.5 from neighbouring 

stations and the PM2.5 observations from prior days for the same 

station are informative for estimating PM2.5. The general 

structure of Geoi-DBN model used to estimate PM2.5 is: 

  2.5 2.5 2.5, , , , , , - , - ,PM f AOD SH WS TMP PS NDVI S PM T PM DIS  (1) 

where 
2.5 2.5- , - ,S PM T PM DIS  denote as the geographical 

correlation of PM2.5, their calculation can be found at Li et al. 

(2017a). A Geoi-DBN model comprising two restricted 

Boltzmann machine (RBM) layers for estimating ground-level 

PM2.5 is presented in Figure 3. The input variables are satellite 

AOD, meteorological parameters, NDVI, and geophysical 

correlation of PM2.5; the output is ground PM2.5. The Geoi-

DBN model is firstly trained using the collected AOD-PM2.5 

matchups, and subsequently utilized to predict spatial values 

where there are no monitoring stations. 

 

Figure 3. The structure of Geoi-DBN for PM2.5 estimation. 

3.2 Spatio-temporal fusion for the reconstruction of PM2.5 

The optical satellite is often impacted by clouds, and thus the 

spatial discontinuity exists in satellite-derived PM2.5. To address 

this issue, using time series satellite-retrieved PM2.5 and station-

measured PM2.5, we propose a satellite-station spatio-temporal 

fusion method to fill the data gaps. The initial PM2.5 data are 

obtained by the interpolation of station PM2.5 using the inverse 

distance weighting (IDW) method. The basic supposition is that 

the variation of the interpolated PM2.5 remains similar trend 

with that of the satellite-derived PM2.5 between the same 

periods for a given location. 

 

For convenience, we refer to the interpolated PM2.5 as coarse-

resolution data, and the satellite-derived PM2.5 (in Section 3.1) 

as fine-resolution data. Then, we denote the given seamed PM2.5 

as target data. To reconstruct the target data, the auxiliary data 

used are N  pairs of coarse- and fine-resolution data acquired 

prior the target time 
pT  and the coarse-resolution data at the 

target time. For a given missing pixel: 
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where ( , , )pPM x y T  is the prediction of the missing pixel (x, y) 

at prediction time 
pT ; n  is the number of similar pixels (with 

similar PM2.5 values and spatial patterns) for the missing pixel; 

 ,i ix y  is the location of the ith  similar pixel, and 

( , , )i i kW x y T  is the weight of ith  similar pixel on the auxiliary 

fine-resolution data at time 
kT . The selection of similar pixels 

and the calculation of their weights refers to Cheng et al. (2017). 

( , , )ka x y T  and ( , , )kb x y T are regression coefficients 

fitted using the similar pixels on the coarse-resolution data at 

time 
pT  and 

kT , and they are transferred to the fine-resolution 

data for the prediction of missing data. 

 

On the other hand, we can obtain '  ( ' )N N N  (due to the 

missing data on auxiliary data) predictions for the missing 

pixels using N  pairs of auxiliary data. To reduce the random 

error, the weighted average of them is considered as the final 

prediction. The weights (  kW T ) are set according to PM2.5 

variation between prediction time (
pT ) and auxiliary time (

kT ): 

 
  '

1

1 1
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k k
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  (3) 

where 
kRMSE

 means root-mean-square error between coarse 

data at prediction time (
pT ) and auxiliary time (

kT ). Here, the 

“spatio-temporal fusion” means the combination of spatial 

information (similar pixels) and temporal information (data at 

auxiliary time) for the reconstruction of PM2.5. 

 

Through the above reconstruction process, some tiny regions 

are still missing due to the lack of auxiliary data. They are 

interpolated using the IDW method to achieve full-coverage 

PM2.5 data. 

 

3.3 Model evaluation 

Firstly, to evaluate the accuracy of PM2.5 retrieval, a 10-fold 

cross-validation technique (Rodriguez et al., 2010) was adopted 

to test the potential of model overfitting for Geoi-DBN. All 

samples in the model dataset are randomly and equally divided 

into ten subsets. One subset is used as validation samples and 

the rest subsets are used to fit the model for each round of 

validation. We adopted the coefficient of determination (R2), 

the root-mean-square error (RMSE, 3/g m ), the mean 

prediction error (MPE, 3/g m ), and the relative prediction 

error (RPE, defined as RMSE divided by the mean ground-level 

PM2.5) to evaluate the model performance. 

 

Secondly, in order to verify the accuracy of PM2.5 

reconstruction, we compared the reconstruction PM2.5 in a total 

year of 2016 with the corresponding station measurements. 

Statistical indices of the R2 and RMSE are used to give a 

quantitative assessment. 

 

4. RESULTS 

4.1 Model evaluation 

4.1.1 Evaluation of PM2.5 retrieval performance: Figure 4 

shows the scatter plots for the modelling fitting and cross-

validation results of Geoi-DBN model. For the model fitting, 

the R2 value is 0.80, and the RMSE is 17.37 3/g m . The 

results indicate that the Geoi-DBN model can effectively 

describe the AOD-PM2.5 relationship. From model fitting to 

cross-validation, the R2 value is equal and the RMSE only 
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increase 0.12 3/g m . These findings show that the Geoi-DBN 

model is not over-fitted. On the other hand, the cross-validation 

slope of observed PM2.5 versus estimated PM2.5 is 0.79, 

reporting some evidences for bias. This means that the Geoi-

DBN model tends to underestimate PM2.5 concentrations when 

the ground measurements are greater than ~55 3/g m . The 

possible reason could be that we used point-based monitoring 

data and a spatially averaged modelling framework. The 

sampling distribution of monitors in a grid may not give a great 

estimation of the spatially averaged concentration for that grid. 

Generally, the Geoi-DBN model has achieved a satisfactory 

performance for the Himawari-based AOD estimation. 

 

Figure 4. Scatter plots of Geoi-DBN for PM2.5 estimation: (a) 

model fitting, (b) cross-validation. 

4.1.2 Evaluation of PM2.5 reconstruction accuracy: To 

evaluate the performance of PM2.5 reconstruction, we compare 

the reconstruction results with ground station measurements. As 

shown in table1, the R2 value between observed PM2.5 and 

reconstruction PM2.5 is 0.75, and the RMSE is 19.44 3/g m . 

The results show that the reconstruction PM2.5 are highly 

consistent with the station measurements. For the satellite 

retrievals, they report R2 and RMSE values of 0.81 and 

16.96 3/g m  versus station measurements. These findings 

indicate that the reconstruction results almost obtain a same 

level of performance to the satellite retrievals, when comparing 

with the ground station observations. Therefore, we can say that 

the proposed approach is effective for reconstructing the 

seamless PM2.5 distributions. 

Table 1 performance between retrievals and reconstruction. 

 R2 RMSE 

Reconstruction results 0.75 19.44 

Retrieval results 0.81 16.96 

 

4.2 Hourly mapping of PM2.5 distribution 

Figure 5 presents hourly satellite derived PM2.5 on 28 February 

2016. It can be clearly found that the satellite-derived PM2.5 are 

all missing during 00:00 ~ 08:00 and 18:00 ~ 23:00. The reason 

for this is that the Himawari satellite, which is an optical 

satellite, has no capacity to detect the atmospheric parameters 

during night. During the daytime, the hourly PM2.5 distributions 

are mapped. Compared to the polar-orbiting satellites, the 

Himawari satellite shows some advantages to investigate the 

diurnal variation of PM2.5. For instance, the levels of PM2.5 

concentrations in Wuhan are becoming higher in the afternoon, 

especially at 15:00. However, it is worth noticing that there are 

still some limitations for monitoring the PM2.5 patterns, due to 

the data missingness. For example, it is hard to capture the level 

of PM2.5 in Huanggang at 17:00. 

 

Figure 5. Hourly satellite-derived PM2.5 on February 28, 2016. 

The black regions indicate missing data. 

 

The data gaps are filled using the proposed approach, as 

presented in Figure 6. The missing parts of satellite-derived 

PM2.5 are effectively recovered, so that the PM2.5 patterns can 

be comprehensively investigated. Compared with satellite-

derived PM2.5 at 17:00 (Figure 5), we can clearly see 

Huanggang has a very high level of PM2.5. Furthermore, the 

PM2.5 distributions in night are also reconstructed, which cannot 

be directly monitored by Himawari satellite. 

 

Figure 6. Hourly and seamless PM2.5 on February 28, 2016. 

 

5. CONCLUSIONS 

To sum up, the hourly Harawari-8 observations are adopted to 

greatly improve the time efficiency of PM2.5 monitoring. 

Furthermore, a spatio-temporal fusion model is applied to the 

fill the data gaps using satellite-derived PM2.5 in conjunction 

with ground PM2.5. The results show that Harawari-8 satellite-

based deep learning model achieves a satisfactory performance 

(cross-validation R2=0.80, RMSE=17.49 3/g m ). The missing 

data in satellite-derive PM2.5 are accurately recovered, with R2 

between recovery results and ground measurements of 0.75. 

This study has provided an effective strategy for the real-time 

and seamless monitoring of ground PM2.5. 
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