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ABSTRACT:

Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead
in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring
the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel
feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the
linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining
mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using
template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization
algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real
hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

1. INTRODUCTION

Hyperspectral images have become one of the most important in-
formation sources for earth observation. However, mixed pixels
are widespread in the images due to the fact that hyperspectral
images generally have low spatial resolution. Spectral unmixing
provides the abundances of pure spectral signals for each pixel,
without providing spatial distribution at subpixel level (Chang,
2017).It is difficult for traditional classification technologies to
accurately determine the spatial distribution of ground features
because more than one ground is contained in a mixed pixel (Pei-
jun et al., 2016). Subpixel mapping (SMP) technology is an ef-
fective method to solve this problem.

A variety of SMP algorithms, such as linear optimization tech-
niques (Chen et al., 2017, A.Erturk., 2014), Markov random
field (Liu and Trinder, 2016), pixel-swapping (Atkinson, 2005),
subpixel/pixel spatial attraction model (Mertens et al., 2006),
Hopfield neural networks (Wang et al., 2016), BP neural network-
s (Shi et al., 2014) and geo-statistics have been proposed and de-
veloped over the last decade (Boucher and Kyriakidis, 2006). A-
mong these, the linear optimization technique, which is based on
pixels spatial distribution relevance theory, has grown popular on
account of its simplicity and efficient performance. To date, most
linear optimization SPM methods can perform well for predicting
the spatial distribution in high resolution (H-resolution), where
the objects of interest are larger than the pixels. Furthermore,
the linear subpixel phenomenon is also very important for remote
sensing image interpretation (Fisher, 1997, Xu et al., 2014). For
example, it is important for land cover classes with linear subpix-
el features, such as roads and rivers. Applying linear optimization
methods to fine linear objects where the pixels are both shorter
and wider than the objects of interest, may lead to loss of linear
connectivity for linear objects; even for larger linear objects, it
may lead to unsmooth boundaries (Ge et al., 2016). To address
these problems, an improved pixel-swapping algorithm (PSA),
namely, linearized PSA, has been proposed to map rural linear
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land cover features (Thornton et al., 2007). However, the type
of mixed pixel cannot be automatically determined and is limited
to land cover classes that only contain the linear subpixel type.
Xu et al. (Xu et al., 2014) proposed an adaptive SMP framework
based on a multi-agent system for remote sensing images. How-
ever, this method cannot be guaranteed to obtain the best result
because it is difficult to determine the rotation angle. Ge et al. (Ge
et al., 2016) classify geographical objects into areal, linear, and
point patterns according to their spatially geometric characteris-
tics and using different methods to deal with SMP for different
object patterns. However, this method fails to effectively detect
the linear subpixel feature.

To address these problems, this paper proposes a new SMP al-
gorithm based on linear subpixel feature analysis and linear op-
timization. The linear subpixel features are detected based on
maximum linearization index analysis, and the linear subpixel is
mapped by template matching method. The final results are ob-
tained by the method based on both perimeter minimum and bi-
nary quantum particle swarm optimization. The remainder of this
paper is organized as follows. Section 2 introduces the proposed
SPM strategy. Section 3 contains the experimental results and
analysis. Section 4 concludes this paper.

2. PROPOSED METHOD

The entire procedure contains three main steps: spectral unmix-
ing, feature detection, and subpixel mapping. Since spectral un-
mixing is not the emphasis of this paper, the rest of this section
will highlight the theorem of linear subpixel feature detection and
the procedure of subpixel mapping.The flowchart of the proposed
method is shown in Figure 1.

2.1 Linear Subpixel Feature Detection

In order to determine if there is a linear subpixel feature in a
mixed pixel, it is necessary to consider its neighboring pixels. As-
suming that the target mixed pixel is denoted as Pij , the D ×D
neighborhood pixels for Pij forms a set of pixels
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Figure 1. The flowchart of the proposed method
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where ∩ means the ”and” operator. Let each pixel represent a
1 × 1 grid square, then all pixels in Eij form a square region of
length D. Defining a new uniform coordinate system and setting
the origin at the upper left, then every pixel pij will receive a
coordinate (i+ 0.5, j + 0.5). In this new coordinate system, the
region of the grid square for pixel Pi′ j′ is (i
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where CAij is referred to the control area of pixel pij .

To determine whether a linear subpixel feature exists in the mixed
pixel, every possible straight line across the center of the pixel
should be verified. TakingD = 5 as an example, Fig. 2 describes
how to determine whether a linear subpixel feature of class c ex-
ists in the mixed pixel pij , where the pixels contained class C are
marked with a yellow grid and ϑ is the angle between the line
Lλ7 and Lb. The decision procedure involves three steps.

Firstly, find all possible lines. Any line in the picture can be rep-
resented by pixels it passes through, and the task is to find all the
pixel sets. As Fig.2 shows, lines between La and Lλ7 occupy the
same pixels, therefore lines between Lλ7 and L−λ7 can delegate
all possible lines. All solid lines in Fig.2 are drawn by connect-
ing the center of pixel pij with each grid vertex of the control area
CAij , and the angle between the (D+1)2

4
lines and Lb is

β=arctan(
m+ 0.5

n+ 0.5
),m=0, 1,· · ·, D − 1

2
, n=0, 1,· · ·, D − 1

2
(3)

La : y = D
2

+ j Lb : x = D
2

+ j θ = arctanD
Lλ7 : (x− i) = tan(θ) ∗ (y − j)

L−λ7 : (x− i) = tan(−θ) ∗ (y − j)

Figure 2. Sketch map of the linear subpixel feature detection for
class c in pij

where β0,0 = β1,1 = · · · = βD
2
,D
2

. when the duplicated lines

are removed, the total number of lines is p = (D+1)2

4
− (D+1)

2
+1.

Sort the angles of the p lines in ascending order to be reformu-
lated as λ1 < λ2 < · · · < λp. Obviously, the pixel sets cor-
responding to the p lines are all varied. Furthermore, any lines
between Lλi and Lλi+1 occupy the same pixels as the line with
angle λi+λi+1

2
. Therefore, the entire set for the angle of the lines

passing through Pij in CAij is

β = {±λi | i = 1, · · · p} ∪
{
±λj + λj+1

2
| j = 1, · · · p− 1

}
(4)

where the ∪ symbol represents the ”or” operator.

Secondly, for every line Lλ, find the intersection of the corre-
sponding pixel set and CAij .

PLλ =
{
Pi′ j′ | ARi′ j′ ∩ Lλ 6= O,ARi′ j′ ∈ CAij

}
(5)

Finally, use the linear subpixel feature detection rule in (Xu et al.,
2014) to determine if there is a linear subpixel feature in Pij . The
rule is sketched in the following as

If MLI ≥ ρ and Gk′ (c
′
) ≥ D was satisfied, then there is a

linear subpixel feature in the pixel Pij , where ρ is the threshold
to determine if there is a linear subpixel feature, and

Gλ(c)=
∑

p
i
′
j
′∈PLλ

gi′ j′,gi′ j′ =

{
1 Sc(i

′
, j
′
)

0 else
,Pi′ j′ ∈PLk

(6)
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Gk(c) is the number of pixels in PLλ for class c whose frac-
tion values are greater than zero, MLI (maximum linearization
index) is defined as

MLI = Øk
′ (c
′
),∃k

′
, c
′

: Øk
′ (c
′
) = max {Øk(c), c ∈ C}

(7)

φk(c) =
Gk(c)
H(c)

(8)

φk(c) denotes the possibility of a line existing for class c, and

H(c)=
∑

P
i
′
j
′ ∈Ei,j

hi′ ,j′ , hi′ ,j′ =

{
1, Sc(i

′
, j
′
)>0

0, else
Pi′ ,j′ ∈Eij

(9)

where Sc(i
′
, j
′
) is the fraction value of class c in pixel Pi′ j′ .

Referring to (Xu et al., 2014), in this paper, the parameter ρ for
the linear subpixel feature detection was set to the experiential
value of 0.5.

2.2 Subpixel Mapping

Apply the template matching method (Ge et al., 2016) to realize
the linear subpixel mapping. The templates are represented by a
binary matrix. Taking scale factor 3 as example, the binary matrix
is

Tk =

t(−1, 1) t(−1, 0) t(−1, 1)
t(0,−1) t(0, 0) t(0, 1)
t(1,−1) t(1, 0) t(1, 1)

 (10)

where Tk denotes the template k, t(m,n) ∈ {0, 1}, m,n =
−1, 0, 1, the elements t(m,n) = 1 represent the template, and
the elements t(m,n) = 0 represent the background.

Calculate the correlation coefficient between a template and a lo-
cal subset of an image, which is defined as

rij,k =

w∑
m=−w

w∑
n=−w

Tk(m,n)·Sc(i+m,j+n)√
w∑

m=−w

w∑
n=−w

Sjc(i+m,j+n)2·
w∑

m=−w

w∑
n=−w

Tk(m,n)
2

(11)

where w = s−1
2

, Tk(m,n) is the element of the template Tk.
Sc is the fraction value of class c. The template with the highest
rij,k is selected as the optimal template.

In order to assign the land cover class to each subpixel to the
closest optimal template, the Euclidean distance is calculated be-
tween any subpixel and each element that has the value 1 in
the optimum template after combining the coordinates of pixel-
s, templates, and subpixels into a unified coordinate system. The
Sc(i, j)×s2 subpixels of the shortest distance are allocated to the
land cover class c. It should be noted that, if the mixed pixels Pij
only have two kinds of land cover classes, then the other subpixel

Pa,b in the Pij class can be determined directly. If the land cov-
er classes number in Pij is greater than two, then the remaining
subpixel classes will determined by pixel attraction.

After the initial subpixel mapping for pixels with different fea-
tures, an iteration optimization procedure is carried out for global
subpixel. The perimeter of the areas belonging to the same class
is chosen as the object optimization function, which is described
as

C =

M∑
i=1

Ci∑
j=1

pij (12)

where M is the number of the classes, Ci is the number of con-
nected components of the class i, and Pij is the perimeter of the
connected component j.

The modified binary quantum particle swarm optimization algo-
rithm (MBQPSO) (Chen et al., 2017) is used to obtain the final
result.

3. EXPERIMENTS RESULTS

Both the simulation image and real image are used to evaluate the
performance of the proposed subpixel mapping method in deal-
ing linear feature object. We compared the subpixel mapping
performance of proposed method, the binary particle swarm op-
timization algorithm (Chen et al., 2017), and the shape density
index method (Ge et al., 2016). For convenience, the three meth-
ods are abbreviated as CLS BQPSO, BQPSO, and SDI BQPSO,
respectively. The classification accuracy assessment was under-
taken using the indices of visual interpretation, Kappa coefficient
(kappa), CPU time and recognition rate.

3.1 Simulation Experiment

The ground truth map with size of 270 × 180 pixels is shown
in Fig.3(a). This map contains seven land cover classes labeled
with different colors. Seven kinds of feature spectrals are selected
from the USGS spectral library to generate a dataset based on the
ground truth, with the resulting dataset downsampled by 3 × 3
to obtain the simulated hyperspectral image. The 30th band grey
map of the simulated dataset is shown in Fig.3(b).

 

 

(a) (b)

Figure 3. Simulated hyperspectral imagery :(a) True distribution,
(b)30th band grey map.

The endmember spectral was extracted by FNSGA (Zhao et al.,
2015) and the fraction maps were generated by Fully Constrained
Least Squares (Heinz and Chein-I-Chang, 2002) method on the
degraded low-resolution images. Then subpixel localization was
performed. All of experiments were implemented using an In-
tel(R) Core(TM) i5-2380P CPU with the MATLAB R2014a soft-
ware package.
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Figure 4. Subpixel mapping results of three algorithms : (a)
initialization,(b) BQPSO,(c) CLS BQPSO,(d) SDI BQPSO.

Algorithm Recognition
rates (%)

Kappa coefficient Time
(s)

BQPSO 97.06 0.9263 133

CLS BQSPO 98.09 0.9516 140

SDI BQPSO 97.13 0.9271 134

Table 1. Accuracy assessments of the three methods

Fig.4 (b)-(d) shows that spatial locations of the entire image. As
can be observed from Fig.4, many linear features exist, but the
straight-line boundary is not smooth and has a number of ser-
rations, influencing the linear feature positioning. Despite the
above effects, Fig.6 (c) and (d) shows a greater connectivity in
each class, which made CLS BQPSO and SDI BQPSO produce
comparable high recognition rate and kappa in Table.1. In con-
trast, BQPSO lost some connectivity and resulted in unrealisti-
cally jagged boundaries in Fig.4 (b), because it treats all the fea-
tures as area objects. The result of SDI BQPSO is not as good as
CLS BQPSO because CLS BQPSO considered all linear subpix-
el features.

When compared with other two methods, the CLS BQPSO
method has the best performance and it shows the highest
recognition rate and kappa, as can be observed in Table.1.
CLS BQPSO outperforms BQPSO and SDI BQPSO, not only
for the linear subpixel features, but also for when the neighbor-
hood pixel attraction is considered in the linear feature mixed pix-
el mapping. The running time is longer on account of the fact that
the latter two algorithms need to separately determine whether the
mixed pixel has a linear subpixel feature.

The simulated experiment confirms the competitive performance
of the proposed algorithm from both qualitative and quantitative
aspects.

3.2 Real Image Experiment

The experimental data used ROSIS hyperspectral remote sensing
images collected at the Italian University of Pavia. The size of
image is 610 × 340 pixels, including nine classes, the number
of bands is 103 and the geometric resolution is 1.3m. Intercept

117 × 75 size of the this area, the region contains five classes,
where Fig.5(a) was the true distribution, Fig.5(b) was the grey
map of band 60 after smoothing. This area contains five land
cover classes labeled with different colors. The abundance is ad-
justed, and the pixel whose minimum value of the difference be-
tween the maximum abundance and other abundance is greater
than a certain threshold is used as the pure pixel. Because the
metal region is obvious, only the position of the metal region is
counted recognition rate, the experiment found that the threshold
was 0.4.

 

 

(a) (b)

Figure 5. True hyperspectral dates : (a)True distribution, (b)
60th band grey image.

Fig.6 presents the different subpixel mapping results. As we
can see, the subpixel mapping results of CLS BQPSO, BQPSO,
and SDI BQPSO appear similar, and the maps have many iso-
lated points. Table.2 tabulates the results of different methods.
By examining results in Table.2, we can also find the result of
CLS BQPSO is better than the other methods in terms of recog-
nition rate and kappa. The BQPSO method, together with the
SDI BQPSO algorithm, obtains relatively low values.

 

 

(a)

 

 

(b)

 

 

(c)

 

 

(d)

Figure 6. Subpixel mapping results of three algorithms : (a)
initialization,(b) BQPSO,(c) CLS BQPSO,(d) SDI BQPSO.

Algorithm Recognition rates (%) Time (s)

BQPSO 97.84 40.37

CLS BQSPO 98.52 42.19

SDI BQPSO 98.01 40.63

Table 2. Accuracy assessments of the three methods

From Table 2, it can be observed that the overall recognition rate
of the algorithm for linear mixed pixel judgment and location is
still slightly higher than that of BQPSO without linear judgment
mapping. This is owing to the fact that the traditional subpixel
mapping method used with linear features will make the linear
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features lose their connectivity, resulting in reduced spatial de-
pendence. Moreover, the running time of CLS BQPSO is the
longest because it needs to determine whether the mixed pixel
contains subpixel-level linear features, while the running time of
SDI BQPSO is slightly lower compared to BQPSO because it
determines the line features based on shape density index. The
running time of BQPSO is the shortest as a consequence of it not
needing the above judgments and mapping.

4. CONCLUSION

In this paper, we have proposed a new method for subpixel map-
ping. Considering the deficiency that the traditional subpix-
el mapping only considers maximizing the spatial dependence,
while ignoring the other structures in mixed pixels, such as linear
subpixel features, this paper combines the judgment of linear sub-
pixel feature and matching localization, and makes corresponding
changes. In doing so, highly accurate results for remote sensing
was achieved. We propose a new straight-line judgment mech-
anism to avoid the inappropriate choice of the rotation angle in
linear subpixel feature detection affecting the linear subpixel fea-
ture judgment result. In particular, neighborhood pixel attraction
is considered when mapping linearly mixed pixels. In this way,
not only are the subpixel localization of the linear subpixel fea-
tures considered, but the subpixel mapping of the area features
are also considered, thereby improving the subpixel mapping ac-
curacy as a whole.
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