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ABSTRACT: 
 
In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their 
occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method 
first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their 
temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these 
candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, 
we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment 
validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence 
threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change 
points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change 
points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than 
thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In 
addition, we also explore and discuss optimal selection of temporal coherence threshold.  
 
 

1. INTRODUCTION 

Human activities, such as population growth, economic 
globalization, urban extension, and natural disasters have led to 
frequent urban changes. Such changes often regard building 
erection and demolition. Monitoring such changes is important 
for municipal administration. In contrast to conventional field 
survey, remote sensing is a fast and cost-effective alternative. 
Spaceborne SAR sensors provide radar images acquired rapidly 
over vast areas at fine spatiotemporal resolution. For instance, 
TerraSAR-X scans a scene size of 50km × 30km every 11 days 
under a spatial resolution of 3m (Stripmap mode). In addition, the 
active microwave sensors are capable of day-and-night vision 
regardless of weather conditions. These advantages make SAR 
suitable for monitoring tasks on this earth. 
 
Persistent scatterer interferometry (PSI) (Crosetto et al., 2016; 
Ferretti et al., 2000, 2001, 2011; Hooper et al., 2004; Kampes, 
2006) is designed to detect and analyse PS points based on time 
series analysis of multi-temporal SAR images. A temporal 
coherence reflects the phase stability of a pixel and can be used 
as an indicator for PS selection. In an urban scene, the PS points 
are regarded as steady structures, which persistently reflect 
coherent radar signals back to SAR sensors. Certain PS properties, 
e.g., temporal coherence, deformation velocity, and topography 
height, are derived for further applications.  
 
In a previous work, we proposed a 4D change detection technique 
(self-citation) to recognize temporary PS points, which disappear 
or emerge at certain times. We distinguish and label these two 
point types as disappearing big change (DBC) and emerging big 
change (EBC) points. They are considered to be structural 
changes in built-up areas. This method first divides an entire SAR 
image stack into several subsets by a set of break dates. The PS 
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points, which are selected based on their temporal coherences 
before or after a break date, are regarded as change candidates. 
Change points are then extracted from these candidates according 
to their change indices, which are modelled from their temporal 
coherences of divided image subsets. Finally, we check the 
evolution of the change indices for each change point to detect 
the break date that this change occurred. This technique proved 
to perform well for simulated and real data tests.  
 
Two questions still remain in our previous approach. First, 
selection of temporal coherence threshold associates with a trade-
off between quality and quantity of PS points. How to select a 
suitable threshold in our method becomes even more complicated. 
On the one hand, raising a threshold decreases PS density as 
expected; on the other hand, the number of change points is 
reduced or increased? And how about the quality of change 
points being detected? Does a stricter threshold lead to more 
precise change detection? Second, heuristic selection of change 
index thresholds brings vulnerability and causes loss of change 
points  
 
In this study, we propose an adaptive method to extract change 
points based on statistical characteristics of change indices 
instead of a heuristic way. In addition, we also refine the 
statistical model to be more sophisticated and so improve the 
detection accuracy. Our experiment validates our refined 
approach and shows increase of change points compared with the 
old version. In addition, we also explore and discuss optimal 
selection of temporal coherence threshold. 
 
This paper is organized as follows. We describe the PSI 
processing and proposed method in chapters 2 and 3. The real 
data test is conducted in chapter 4 to validate our method. We 
then experiment on and discuss several examples of different 
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temporal coherence thresholds in chapter 5. Finally, chapter 6 
summarizes the conclusions and future works.  
 

2. PERSISTENT SCATTERER INTERFEROMETRY 

The input data are a time series of N spatially overlapped SAR 
images acquired from the same orbit. N-1 slave images are 
precisely co-registered to a master image, which is selected under 
small baseline constraint (Berardino et al., 2002; Lanari et al., 
2004). Then, N-1 interferograms between the master and all of 
the slave images are computed. The interferometric phases of 
each pixel are used to estimate its temporal coherence (Ferretti et 
al., 2001), line-of-sight velocity, and relative topography height. 
The temporal coherence serves as a measure of phase stability 
throughout the SAR images. Finally, those pixels with high 
temporal coherences are selected as PS points. However, DBC 
and EBC points, if any, are just discarded here as they suffer 
coherence loss during the entire image sequence. To retrieve such 
big change information, we resort to our approach described in 
the next section.  
 

3. METHODOLOGY 

3.1 Single-break-date Scheme 

We first illustrate the change detection scheme (Figure 1) subject 
to a single break date that big changes occur before or after. The 
complete set consists of an entire image set. The front and back 
sets comprise the images taken before and after the break date, 
respectively. Our aim is to find change points, which exist as PS 
points in the front set but disappear in the back set and vice versa 
(emergence). The three image sets are processed by a standard 
PSI procedure to generate three temporal coherence images. Two 
change index images are calculated by subtracting the temporal 
coherence image of the complete set from the ones of the front 
and back sets. The change indices are used to extract the change 
candidates. These candidates are jointly analysed with the PS 
points, which are selected from the complete set, to determine the 
final point labels. Finally, the PS and change points are combined 
into a change detection result. 
 

 
Figure 1. Flowchart of single-break-date change detection. 

Persistence (blue), disappearance (red), and emergence (green) 
scenarios are dedicated to extracting PS, DBC, and EBC points, 

respectively. 
 
3.2 Change Index 

We introduce a change index derived by temporal coherence to 
quantify each pixel’s probability of being a change point at a 
break date. Our approach assumes that the temporal coherence 
estimates of a PS point in complete, front, and back sets are 

approximately the same. In contrast, the temporal coherence of a 
change point in a front or back set is higher than that in a 
complete set (coherence loss due to the change). Based on these 
assumptions, the change indices of a pixel in disappearance (CID) 
and emergence (CIE) scenarios are calculated by 
 

CID
[-1 , +1]∈R

= γF − γC                                (1) 

CIE
[-1 , +1]∈R

= γB − γC                                (2) 

 
where γC, γF , and γB  denote temporal coherences in complete, 
front, and back sets. A pixel is more likely to be a DBC or EBC 
point when CID  or CIE  more tends towards 1, respectively. 
Otherwise, change indices of PS points concentrate towards 0. 
 
3.3 Change Detection 

Based on change indices, we design a statistical-based method to 
extract change points. Given that no big change occurs, a change 
index distribution over PS points is assumed to follow a Gaussian 
distribution  
 

N(CIPS|𝜇𝜇,𝜎𝜎) = 1
𝜎𝜎√2𝜋𝜋

exp �−CIPS
2

2𝜎𝜎2 �.                  (3) 
 
The mean 𝜇𝜇 of change indices is anticipated to be 0. However, a 
systematic positive bias is likely to occur due to overestimation 
of temporal coherence from the shorter front or back set in 
contrast to the complete set. In contrast to PS points, a change 
index distribution over change points does not conform to the 
Gaussian model because the big changes substantially and 
arbitrarily alter their temporal coherences between complete, 
front, and back sets. The significant difference between the 
change index distributions over PS and change points plays a 
major role to separate these two point types.  
 
We first select PS points from a front or back set and sketch their 
change index distribution (red curve, Figure 2). Parts of these PS 
points disappear or emerge in the complete set and therefore turn 
into change points; the others remain the same as PS points. This 
change index distribution is modelled as the sum of a Gaussian 
curve plus an asymmetric probability distribution function of a 
large right tail. The Gaussian curve originates from the change 
indices of the PS points that remain in the complete set; the right 
tail is caused mainly by the high change indices of the change 
points. In our previous method (self-citation) we fitted the 
Gaussian curve (blue curve) by a model-driven way and 
employed its 3𝜎𝜎 value as a threshold to extract the change points. 
However, we unavoidably missed some of the change points. To 
solve this problem, we resort to a new way in the following.  
 
We observe a systematic positive bias of the change index 
distribution (Figure 2). For this reason, we can no longer regard 
change indices near 0 as an indication of PS points. To 
compensate for this bias, we shift this indication to the value 
0.045 subject to the peak and consider it as a threshold for change 
candidates (change indices on the right side). We then check 
whether the change candidates are PS points in the complete set. 
If so, they are classified as PS points; otherwise, we label them 
as change points. 
 
The single-break-date scheme has three limitations. First, 
detection of big changes is dependent on a break date, which can 
be manually set for specific interests. This requirement restricts 
the applicability particularly when a priori knowledge of scene 
changes is unavailable. Second, accurate occurrence times of big 
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changes are lacking as they are only known to disappear or 
emerge after a break date. Last but not least, false labels might 
happen because of uncertainty and imperfection during PSI 
processing. We then combine several single-break-date results to 
overcome these limitations. 
 

 
Figure 2. Examples of change index distributions. 

 
3.4 Multi-break-date Change Detection 

The multi-break-date scheme (Figure 3) demands a set of single-
break-date results as input, which are subject to time-series break 
dates. Each pixel contains a sequence of change indices and the 
corresponding initial point labels (PS, DBC, or EBC). A joint 
analysis is applied to each pixel’s initial point labels to determine 
its final label. To begin with, a pixel is labelled as PS if all of its 
initial point labels are PS. In contrast, a pixel initially labelled as 
DBC or EBC is labelled as such. If both initial labels coincide, 
we utilize voting to determine the final label. Afterwards, the 
occurrence date of each change point is detected from the time-
series break dates based on the temporal variation in its change 
index sequence. In the end, the PS and change points along with 
the occurrence dates are combined to illustrate the spatiotemporal 
results. 
 

 
Figure 3. Flowchart of multi-break-date change detection. 

 
3.5 Detection of Events’ Dates 

Consider a DBC point first, we simulate a typical evolution of 
change indices calculated by (1) for such case (Figure 4). The 
disappearance date is right on the turning point. The reason is that 
the temporal coherences γF  in the front image set decreases 
gradually after the disappearance. We adopt a simple geometric 

algorithm to detect this turning point. First, a horizontal line 1 
extends from the sequence beginning to the left. Starting from the 
terminal of line 1, a straight line 2 is drawn to the end of the 
sequence. The turning point, which features the longest distance 
(line 3) to line 2, can then be detected. Finally, the corresponding 
break date is regarded as the disappearance date. We adopt a 
similar process to detect emergence dates of EBC points as well. 
 

 
Figure 4. Change index sequence pertaining to disappearance. 

 
4. REAL DATA TEST 

We focus our discussion on the area of interest at the north of 
Berlin central station (Figure 5). The mean TerraSAR-X image 
(Figure 5(a)) shows many bright clusters of strong signals, which 
appear to be potential PS and change points. The yellow squares 
in the aerial image (Figure 5(b)) indicates the construction events 
taking place in 2013. We adopted forty TerraSAR-X images 
(Table 1) for our test, which were acquired in High Resolution 
Spotlight mode from October 27, 2010 to September 4, 2014. All 
of the images were precisely co-registered and resampled into 
5000 × 5000 grid (ground resolution: 1m). The thirteen break 
dates (bd: 16 to 28) were chosen to detect the ground changes 
within 2013. 
 
Our result successfully detects the construction events along with 
their occurrence dates (Figure 6). We have proven that the 
detected events and times all agree with the ground truth in the 
previous study (self-citation). The improvement here is that the 
DBC and EBC points are increased by 12% and 29%, 
respectively. These additional change points are those missed due 
to the heuristic thresholding of the previous method.  
 

  
(a) 
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(b) 

Figure 5. Study area at the north of Berlin central station. (a) 
Mean TerraSAR-X image. (b) Aerial image (Google Earth) 

acquired on September 5, 2014. Yellow square, building 
construction. 

 
In this test, we adopted the coherence threshold of 0.8 to select 
the PS and change candidates. Such strict threshold is supposed 
to bring reliable PS and change points but also retain sufficient 
quantity of intact information for built-up areas. However, we did 
not verify this supposition before. We will compare and analyse 
the results of different thresholds via both quantitative and 
qualitative ways. 
 

 
Table 1. TerraSAR-X images and break date (bd) setting. 

 

 
(a) 

 
(b) 

Figure 6. Spatiotemporal change detection result. (a) Steady, 
disappearing, and emerging structures represented by PS (blue), 
DBC (red), and EBC (green) points. (b) Occurrence dates: black 

to red, earliest to latest in 2013. 
 

5. OPTIMAL SELECTION OF TEMPORAL 
COHERENCE THRESHOLD 

We first look into the correlation between the temporal coherence 
thresholds (from 0.4 to 0.9) and the quantities of the PS and 
change points (Figure 7). The PS density slides down as a smooth 
quadratic curve when the threshold is raised. The DBC density 
reaches the maximum at the threshold of 0.6, after which it 
becomes sparser gradually. We also observe a similar but more 
drastic course for the EBC density. Now we turn to the change 
detection results (Figure 8) to discuss the accuracy. In the 
beginning (threshold of 0.4), the scene is overwhelmed by those 
PS points of low quality, which contradicts our ground truth 
(Figure 5(b)). As the threshold is increased, the ratio of PS to 
change points turns reversely. The patterns of the clustered 
change points become more and more significant while the false 
PS points are filtered out. This phenomenon illustrates that 
raising a threshold can identify more authentic PS and change 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-3-245-2018 | © Authors 2018. CC BY 4.0 License.

 
248



 

points. Nevertheless, the cost is to bring more false change points. 
We see that the extreme example (Figure 8(e), threshold of 0.6) 
contains the intensive change points everywhere. When the 
threshold (> 0.6) is set larger and larger, the number of the false 
change points (outside the change areas) decreases in a larger 
scale; in contrast, more and more true ones (inside the change 
areas) are detected. Although a high threshold seems promising 
for accuracy, we also notice that the quantity of both the PS and 
change points is overly underestimated in particular when the 
threshold is larger than 0.8. By comparison, the loss of the change 
points is more restrained. The reason is that our methodology 
offers more opportunities of being change points, which depends 
on how many break dates are employed. We conclude that the 
optimal result in our case comes out with the threshold of 0.8. We 
suggest this threshold of 0.8 for urban scenes and high-resolution 
SAR images. 
 

 
(a) 

 
(b) 

Figure 7. Point density versus temporal coherence threshold. (a) 
and (b), small and large scales. 

 

  
(a) 0.40                                      (b) 0.45 

  
(c) 0.50                                      (d) 0.55 

  
(e) 0.60                                      (f) 0.65

  
(g) 0.70                                      (h) 0.75

  
(i) 0.80                                      (j) 0.85

 
(k) 0.90 

Figure 8. Change detection results subject to temporal 
coherence thresholds (from 0.4 to 0.9). Steady, disappearing, 
and emerging structures represented by PS (blue), DBC (red), 
and EBC (green) points. Yellow square, building construction. 

 
6. CONCLUSIONS 

Earlier, we proposed an approach to detect disappearing and 
emerging PS points. Such change points are regarded as 
structural changes in urban areas. The core of this method was to 
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introduce a change index based on temporal coherence to 
quantify each pixel’s probability of being a change point. Pixels 
are labelled as change candidates if their temporal coherences 
over a specific time span fulfil a specified threshold. We then 
used a heuristic change index threshold to extract change points 
from the candidates. However, some change points were missed 
unavoidably.  
 
In this paper, we explore the statistical characteristics of change 
indices from PS and change points. The statistical difference 
between these two point types is then used to identify and 
separate them. Without heuristic thresholding, the change points 
can be fully detected. Our real data test proves that the numbers 
of the disappearing and emerging points are increased by 12% 
and 29%, respectively. In addition, we also explore the influence 
of temporal coherence threshold on change detection results. 
Generally speaking, loose thresholds under a certain level cause 
a considerable amount of false PS and missing change points. 
When the threshold is increasing, we get rid of more false PS 
points and meanwhile retrieve more change points. However, use 
of a too strict threshold costs too much information loss of both 
point types (especially for PS points). We recommend a threshold 
of 0.8 when urban scenes and high-resolution SAR images are 
considered. 
 
In the future, we will upgrade our technique to detect a new 
change point label, which undergoes double big changes during 
a time sequence. For instance, a new building is erected soon, 
following a demolition event. To do so, we must further look into 
the change index sequence of one single pixel if its initial pint 
labels contain different change labels. Regarding applications, 
we will focus our study area on Stuttgart, Germany. Since 2010, 
many constructions, e.g., the main station, buildings, and traffic 
lines, proceeded and require cost-effective monitoring 
approaches for municipal administration. For this purpose, we 
will test and assess our method with cost-free Sentinel-1 images. 
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