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ABSTRACT: 
 
The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. 
Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface 
UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, 
Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely 
available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between 
LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to 
efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping 
can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with 
considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the 
influence of heterogeneous urban morphology on local climate formation. 
 
 
 

1.  INTRODUCTION 

Urbanization and the related environmental issues have been 
continuously drawing attention worldwide in previous decades. 
In the urban expansion process, natural landscapes are replaced 
by built-up land and impervious surfaces, which changes energy 
absorption, storage, emittance, wind turbulence intensity, 
humidity, and  anthropogenic energy release, etc. (Oke 1976, 
Mirzaei 2015). This phenomenon was described as Urban Heat 
Island (UHI), meaning that urban area is warmer than the 
surrounding rural area. UHIs are continuously drawing attention 
since they were first described in the 1810s (Howard 1818). 
 
There are two types of UHI studies: atmospheric UHI (AUHI) 
and surface UHI (SUHI). Traditional UHI investigation has 
focused on AUHI, where the air temperature pattern in an urban 
area is generally compared to rural areas based on field 
measurements at isolated fixed or mobile stations. Although 
some modern devices can capture additional parameters like 
velocity, turbulence, and even pollution concentration, limited 
and isolated stationary networks are not capable of capturing 
heterogeneous thermal characteristics caused by land use and 
land cover (LULC) (Hu and Brunsell 2015, Shen, Huang et al. 
2016). In contrast to the direct AUHI measurement, SUHI is an 
indirect measurement by investigating the land surface 
temperature (LST). LST data is time-synchronized and grid-
based for a considerable areal extent (Nichol 1996). So far, 
various remote sensing sensors have been used to estimate LST 
with thermal infrared band/bands from coarse to fine spatial 
resolution (Table 1).  
 
However, there are no systematic criteria for experimental design 
and communication for UHI observation. Methods to obtain 
representative measurements of UHI have been discussed and 
utilized in previous studies (Nunez and Oke 1977), but there are 
still no standardized observation protocols for UHI intensity 
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estimation, preventing synthesis and comparisons among UHI 
studies. 
 

Sensors Spatial resolution 
of thermal 

band(s) 

Temporal 
resolution 

Advanced Very High 
Resolution Radiometer 

(AVHRR) 

1.1 km Twice 
daily 

MODerate resolution 
Imaging 

Spectroradiometer 
(MODIS) 

Approximately 1 
km 

Twice 
daily 

Advanced Along Track 
Scanning Radiometer 

(AATSR) 

1 km 
 

35 days 

Advanced Space borne 
Thermal Emission and 
Reflection Radiometer 

(ASTER) 

90 m 16 days 

Thematic Mapper (TM), 
Enhanced Thematic 

Mapper Plus (ETM+) 

30 m after 
resampling 

16 days 

Thermal Infrared Sensor 
(TIR) 

30 m after 
resampling 

16 days 

Table 1. Different remote sensing sensors for urban thermal 
studies 

 
The Local Climate Zones (LCZ) concept was initiated to improve 
the documentation of atmospheric UHI observations in 2012 
(Stewart and Oke 2012). LCZs are defined as “regions of uniform 
land cover, surface structure, construction material, and human 
activity that span hundreds of meters to several kilometres on a 
horizontal scale” (Stewart and Oke 2012) (p. 1884). The LCZ 
classification intends to standardize the worldwide exchange of 
urban temperature observations. The 17 standard LCZ classes 
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(Table A1, appendix) are determined by their surface 
characteristics, including: composition (building/tree), structure 
(permeability), fabric (albedo, thermal admittance), and 
metabolism (e.g., Table 2 on p. 1885 of (Stewart and Oke 2012)). 
Unique combinations of these properties provide a distinctive 
thermal regime for each LCZ (Stewart and Oke 2012, Geletič, 
Lehnert et al. 2016).  
 
Despite the indispensable role and initial aim of LCZs concept in 
metadata reporting for AUHI research (Stewart, Oke et al. 2014), 
its role in SUHI investigation also needs to be emphasized. First, 
the AUHI research could not make full use of the spatial coverage 
character of LCZ concept. In contrast, remotely sensed LST is 
time-synchronized and complete spatial coverage to a 
considerable areal extent (Nichol 1996), which match the spatial 
coverage of LCZs concept. Furthermore, LST is affected by 
underlying physical factors (e.g., urban geometry, land cover 
properties) as well as dynamic factors (e.g., human interaction, 
intervention of surrounding area) in the reality. These factors 
modify the microclimate of the urban area and urban energy 
balance within the UCL, which is also a challenge for to 
investigate the SUHI intensity. Thus, if LCZs can be mapped in 
practice for a specific area (areas), the connection between LST 
and LCZ can help to test the applicability of LCZs concept for 
SUHI study, and further help to understand the influence of LCZs 
on SUHI spatial variation.  
 
Compared to studies on LCZs mapping, rarely litter work has 
been done to comprehensively access the applicability of LCZ on 
local climate study. Geletič, Lehnert et al. (2016) explored the 
extent to which LCZ classes discriminate with respect to LSTs 
based on two central European cities and found that different 
LCZ classes have different LST characteristics. Cai, Ren et al. 
(2017) determined the relationship between LST and LCZs at 
Yangtze River Delta (YRD) mega-region in China. Kotharkar 
and Bagade (2017) accessed the inter-LCZ temperature 
difference and identifies LCZs at Nagpur city with stationary 
meteorological mobile surveys. However, a comprehensive 
assessment of LCZs mapping needs more deep understanding 
and spatial analysis of the extent to which LCZ classes 
discriminate with respect to LSTs for different places.  
 
This study will incorporate LCZs concept to study and compare 
SUHI effect for San Antonio by answering the following research 
question, “How the SUHI vary in San Antonio and how can 
LCZs be used to improve the characterization of SUHI?” To 
answer the question, the LCZ map were developed by a GIS-
based LCZs classification scheme with the aid of airborne Lidar 
dataset and other freely available GIS data. Then, the summer 
LST were calculated based Landsat imagery, which is used to 
analyse the relations between LST and LCZs, statistical 
significance of the differences of LST among the typical LCZ, 
in order to test if LCZs are able to efficiently facilitate SUHI 
investigation of San Antonio. 
 

2. DATA AND METHOD 

2.1 Study Area 

This study focuses on the entire metropolitan area of San Antonio 
in in south central Texas, U.S. San Antonio metropolitan area is 
located in a unique and narrow transitional zone that ranges from 
semi-arid vegetation cover dominated by trees and shrubs in the 
west to humid and more densely vegetated prairie/grassland to 

                                                                 
1 US News, http://realestate.usnews.com/real-

estate/slideshows/the-best-places-to-live-in-the-us-in-2017/  

the east The topography is high in the northwest part (Edwards 
Plateau) and low in the southeast part (Gulf Coastal Plains). It is 
130 kilometres away from Austin. Interstate highways (I-35) 
connect San Antonio to major cities of Texas and Mexico. The 
city is known by Texas history, culture, and downtown beauty, 
and it attracts more than one million tourists per year (Bremer 
2004). 
 
San Antonio demonstrates UHI effects and higher summer 
temperatures (Table 2). It is among the top 25 ranked best to live 
in US cities1. However, there has been limited documentation of 
UHI studies. The Interstate highway 35 (I-35) passes through the 
city of San Antonio. With a transitional humid subtropical 
climate, the average annual temperature from 1981-2010 was 
20.8 °C. The highest temperature recorded was 44 °C in 2000.  
May, June, and October tend to be the months of greatest 
precipitation, with an annual average of 737 mm since recording 
started in 1871. Regarding UHI effect, the downtown San 
Antonio area has been shown to exhibit higher temperatures than 
the surrounding areas as reported by Xie, Guan et al. (2005).  
 

  June July August 
Average high temperature(°C) 33 34.8 34.8 
Average low temperature(°C) 22 23.3 23.1 
Average precipitation (mm) 109 52 65 

Table 2. Summer monthly air temperature and precipitation 
summary of San Antonio2  

 

2.2 Local Climatic Zone Mapping 

With free available NLCD and Lidar dataset, the development of 
GIS-based LCZs classification scheme was mainly based on the 
LCZs definition and LCZs delineation criteria by Stewart and 
Oke (2012). Height of roughness, building surface fraction, 
Impervious surface fraction (ISF), pervious surface fraction 
(PSF), sky view factor (SVF), and terrain roughness class are all 
demonstrated of importance, for LCZs mapping (Unger, Lelovics 
et al. 2014, Geletič and Lehnert 2016, Zheng, Ren et al. 2017). 
Figure 1 shows the overall LCZs mapping scheme by considering 
different properties in each step. Lidar dataset was gathered from 
Texas Natural Resources Information System (TNRIS 3 ), 
downloaded manually per tile online, or derived and transferred 
directly through hard drive. The metadata is showed in Table A1 
in the appendix. Subsequently, the decision-making algorithm 
was built for LCZs mapping, and LCZs datasets were established. 
 

Building surface fraction

Sky view factor

Aspect ratio

Terrain roughness class 

Lidar 
points

Building 
footprints

NLCD

Classification

LCZs A, B

LCZ 10 Heavy industryCity Planning Dataset

LCZ 1 Compact high-rise

LCZ 4 Open high-rise

LCZ G Water

LCZ F Bare soil or sand

LCZ C Bush, scrub

LCZs 1, 4

LCZs 2, 5

LCZs 3, 6, 7, 8, 9, and E

Classification

Classification

Classification

Classification

LCZ 2 Compact mid-rise

LCZ 5 Open mid-rise

nDSMs

DTMs

DSMs

Height of roughness 

LCZs 1-10, and LCZ E

Classification

Pervious surface fraction

Impervious surface fraction

LCZ 9 Sparsely built

LCZ 8 Large low-rise

LCZ 7 Lightweight low-rise

LCZ 3 Compact low-rise

LCZ 6 Open low-rise

LCZ A Dense trees

LCZ B Scattered trees

Figure 1. Overall LCZs mapping scheme 
 

2 Source: U.S. climate, http://www.usclimatedata.com/ 
3 https://tnris.org/. 
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2.3 Land Surface Temperature Calculation 

Considering the obvious adverse impact on the human comfort 
of hot weather for cities in the tropical and subtropical region of 
the northern hemisphere at summer, here we focus on the SUHI 
phenomenon during the summer months  Landsat 8 image of 
summer 2015 for were obtained to calculate LST to investigate 
the SUHI phenomenon. The TIRS sensor on Landsat 8 has two 
thermal infrared bands in the atmospheric window between 10 
and 12μm. Several algorithms (e.g., Plank function, radiative 
transfer equation, split-window algorithm, single channel 
algorithm) can be used to invert LST (Jiménez-Muñoz et al. 
2014). A recent study suggested that the Planck function and the 
single channel algorithm showed the best performance for 
Landsat 8 TIRS though comparing the different algorithms of 
LST extraction (Isaya Ndossi and Avdan 2016). In this study, we 
applied the Planck function for LST calculation and use the 
normalized LST for SUHI comparison for three study areas. 
Considering band 11 is associated with higher calibration 
uncertainty and more sensitive to water vapor continuum 
absorption (Coll et al. 2012; Yu et al. 2014), LSTs were 
computed based on band 10 for this study.  
 
First, the Top of Atmosphere (TOA) radiance (e.g., radiance 

measured by the sensor,ߣ,ܣܱܶܮ ) was converted to brightness 
temperature with the following equation.  

݊݁ݏܶ  ൌ
2ܭ

݈ ݊൬
1ܭ

ߣ,ܣܱܶܮ
൅1൰
			                      (1) 

where ܶ݊݁ݏ is temperature in Kelvin (K), and K1 and K2 are 
calibration constants specific to the Landsat TIRS sensor, which 
can be obtained from the metadata of the imagery.   
   
The brightness temperature was further corrected against the land 
surface emissivity (LSE), which is essential for LST inversion 
due to the notable thermal variation of different land surface 
properties at a large spatial extent. The variation of vegetation 
coverage, surface moisture, surface roughness, and viewing 
angles leads to different LSEs for different cover types (Yu et al. 
2014). The normalized difference vegetation index (NDVI) 
threshold emissivity estimation algorithm (Sobrino et al. 1990; 
Sobrino et al. 2004), a common method for LSE estimates was 
applied in this study. The NDVI values were used to distinguish 
between soil and vegetated pixels before LSE calculation. The 
TOA radiance values converted from digital number of band 4 
(Red) and band 5 (NIR) from Landsat OLI were used for 
correspondent NDVI calculation to mitigate the effect from 
vegetation phenology. 
   
The threshold of NDVI of rocks/soil (ܰܫܸܦ௦ሻ was assigned with 
a value of 0.2, and the threshold of NDVI of vegetation (ܰܫܸܦ௩ሻ 
was assigned with a value of 0.5 (Sobrino, Jiménez-Muñoz et al. 
2004). For a pixel with calculated NDVI from Landsat 8 OLI, if 
its NDVI < ܰܫܸܦ௩, then we assume that the pixel is composed 
of bare soil or rock. And if its NDVI > ܰܫܸܦ௩, we assume that it 
is composed of full vegetation cover. Then, LSE value was 
assigned to these pixels accordingly. Otherwise, this pixel is 
considered to be the composition of the vegetation and rocks/soil: 
 
ఒߝ     ൌ ௩ఒߝ ௏ܲ ൅ ௦ఒሺ1ߝ െ ௏ܲሻ ൅  ఒ      (2)ܥ

 
where ߝ௩ఒ is emissivity of vegetation. ߝ௦ఒ is emissivity of soil. ܥఒ 
takes into consideration the cavity effect due to surface 
roughness.  
 

ఒܥ                        ൌ ሺ1 െ ሺ1′ܨ	௩ఒߝ௦ఒሻߝ െ ௏ܲሻ   (3) 
  

where ܨ′ is a geometrical factor (with range from 0 to 1), while 

௏ܲ is vegetation fraction. 
 

           																			 ௏ܲ ൌ ሾ
ே஽௏ூିே஽௏ூ೘೔೙

ே஽௏ூ೘ೌೣିே஽௏ூ೘೔೙
ሿଶ                   (4) 

 
The Planck's function was used to perform for LSE correction of 
the substance compared to the blackbody.  Thus, the value of 
brightness temperature was converted to LST (Artis and 
Carnahan 1982; Isaya Ndossi and Avdan 2016).  

ݏܶ																																					 ൌ
஻೅

ଵା
ഊಳ೅
ഐ
௟௡ఌഊ

                      (5) 

where ܶݏ is LST in Kelvin (K), and ்ܤ is brightness temperature 
(e.g., ܶ݊݁ݏ) in this study. λ is the wavelength of emitted radiance 
(band 10 was used for LST calculation, and λ = 10.895 μm for 

Landsat 8 TRIS), ρ (e.g.,  
௛∗௖

ఙ
) =1.438 × 10-2 mK. ܶݏ was then 

converted into Celsius LST (°C). 

 
2.4 SUHI investigation based on LCZs   

To explore the application of LCZ mapping for SUHI 
characterization, our hypothesis is that each LCZ demonstrates 
unique and typical LST character, and LCZs can inter-
comparisons for SUHI intensity for the metropolitan area. To get 
independent observations for the following statistical test and 
exploration, we first explored the autocorrelation scale of the 
LST pixels with a 30m*30m resolution for the six LST images 
by using the Geostatistical toolset in ArcGIS 10.5. Then, LST 
pixels with 270 m interval were extracted and converted to points 
by systematic sampling to get independent LST observations, 
which were then overlaid to LCZs maps. 
   
Overall differences of mean LST of each LCZ among all the 17 
LCZs were explored by one-way analysis of variance (ANOVA). 
After we were confirmed the overall statistically significant 
differences for LCZs in terms of their LST, we further identified 
the specific LCZs which differed with others regarding their LST 
character with Tukey HSD test for the three metropolitans. 
 
To further make comparison of the SUHI intensity by 
incorporating LCZs map, “Distribution Index” (DI) method were 
adopted to explore the relative contribution of individual LCZs 
to the entire SUHI phenomenon of the metropolitans (Peng, Xie 
et al. 2016). We particularly focused on “high” LST pixels as a 
direct indicator of the SUHI phenomena.  To quantify “high” 
LST level, the original LSTs were normalized and categorized by 
four levels from “cool” to “hot” with Jenks natural breaks 
classification scheme (Weng, Liu et al. 2008).  
 

௅஼௓೔ൌܫܦ
ௌு௜௚௛ಽ಴ೋ೔ ௌಽ಴ೋ೔ൗ

ௌு௜௚௛ ௌ⁄
                                     (6) 

 
where i means the individual LCZ, ranging from 1 to F. 
௅஼௓೔݄݃݅ܪܵ“ ܵ௅஼௓೔⁄ ” refers to the proportion of the area with high 
LST (݄ܵ݃݅ܪ௅஼௓೔) in the area of a LCZ. “݄ܵ݃݅ܪ ܵ⁄ ” refers to the 
proportion of the area with high LST in the entire metropolitan 
area (ܵ). A DI value equals 1 means an average contribution to 
the overall hot environment of SUHI phenomenon. Therefore, for 
the LCZ 1 to LCZ G, ܫܦ௅஼௓೔ higher than 1 means this LCZi  has 
a heating effect on the SUHI, while DILCZi lower than 1 means 
the LCZi has a cooling effect on the SUHI of the metropolitan 
area.  
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3. RESULTS AND DISCUSSION 

3.1 LCZs Mapping Result 

Overall, the LCZs distributions shows spatial dependency 
character for the entire metropolitan, with LCZ 1-10 “built-up 
cover” types generally surrounded by LCZs A-G “natural cover” 
types (Figure 2). The LCZs mapping results were overlaid with 
the high resolution historical Google Earth imagery to evaluate 
our mapping accuracy. Most of our LCZs were matched 
correspondingly with the illustrations in Google Earth. 

 
Figure 2. Spatial distribution of Local Climate Zones (LCZs) 
for San Antonio, Texas. (Note: the labels on the map is the 

location of the illustrated sites in the detailed examination at 
Google Earth) 

 
The LCZs 1-10 are compactly distributed in the central urbanized 
area.  The high buildings in San Antonio are loosely distributed, 
leading to a larger proportion of LCZ 5 Open mid-rise intersect 
with LCZ 6 Open low-rise. As the oldest city with landmark 
events and a slower pace of economic development, San 
Antonio-New Braunfels metropolitan has maintained this 
diversely distributed urban form. However, there is limited area 
regarding the LCZ 3 Compact low-rise and LCZ 4 Open high-
rise; thus we dropped these two types LCZs in the subsequent 
analysis.  
 
The sounding rural areas show a large percentage of LCZ A and 
LCZ B, besides of LCZ D. LCZ A Dense trees is the typical LCZ 
at eastern part, while the LCZ B Scattered trees is concentrated 
at southern part and LCZ D Low plants is concentrated at the 
western part. There is a clear contrast of the northern and 
southern part, dominated by LCZ A Dense trees and LCZ D Low 
plants, respectively. This spatial distribution is accordance with 
the underlying land cover showed by background high resolution 
imagery.  
 
The integration of Lidar data helped to incorporate detailed urban 
and vegetation morphology information for LCZs mapping at the 
scope of the metropolitan. This is in contrast to the results 
provided by direct object-based image analysis or supervised 
pixel-based classification techniques. So far, there has only been 
one study using Lidar data for LCZs mapping, and it was 

conducted within a small portion of suburban Sydney, Australia, 
owing mainly to the time and expense limitations of data 
acquisition (Koc, Osmond et al. 2017). With the popularity and 
free availability of Lidar datasets and updated NLCD in the U.S., 
our study provides evidence that the automated GIS-based LCZs 
mapping using Lidar-derived products can be replicable to other 
cities in the U.S. by overcoming the data insufficiency issue 
regarding the 3D urban morphological information. 
 
3.2 Linking LCZs with LST  

On July 22, 2015, there is an obvious SUHI phenomenon of San 
Antonio (Figure 3). High surface temperature is highly associated 
with both downtown area and isolated urbanized areas, while low 
surface temperature occurred at the northern San Antonio, where 
the forestry area prevailed. The coolest LST was correspondent 
with the water body coverage (e.g., Lake Travis in Austin and 
Calaveras Lake in San Antonio). The spatial distributions of 
LCZs and LST indicated that the LCZs and LST can be 
connected to further investigate the SUHI.  
 

 
Figure 3. Spatial distribution of land surface temperature (LST) 

in the San Antonio metropolitan on July 22, 2015  
 

The statistical summary indicated considerable differences 
among LCZs in terms of the average LST (Figure 4). LSTs at 
LCZs 1-10 “built-up cover” types were generally higher than that 
of LCZs A-G “natural” cover types at July 20, 2015 for entire 
metropolitan. Regarding the LST variation among LCZs with 
contrasting urban morphology, LCZs Compact (e.g., LCZ 1 and 
LCZ 2) showed the highest temperature than other LCZs types. 
LCZ 4 Open high-rise, LCZ 5 Open mid-rise, and LCZ 6 Open 
low-rise also indicates relatively warmer surface temperature. On 
the other hand, the LCZs high-rise generally exhibits higher 
LSTs than LCZs mid-rise or low-rise types (e.g., LCZ 1 vs LCZ 
2; LCZ 4 and 5 vs LCZ 6). LCZ 9 Sparsely built has the lowest 
temperature due to the vegetation cooling effect. Compared to 
other LCZs “built-up cover” types, LCZ 10 Heavy industry, 
demonstrated higher LST variation (long boxes in Figure 4).  
Compared to the above distinguishable LCZs, LCZ 10 Sparsely 
built, demonstrated higher LST variation, which can be explained 
by the fact that LCZ 10 was also “sparsely” distributed and 
contiguous with other LCZ types throughout the study areas 
(Figure 2). 
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Figure 4. Box-plots summary of LST values for individual LCZs for entire metropolitan at July 20, 2015.  (Note 1. References for 
LCZs: LCZ 1 Compact high-rise; LCZ 2 Compact mid-rise; LCZ 5 Open mid-rise; LCZ 6 Open low-rise; LCZ 7 Lightweight low-

rise; LCZ 8 Large low-rise; LCZ 9 Sparsely built; LCZ 10 Heavy industry; LCZ A Dense trees; LCZ B Scattered trees; LCZ C Bush, 
scrub; LCZ D Low plants; LCZ E Bare rock or paved; LCZ F Bare soil or sand; LCZ G Water.  Note 2. The line within each box 

represents the median of LST values at the corresponding LCZ, and the bottom of the box indicates the first quartile of LST values, 
and the top indicates the third quartile of LST values) 

 

LST values were also examined regarding the distribution density 
for each LCZs to check the normalization to support the 
assumption of the subsequent ANOVA analysis. Most of the LST 
distribution follows the normalized distribution except LCZ G 
Water. Along with the higher variation and more outliers showed 
by box-plots, significant departures from the mean LST were also 
demonstrated for the LCZ G Water.  
 
Apparently, owing to the highest heat capacity of water compared 
to other surface property, LCZ G Water had the lowest average 
LST among all LCZ classes with values lower than 40 °C for all 
six LST images, except for that at August 31, 2013, for Austin. 
Nevertheless, different water bodies were also delineated into 
LCZ G, and some water body does not have enough volume to 
cool down the surface temperature at around 5:00 PM of a day. 
Meanwhile, some types of water body (e.g., creeks, rivers, etc.) 
are more vulnerable to the climate and environment and 
changeable throughout the time compared to other land surface 
properties, and some area may not belong to LCZ G Water at the 
LST acquisition time, considering our LCZs is built by data 
collected during 2007-2013. The outliers and LST variation 
within LCZ G Water were also explained by Geletič, Lehnert et 
al. (2016). 
 
The results of the one-way ANOVA F-test demonstrated that the 
differences among different LCZs are different in terms of the 
surface temperature (p < 0.001) (Table 3). In addition, the Tukey 
Honestly Significant Difference (HSD) test was presented in the 
Figure 5.  
 

DF SSM SSR F P 

16 1258407 1446511 5743 <2e-16 *** 

Table 3. The summary of ANOVA for testing the difference of 
local climatic zones (LCZs) in terms of the land surface 

temperature (LST). DF: Degrees of Freedom; SSM: Sum of 
Squares of Model; SSR: Sum of Squares of Residuals 

 
Most of the pairs of LCZs show significant differences in average 
LSTs with high significant level. It indicates that our LCZs 
mapping can help to identify homogenous zones in terms of its 
surface temperature, and these zones are different with each 

other. Here, the number noted at diagonal is the counts of empty 
spaces for the corresponding LCZs. For the 13 pairs of LCZs, 
LCZ 1 Compact high-rise, LCZ 10 Heavy industry, LCZ G Water 
were all distinguished very well regarding their surface 
temperature. There are only four LCZs which cannot be 
distinguished with another two LCZs, including LCZ 5 Open 
mid-rise, LCZ B Scattered trees, LCZ E Bare rock or paved, and 
LCZ F Bare soil or sand.  

 

 
Figure 5. Tukey Honestly Significant Difference (HSD) test 

result for LCZs in terms of the surface temperature differences. 
(Note:  Please refer to the name of LCZs from Figure 4.  ‘***’: 

significance at 0.001 level for that pair of LCZs; ‘*’: 
significance at 0.05 level for that pair of LCZs; Empty space: no 

significant difference of the corresponding LCZs pairs. The 
number noted at diagonal is the counts of empty spaces for the 

corresponding LCZs) 

 
We adopted DI value related to “high” LST pixels to compare the 
SUHI intensity at July 20, 2015, for different LCZs within the 
metropolitan (Figure 6). DI value further proved and manifested 
the heterogeneity of the contributions to the thermal environment 
by different LCZs.  In terms of the effect of individual LCZ for 
the overall SUHI high temperature effect, LCZ G water had DI 
values near 0, meaning that there is almost “low” LST pixels in 
the normalized LST map at July 20, 2015. Hence, LCZ G played 
the most significant role in mitigating the SUHI effect. Besides, 
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other LCZ “natural cover” types had lower DI value than 1. In 
contrast, LCZs 1-10 “built-up cover” types all had DI values 
higher than 1 at July 20, 2015, except for LCZ 9 Sparsely built. 
With different level of cooling effect or detrimental impact, the 
DI value results show that the LCZs mapping contributes to 
SUHI investigation. 

 

 

Figure 6. Distribution index (DI) of high temperature centres for 
LCZs in the metropolitan at July 20, 2015 (Note:  Please refer to 

the name of LCZs from Figure 4) 
 
However, further investigation of the SUHI phenomenon at night 
time still needed, and to further investigate the overall 
relationship of building morphology and LST, more information 
regarding the locations, size, materials, and functions of the 
buildings are still needed. In addition, the LCZs compact exhibits 
higher LSTs than LCZs open types, which can also be explained 
by the shading effect. 

 

4. CONCLUSIONS 

Our study showed the advantage of LCZs mapping on 
understanding SUHI, which looks into the temperature 
differentiation among LCZ classes rather than among the 
traditional “urban” and “rural” classes. The linkage of LCZs and 
LST proved that the LCZs mapping can be used to compare and 
investigate the SUHI. Most of the pairs of LCZs show significant 
differences in average LSTs with high significant level. The 
intra-urban temperature comparison among different urban 
classes contributes to investigate the influence of heterogeneous 
urban morphology on local climate formation.  
 
As a standard method to support AUHI and SUHI investigation, 
these high-quality LCZs maps gives a better understanding of the 
urban thermal environment, which can further benefit spatially 
specific AUHI and SUHI migration strategies. Moreover, they 
can further be incorporated into climatic models to understand 
the UHI dynamics and formulation with detailed underlying 
surface information. It can also facilitate comparative analysis of 
SUHI studies for different areas. 
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APPENDIX 

 

Project Name 
Point 
Space 
(cm) 

Horizontal/Vertical 
Accuracy 
 (cm, MSE) 

Horizontal/ 
Vertical Datum 

Units 

FEMA 2011 Comal, Guadalupe 100 
60/ 
12.5 

NAD83, NSRS2007/NAVD88, 
Geoid09 

Meters 

StratMap 2010 Bexar 50 
100/ 
19 

NAD83/NAVD88, GEOID 09  Meters 

CAPCOG 2007 Caldwell, Travis, 
Williamson 

140 
100/ 
18.5 

NAD83/ 
NAVD88 

Feet 

CAPCOG 2008 Bastrop, Fayette, 
Hays 

140 
100/ 
18.5-37 

NAD83/ 
NAVD88 

Feet 

Table A1. Metadata of Lidar projects for the study area 
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