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ABSTRACT: 

Accurate mapping of soil carbon in low relief areas is of great challenge because of the defect of conventional "soil-landscape" model. 

Efforts have been made to integrate the land use information in the modelling and mapping of soil organic carbon (SOC), in which the 

spatial context was ignored. With 256 topsoil samples collected from Jianghan Plain, we aim to (i) explore the land-use dependency of 

SOC via one-way ANOVA; (ii) investigate the “spillover effect” of land use on SOC content; (iii) examine the feasibility of land use 

types and percentages (obtained with a 200-meter buffer) for soil mapping via regression Kriging (RK) models. Results showed that 

the SOC of paddy fields was higher than that of woodlands and irrigated lands. The land use type could explain 20.5% variation of the 

SOC, and the value increased to 24.7% when the land use percentages were considered. SOC was positively correlated with the 

percentage of water area and irrigation canals. Further research indicated that SOC of irrigated lands was significantly correlated with 

the percentage of water area and irrigation canals, while paddy fields and woodlands did not show similar trends. RK model that 

combined land use types and percentages outperformed the other models with the lowest values of RMSEC (5.644g/kg) and RMSEP 

(6.229 g/kg), and the highest R2
C (0.193) and R2

P (0.197). In conclusions, land use types and percentages serve as efficient indicators 

for the SOC mapping in plain areas. Additionally, irrigation facilities contributed to the farmland SOC sequestration especially in 

irrigated lands. 

1. INTRODUCTION

Soil organic carbon (SOC) content is an essential indicator of 

soil productivity, adequate SOC content contributes to plant 

growth and water and soil conservation (Rasool et al., 2008). 

Moreover, mutual transformation of soil organic carbon and 

atmospheric carbon dioxide plays an important role of the carbon 

cycle of the terrestrial ecosystem, SOC content and its dynamic 

changes have a profound impact on global climate and food 

security (Powlson et al., 2011). Accurate mapping of soil carbon 

is conducive to the development of precise agriculture and the 

assessment of greenhouse gas emissions. However, disturbed by 

the complex process of soil formation and the intensive human 

activities, the distribution of SOC content exists spatial 

heterogeneity, which brings serious challenges for SOC mapping. 

Ordinary Kriging (OK) method has been widely used for spatial 

prediction of soil properties in those areas with similar landscape 

patterns (Robinson and Metternicht, 2006; Shahbeik et al., 2014). 

However, the prediction accuracy of OK method decreases as the 

soil properties are strongly interfered by complex terrain and 

human activities (Liu et al., 2006). Regression Kriging (RK), 

which combines auxiliary environment variables and Kriging 

methods, has been proved better than OK with better prediction 

accuracy and goodness of fit (Menezes et al., 2016; Zhu and Lin, 

2010). The scorpan method is a generic framework to fit 

quantitative relationships between soil properties and 

environment variables (Mcbratney et al., 2003). Based on the 

method, soil information (i.e., soil maps), climate (i.e., 

temperature and precipitation), organisms (i.e., land cover and 

vegetation) and topography (i.e., elevation, slope and curvature) 

were widely used as predictors to help digital soil mapping 

(Ungaro et al., 2010). However, in low relief areas, conventional 

soil-landscape model, in which topography derived factors play 
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an important role, performed poorly due to the low relief 

amplitude (Zhao et al., 2014; Zhu et al., 2010). Finding feasible 

explanatory variables becomes an important direction of current 

research. 

Land use types (Liu et al., 2015), soil maps (Walker et al., 2017), 

fuzzy slope position information (Qin et al., 2012), temporal 

remote sensing images and their products (Liu et al., 2010; 

Mirzaee et al., 2016; Zhao et al., 2014) and hyper-spectral 

indices (Chen et al., 2015; Ji et al., 2014; Liu et al., 2014) were 

gradually used for digital soil mapping in plain areas. As an 

easily accessible variable, land use types could be obtained 

through interpretation of remote sensing images, and land use 

maps of study area are generated subsequently. More important, 

land use types have been proved important factors to explain the 

spatial viability of soil properties and are widely used for spatial 

estimation and digital soil mapping (Yigini and Panagos, 2016). 

There are three main approaches to utilize land use types: (i) 

stratified according to land use types and then executed the 

Kriging interpolation for each region (Qian et al., 2017); (ii) 

were employed for the mean centering Kriging method (Gu et 

al., 2014); (iii) were transformed into dummy variables and used 

for RK models (Wen et al., 2015). However, the land use types, 

which have regularly been used for spatial prediction of soil 

properties, were primary category (i.e. farmland, woodland, 

grassland). Such strategy was of little help for mapping SOC in 

plain areas. Therefore, land use types of secondary category 

should be employed to explain the variance of farmland SOC in 

plain areas. In addition, efforts have been made to integrate the 

land use types in RK model, in which the spatial context was 

ignored. 

Jianghan Plain is an important commodity grain base of China, 

with flat terrain and fertile soil. A total of 256 topsoil samples 
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(0–30 cm) were collected from Jianghan Plain, including paddy 

fields, irrigated lands and woodlands. After obtaining land use 

percentages of a specific sampling point with a 200-meter buffer, 

we aim to explore the potential of land use types and percentages 

for soil mapping in plain areas. Specifically, we (i) explore the 

land-use dependency of SOC via one-way ANOVA; (ii) 

investigate the “spillover effect” of land use on SOC content via 

stepwise regression; (iii) examine the feasibility of land use 

types and percentages for soil mapping via regression Kriging 

(RK) models.  

 

2. MATERIALS AND METHODS 

2.1 Study Area 

Chahe Town, where this research conducted, is situated in 

southeast of Jianghan Plain, China. The elevation of study area 

ranges from 14 to 35m, and covers approximately 141.32km2 

(29°56′-30°04′N and 113°22′-113°34′E). The region has a 

subtropical monsoon climate, with a mean temperature of 16.6℃ 

and a mean annual precipitation ranges from 1000 to 1300mm 

(Liu et al., 2017). The town is adjacent to Lake Honghu, with 

sufficient source of water, flat terrain and fertile soil, and now is 

an important commodity grain base in Hubei province. The 

region consists of large areas of continuous paddy fields and 

water bodies, numerous but broken irrigated lands, rural 

settlements with zonal distribution, a small amount of woodlands 

and scattered other lands. 

 

A total of 256 topsoil samples (0-30cm) were collected by 

random sampling in June 2013. The process of sample collection 

and SOC content measurement is the same as that of Liu et al. 

(2015). Two samples that deviate from the mean with triple 

standard deviation were removed as outliers. The remaining 254 

soil samples were divided into calibration set (n=204, 80%) and 

validation set (n=50, 20%). Specifically, all the samples were 

sorted in an ascending order of SOC content, and every five of 

them were picked up to form the validation set, while the others 

were set as the calibration set. This method guarantees the 

maximum and minimum value are in the calibration set. The 

spatial distribution of sampling points is shown in Fig 1. 

 

2.2 Data Pre-processing 

2.2.1 Classification of Land Use Types: In this study, we 

derived the land-use data from a raster dataset of 2013 with 10 

meter resolution. The dataset comprises 22 land-use types in 

accord with the Second National Land Survey classification 

system (GB/T 21010-2007). Combining with the previous 

articles and the characteristics of land use in the study area (Liu 

et al., 2017; Tian et al., 2012), we classified the study area into 

seven land-use types, including paddy field, irrigated land, 

woodland, water area, construction land, irrigated canals and 

other lands. The irrigated canal is an essential land use type in 

farmland. Other lands contain garden plot and grassland, which 

accounts for less than 1% of the total area. 

 

2.2.2 Calculation of Land Use Percentages: The land use 

percentages of a specific sampling point were obtained with a 

200-meter buffer. Moreover, land use percentages of each grid in 

the study area were calculated to form seven land use 

percentages images, which were prepared for SOC mapping. In 

fact, the land use percentages images were larger than study area 

to ensure the calculation accuracy of grids at the boundary. 
 

2.2.3 Construction of Regressions: The multiple linear 

regression method was employed to explore the quantitative 

relationship between SOC, land use types and percentages. To 

avoid multicollinearity, stepwise method was used to ensure all 

parameters in the regression at the significant level of p<0.05. 

Specifically, the types and percentages of land use were taken as 

independent variables in the first two regressions respectively, 

and applied to build the third regression in the meantime. The 

three stepwise regressions, named R1, R2, R3 separately, were 

then used to RK models. The land-use dependency of the 

relationship between SOC and land use percentages was also 

investigated via stepwise regressions. In addition, land use type 

was converted to dummy variables as it is a categorical variable 

(Wen et al., 2015). For example, in dummy variable 1, the value 

of paddy fields was set as 1 and the others were set as 0. The 

setting of dummy variables were shown in Table 1. 

 

Category D1 D2 

Paddy field 1 0 

Irrigated land 0 1 

Woodland 0 0 

Table 1. Dummy variables for land use types 

 

2.3 Prediction Models 

2.3.1 Ordinary Kriging: The ordinary Kriging (OK) is a 

spatial local interpolation based on regionalized variable theory. 

In OK, the values to be predicted are equal to the linear weighted 

sum of the observed values in the effective space range, and the 

weighting factors are obtained via semi-variogram on the princ-

 
Figure 1. Study area and spatial distribution of soil samples 
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-ple of unbiased prediction and minimum variance. The formula 

is as follows: 

 

𝑍∗(s0) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑍(s𝑖)              (1) 

 

where   𝑍∗(s0) is predicted value at non-sampled location s0 

𝑍(s𝑖) is observed value at location si 

wi is the weighting factor for 𝑍(s𝑖). 

 

2.3.2 Regression Kriging: RK is an extension of OK. After 

detrending with environment predictors, the residuals are 

extended to the whole region via OK method. The predicted 

value at non-sampled location is the sum of the drift and the 

estimated residuals: 

 

𝑍∗(s0) = m(s0) + e(s0) = 𝛽0 + ∑ 𝛽𝑖 × xi +
𝑝
𝑖=1 ∑ 𝑤𝑗 × 𝑒(s𝑗)𝑛

𝑗=1   (2) 

 

where 𝑍∗(s0) is the predicted value at non-sampled location s0  

e(s0) is the estimated residuals 

m(s0) is the drift, 𝛽𝑖  is the coefficients of regression 

xi is the independent variable 

𝑤𝑗  is the weights 

𝑒(s𝑗) is the residual at location sj 

 

2.4 Model Evaluation 

Leave one out cross-validation and external validation were 

used for prediction accuracy evaluation, including two indices: 

root mean of squared error (RMSE) and coefficient of 

determination (R2). In order to make the results of this paper 

comparable to other studies, the relative optimization times of 

RK to OK was measured via RMSEI and R2I. 

 

RMSE = √1

n
× ∑ （Oi − Pi）

2
n
1

2

            (3) 

RMSEI =
RMSEOK

2 −RMSEj
2

RMSEj
2 × 100%           (4) 

R2 = 1 −
∑ (Oi−Pi)2n

1

∑ (Oi−O̅)2n
1

                (5) 

R2I =
𝑅𝑗

2−𝑅𝑂𝐾
2

𝑅𝑂𝐾
2                   (6) 

 

where n is the number of samples 

Oi is the observed SOC content for the sample i 

O̅ is the mean value of the observed samples 

Pi is the predicted values 

j is the sequence number of RK, j=1, 2, 3 

 

3. RESULTS 

3.1 Descriptive Statistics and Analysis of Variance 

As shown in Table 2, the statistical characteristics of calibration 

set were similar with validation set, and the maximum value 

(Max) and minimum value (Min) were set in calibration set, 

therefore the validity and representativeness of calibration set 

was guaranteed. The SOC content of calibration set ranged from 

1.64 g/kg to 34.72 g/kg, and the coefficient of variation (CV) 

was at the moderate variation (Wilding, 1985). For the specific 

land use type, the CV was smaller than the whole calibration. 

The results of one-way ANOVA indicated that the SOC content 

of paddy fields was significantly higher than that of woodlands, 

and the SOC content of woodlands was significantly higher than 

that of irrigated lands. 

 

 

3.2 Spillover Effect of Land Use on SOC Content 

  Both of three regression models have passed through F test 

(p<0.01), and the coefficients, intercept value and R2 of them 

(p<0.05) were shown in Table3. The results indicated that the 

percentage of irrigated lands was negatively correlated with 

SOC when only considering land use percentages. With the 

higher R2, the observed land use types were more effective than 

land use percentages obtained from the image. Fortunately, there 

was no contradiction between types and percentages: when 

combined with the land use types and percentages, the R2 of 

regression was further improved to 24.7%. In R3 model, dummy 

variable 1 was significant indicated that the SOC content of 

paddy fields was significantly higher than that of woodlands, 

which was consistent with the result of one-way ANOVA. The 

difference of SOC content between irrigated lands and 

woodlands was no longer significant when taking land use types 

into consideration. Moreover, the percentage of water area and 

irrigated canals were positively correlated with SOC content. 

The land-use dependency of the relationship between SOC and 

land use percentages was also investigated and the results were 

exhibited in Table 4. The SOC content of paddy fields and 

woodlands did not show significant correlation with any land use 

percentages. By contrast, the SOC content of irrigated lands was 

positively correlated with the percentage of water area and 

irrigated canals, and the R2 reached 15.9%, which was far larger 

than the R2 of R1 model. This results indicated that the irrigated 

land was the main category affected by percentage of water area 

and irrigated canals, and this phenomenon was covered because 

of the mixture of different land use samples.   

 

3.3 Calibration Sets and Spatial Models of Four Kriging 

Methods 

After obtaining the three regression models, the RK models were 

correspondingly built, named RK1, RK2 and RK3 respectively.  

OK model was used as a reference model. The QQplot was 

employed to examine whether the original calibration set and the 

residuals of the RK models were normally distributed. As shown 

in Fig 2, original calibration set performed poorly at the low and

Sample set Number Max/(g/kg) Min/(g/kg) Mean ± Se/(g/kg) 
Coefficient of 

Variation/(%) 

Calibration set 204 34.72 1.64 15.80 ± 0.43 42.85 

Paddy field 95 34.72 3.52 19.09± 0.44a 36.51 

Irrigated land 97 27.73 1.64 12.58± 0.31c 39.34 

Woodland 12 27.26 9.12 15.78± 0.33b 33.21 

Validation set 50 32.4 4.85 15.69± 0.43 43.47 

Table 2. Descriptive statistics of SOC content for different land use types 

Se: standard error; Values suffixed with different superscript letters along the columns are significant different (p<0.05) 
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Model D1 D2 
Paddy  

field 

Irrigated 

land 
Woodland 

Water 

area 

Construction 

land 

Other 

lands 

Irrigated 

canals 
Intercept R2 

R1 - -  -0.078      16.462 0.037 

R2 6.15  - - - - - - - 12.939 0.205 

R3 6.803     0.051   0.145 10.705 0.247 

Table 3. Association between SOC content, land use types and percentages 

R1: stepwise regression with land use percentages; R2: stepwise regression with land use types; R3: stepwise regression with land 

use types and percentages; Void coefficients denote not significant (p>0.05). 

 

Model 
Paddy  

field 

Irrigated 

land 
Woodland 

Water 

area 

Construction 

land 

Other 

land 

Irrigated 

canals 
Intercept R2 

R_IL    0.062   0.209 9.705 0.159 

Table 4. Association between SOC content and land use percentages for samples of irrigated lands 

R_IL: stepwise regression based on samples of irrigated lands; Void coefficients denote not significant (p>0.05); the regressions 

based on samples of paddy fields and woodlands did not pass through F test (p>0.05). 

middle value areas. Comparing with original calibration set, the 

distribution of RK2 calibration had great improvement at low 

value areas when considering land use types, and the residuals 

of RK1 were more close to the diagonal line at the high value 

areas. In general, taking land use types and percentages as 

predictors contributed to the performance of residuals, and the 

residuals of RK3 outperformed the other calibration sets. 

 

The Kolmogorov-Smirnov (K-S) test was carried out for the four 

calibration sets. The results indicated that the three residuals 

rejected the normal distribution hypothesis (H0) (p<0.05) and 

could directly use for modelling, but the original SOC dataset 

must be transformed with Napierian logarithm (ln). The linear, 

spherical, exponential, and Gaussian functions were fitted to 

theoretical semi-variogram models, and the relative parameters 

were shown in Table 5 via GS+ software. In Table 5, the value 

of C0/(C0+C) of four spatial models were less than 25%, which 

indicated strong spatial autocorrelation (Wilding, 1985) and 

proved the rationality of the application of spatial interpolation 

models. 

3.4 SOC Content Maps 

The digital maps of SOC content estimated by OK and RK 

models were displayed in Fig 3. In order to make them 

comparable in visual, the ranges of SOC content of the four 

models were set to 0 ~ 35 g/kg. There were some common 

characteristics of SOC spatial variability shown in the four maps: 

in the overall trend, the SOC content on the periphery were larger 

than that of central part. Three high value aggregated areas were 

located at north, south and southeast of the image separately, and 

the area with the lowest average SOC contents situated on the 

west side of central town. For different land use types, the SOC 

content of paddy field was larger than that of woodlands and 

irrigated lands in the local region. However, there were some 

differences between four maps: the spatial variance of SOC 

content in first map was smoother due to the limitations of 

Kriging method. But in the map estimated by RK2 model, the 

contrast of SOC content in different land use was magnified, and 

the feature was more obvious in the areas where paddy fields 

were adjacent to irrigated lands. In the map of RK3, the SOC 

variability in adjacent patches became more violent, and more 

detailed information was exhibited inside the same patches. 

 

 

Figure 2.QQplots of four calibration sets 

OK: ordinary Kriging; RK1: regression Kriging with land use percentages; RK2: regression Kriging with land use types; RK3: 

regression Kriging with land use types and percentages. 
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Method Model C0 C C0/(C0+C)/% Range/m 

OK Exponential 0.025 0.172 14.53 390 

RK1 Gaussian 5.7 37.22 13.3 100 

RK2 spherical 0.8 34.41 2.32 420 

RK3 Gaussian 4.24 28.86 14.69 300 

Table 5 Semi-variogram models for the SOC content 

OK: ordinary Kriging; RK1: regression Kriging with land use percentages; RK2: regression Kriging with land use types; RK3: 

regression Kriging with land use types and percentages; C0: nugget value; C: partial sill; C0/(C0 + C): ratio of nugget value and sill. 

 

Method 
Cross-validation External validation 

RMSEC/g/kg RMSECI/% Rc
2 Rc

2I RMSEP/g/kg RMSECI/% RP
2 Rp

2I 

OK 6.757 - 0.024 - 7.059 - 0.010 - 

RK1 6.645 1.685 0.068 1.833 6.965 1.350 0.028 1.80 

RK2 6.366 6.142 0.177 6.375 6.323 11.64 0.166 15.60 

RK3 6.311 7.067 0.193 7.042 6.229 13.34 0.197 18.70 

Table 6 Evaluation of prediction accuracy of four models 

OK: ordinary Kriging; RK1: regression Kriging with land use percentages; RK2: regression Kriging with land use types; RK3: 

regression Kriging with land use types and percentages; RMSE: root measure squares error; RMSEI: root measure squares error; 

RMSEI: the relative optimization times of RK to OK.   

 

 

Figure 3.Maps of SOC content estimated by four spatial models 

OK: ordinary Kriging; RK1: regression Kriging with land use percentages; RK2: regression Kriging with land use types; RK3: 

regression Kriging with land use types and percentages.  

3.5 Model Validation 

The results of cross-validation and external validation (Table 6) 

indicated that the three RK models outperformed the OK model 

with lower RMSE values and larger R2. RK1 model was better 

than OK model but the effect was not obvious. RK2 model had 

a great promotion than RK1 model from the aspects of prediction 

accuracy and goodness of fit. RK3 model outperformed the other 

models with the lowest values of RMSEC (5.644g/kg) and 

RMSEP (6.229 g/kg), and the highest R2
C (0.193) and R2

P 

(0.197). 

4. DISCUSSION 

4.1 The Effects of Land Use Types and Percentages on SOC 

As different land use types, the input and output ways of SOC of 
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paddy fields, irrigated lands and woodlands was quiet different, 

which led to the great difference of SOC content. Paddy fields 

and irrigated lands were strongly affected by human producing 

activities. With the input of fertilizer, SOC content quickly rose 

in a short time, and the soil carbon pool lost with the harvest of 

crops. However, the cultivation and management methods, land 

cover, soil types and soil moisture of paddy fields and irrigated 

lands were very different. Under the submerged conditions, the 

activity of soil microbes was limited by oxygen deficiency, 

which led to the decrease of the mineralization rate of SOC and 

the accumulation of SOC. But for irrigated lands, long-term 

cultivation destroyed the soil physical structure, and the loss of 

large soil aggregates weaken the ability of soil carbon 

sequestration (Six et al., 2000). The local farmers' habit of 

burning straw also aggravated the loss of soil organisms and the 

mineralization of organic matter in irrigated lands. Therefore, the 

SOC content of paddy fields was significant higher than that of 

irrigated lands. As a natural land use type, the SOC of woodland 

was relatively less disturbed by human social development. The 

soil structure of woodland contributed to the soil and water 

conservation, which kept SOC content at a high level. The 

relationship between the paddy fields and the woodlands was not 

fixed but based on the actual situation. In this research, the SOC 

content of woodlands was lower than that of paddy fields, but 

higher than that of irrigated lands, which was consistent with the 

discoveries made by Zhang et al. (2010), Tai-Kui et al. (2013) 

and Sánchez–González et al. (2017). 

 

Except for land use types, the land use percentages were also 

important factors for the spatial variability of SOC content. For 

all of sampling points, SOC content was negatively affected by 

the percentage of irrigated land. On one hand, the average SOC 

content of irrigated lands was lowest among the three land use 

types, a higher percentage of irrigated land would take down the 

regional SOC content. On the other hand, the irrigated lands 

were very broken in the study area, a higher percentage of 

irrigated land mean the longer edges of farmland were exposed 

to oxygen, which speeded up the mineralization rate of SOC. For 

the sampling points of a specific type, irrigated lands 

significantly benefited from the high percentage of water area 

and irrigated canals. The high percentage of water area could 

potentially promote the wetness of the surrounding soil, and the 

irrigated canals would directly provide sufficient water for 

irrigation. For irrigated lands, sufficient water was conducive for 

crop growth and carbon sequestration via photosynthesis (Xiao-

Bo et al., 2017). A further research was implemented to explore 

the relationship between annual average NDVI value (through 

13 phase Landsat 8 remote sensing images) and soil moisture 

(through field measurement), the results indicated that there 

were significant positive correlation between them. As a result, 

irrigation facilities were important for farmland SOC 

sequestration especially in irrigated lands. As for paddy fields, 

which were already under the condition of flooding, the effect of 

water moisture on it was weaken. The woodlands was less 

affected by agricultural irrigation as the natural elements. 

 

4.2 Comparison of modal performance 

In this study, the land use types and percentages were employed 

to explain the spatial variability of SOC content. Under the 

control of different land use type and surrounding environment, 

the input and output rate of SOC was quiet different, which 

caused the spatial heterogeneity of SOC content. The results of 

one-way ANOVA demonstrated that there were significant 

differences among SOC content of paddy fields, irrigated lands 

and woodlands, and therefore the SOC content of the three land 

use types could not be regarded as the same regional variable, 

which violated the precondition of Kriging methods. The results 

of regression also proved that land use types and percentages 

were both responsible for the heterogeneity of SOC content. 

When spatial heterogeneity existed in the spatial variability of 

SOC, the expected value of random function of SOC varied with 

the change of position, which violated the stationary assumption 

required by ordinary Kriging method. Under this situation, the 

prediction accuracy of OK method was limited, and it was why 

OK method was not suitable for spatial estimation of soil 

properties under complex landscape. Actually, in the study, the 

SOC content was not normally distributed and had to be 

conducted Napierian logarithm (ln) transformation. 

 

In comparison, RK models eliminated the spatial heterogeneity 

caused by land use types and percentages. The spatial variability 

of SOC residuals became more stable, and the residuals were 

relatively normally distributed and passed through the K-S test. 

As a result, RK models had a promotion of the prediction 

accuracy and goodness of fit than OK model. As for the two 

explanatory predictors, the land use types had a higher R2 of 

regression than that of percentages, which mean the local land 

use type was more influential than surrounding environment on 

soil properties. Therefore, the RK2 model was more valid than 

RK1 model. Moreover, when considering land use types and 

percentages simultaneously, the R2 of regression further 

increased to 24.7% and thus the RK3 model outperformed the 

other prediction models with the lowest RMSE and the highest 

R2. 

 

The digital SOC maps showed that most of low value areas 

belonged to irrigated lands and were located nearby central town 

and rural settlements, which had a longer history of cultivation. 

In contrast, the three high value aggregated areas had 

characteristics of belonging to paddy fields, mixing with water 

area patches, and approaching irrigated canals. Moreover, 

learned from the field survey, local farmers often use sediments 

of ponds to fertilize soil, which was conducive to the 

accumulation of farmland SOC. However, there were some 

value obviously higher or lower than the surrounding SOC 

values, which called spatial outliers (Costa, 2003). After 

combined with land use information, the contrast between the 

spatial outliers and the surrounding value reduced but still 

existed. Therefore, new environment variables should be 

explored, together with land use information to explain the 

causes of spatial heterogeneity and spatial outliers. 

  

5. CONCLUSION 

In this research, we explored the feasibility of land use types and 

percentages (obtained with a 200-meter buffer) for soil mapping 

via RK models. The three RK models, named RK1, RK2 and 

RK3, combined with land use percentages, land use types and 

both of them respectively. The OK model was set as a reference. 

The basic SOC statistics showed that the SOC of paddy fields 

was significantly higher than that of woodlands, and SOC of 

woodlands was higher than that of irrigated lands. According to 

results of regressions, we found that SOC was negatively 

correlated with percentage of irrigated land when only 

considering land use percentages. After adding land use types 

into the model, the SOC was positively correlated with the 

percentage of water area and irrigation canals. Further research 

indicated that SOC of irrigated lands was significantly correlated 

with the percentage of water area and irrigation canals, while 

paddy fields and woodlands did not show similar trends. The 

land use percentages and types could explain 3.7% and 20.5% 

variation of the SOC respectively, and the value increased to 24.7% 

when integrating types and percentages. The results of model 
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validation indicated that the RK3 model outperformed the other 

models with the lowest values of RMSEC (5.644g/kg) and 

RMSEP (6.229 g/kg), and the highest R2
C (0.193) and R2

P (0.197). 

In conclusions, land use types and percentages serve as efficient 

indicators for the SOC mapping in plain areas. Additionally, 

irrigation facilities contributed to the farmland SOC 

sequestration especially in irrigated lands. 
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