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ABSTRACT: 

 

Aboveground biomass estimation (AGB) is essential in determining the environmental and economic values of mangrove forests. 
Biomass prediction models can be developed through integration of remote sensing, field data and statistical models. This study aims 

to assess and compare the biomass predictor potential of multispectral bands, vegetation indices and biophysical variables that can be 

derived from three optical satellite systems: the Sentinel-2 with 10m, 20m and 60m resolution; RapidEye with 5m resolution and 

PlanetScope with 3m ground resolution. Field data for biomass were collected from a Rhizophoraceae-dominated mangrove forest in 
Masinloc, Zambales, Philippines where 30 test plots (1.2 ha) and 5 validation plots (0.2 ha) were established. Prior to the generation 

of indices, images from the three satellite systems were pre-processed using atmospheric correction tools in SNAP (Sentinel-2), ENVI 

(RapidEye) and python (PlanetScope). The major predictor bands tested are Blue, Green and Red, which are present in the three 

systems; and Red-edge band from Sentinel-2 and Rapideye. The tested vegetation index predictors are Normalized Differenced 
Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Green-NDVI (GNDVI), Simple Ratio (SR), and Red-edge Simple 

Ratio (SRre). The study generated prediction models through conventional linear regression and multivariate regression. Higher 

coefficient of determination (r2) values were obtained using multispectral band predictors for Sentinel-2 (r2 = 0.89) and Planetscope (r2 

= 0.80); and vegetation indices for RapidEye (r2 = 0.92). Multivariate Adaptive Regression Spline (MARS) models performed better 
than the linear regression models with r2 ranging from 0.62 to 0.92. Based on the r2 and root-mean-square errors (RMSE’s), the best 

biomass prediction model per satellite were chosen and maps were generated. The accuracy of predicted biomass maps were high for 

both Sentinel-2 (r2 = 0.92) and RapidEye data (r2 = 0.91). 

 

1. INTRODUCTION 

Mangroves have a wide range of economic, social and 

environmental benefits often referred to as ecosystem services. 

Like other vegetated coastal ecosystems, mangroves are 
important blue carbon sinks with a storage capacity between 990 

and 1074 t C ha-1 (Donato et al., 2011). In the tropics, mangroves 

are among the carbon-rich forests with an average storage of 

1023 t C ha-1 (Laffoley & Grimsditch, 2009). The greatest carbon 
pool in a tree is the aboveground biomass which refers to the 

living biomass above the soil including the stems, bark, branches, 

foliage, and seeds. It is usually measured for carbon flux 

monitoring (Vashum & Jayakumar, 2012), carbon stock 
quantification (Kumar and Mutanga, 2017) and for developing 

carbon policies and forest management protocols.  

 

Traditional approach to field biomass estimation of mangroves is 
limited to the spatial constraints of data collection and 

inaccessibility of mangroves stands. A common non-destructive 

approach is the use of allometric equations derived from 
parameters such as diameter at breast height (DBH). Remote 

sensing served as a non-destructive alternative for a more robust, 

continuous and spatially explicit biomass assessment (Herold and 

Johns, 2007). The availability of different remote sensing 
systems led to increased capability for biomass estimation. 

Optical remote sensing systems offers global coverage which is  
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often cost effective. For regional scale, aboveground biomass 

estimation is usually carried using optical platforms such as 

Landsat (Shao & Zhang, 2016; Gleason & Im, 2011), IKONOS 

and MODIS (Yin et al, 2015). With newer moderate resolution 
satellite systems, plot-level biomass estimate can also be 

achieved through improved imaging sensors with shorter revisit 

time. Among these new platforms are RapidEye (2008), Sentinel-

2 (2015, 2017) and PlanetScope (2014). Sentinel-2 is a land-
monitoring constellation of two identical satellite with novel 

spectral capabilities with a swath width of 290 km and a frequent 

revisit time of 5 days. The optical payload it carries has visible, 

near-infrared and infrared sensors, which provide a total of 13 
spectral bands with 10m, 30m and 60m ground spatial resolution 

(ESA).  Compared to Sentinel-2, RapidEye has higher resampled 

spatial resolution of 5 meters with revisit time of just one day. It 

is known as the first commercial satellite with a red-edge band in 
addition to the blue, green, red, and NIR bands. Prediction 

models using RapidEye bands were found to explain biomass 

variation better than Landsat (Ramoelo and Cho, 2014). 
PlanetScope has the least number of bands (blue, green, red, and 

NIR) but it has the highest spatial resolution of 3m. Fewer studies 

on biomass estimation were conducted using PlanetScope data 

compared to the other satellite imageries. No previous studies 
have compared the performance of these three satellite data using 

prediction models developed from the same field data, with focus 

on the common bands, indices, and biophysical factors that can 

be derived from these systems. 
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This study aimed to evaluate the biomass prediction efficiency of 

multispectral bands, vegetation indices and biophysical variables 

derived from RapidEye, PlanetScope and Sentinel-2. 

Specifically, different biomass prediction models using linear 
regression and non-linear multivariate regression algorithms 

were developed in this study. Furthermore, the accuracy of each 

prediction model as well as the accuracy of the predicted 

aboveground biomass maps were assessed using field validation 

plots. 

 

2. DATA AND METHODS 

2.1 Study Site 

The test area is a mangrove plantation located in the village of 

Baloganon, Masinloc in the province of Zambales (Figure 1). The 

site is dominated by Rhizhopora species such as R. mucronata 

and R. apiculata. Diameter at breast height (DBH), tree heights 
and other field data needed to compute the aboveground biomass 

were collected in November 2015. A total of 1.2 ha consisting of 

thirty 20m x 20m plots were selected as the training data while 

another 0.2 ha were set aside as map validation data.  
 

Figure 1. Location of the study site in Masinloc, Zambales, 

Philippines. A subset area is shown in RGB composite: 

Sentinel-2 (left), RapidEye (center) and PlanetScope (right) 

 

2.2 Satellite Data Collection and Pre-processing 

The available Sentinel-2, PlanetScope and RapidEye data 

acquired closest to the field data were selected (see Table 1). The 

Sentinel-2 Multispectral Imager Instrument (MSI) Level 1-C 
image covering Baloganon, Masinloc was downloaded from 

Sentinel Scientific Data Hub (ESA). The product is already 

orthorectified, georeferenced, and radiometrically calibrated into 

top-of-atmosphere (ToA) reflectance data. Atmospheric 

correction was carried using Sen2Cor standalone tool, but can be 

processed alternatively in the S2A Toolbox of the Sentinel 

Application Platform (SNAP). This processor uses image-based 

retrievals with Look-Up tables (LUTs) pre-calculated from the 
libRadtran model to minimize or remove atmospheric effects 

from level 1-C images (Main-Knorn et al., 2015). All Level-2A 

bands were stacked and resampled to 10m pixel size using SNAP 

(ver. 5.0) geometric operation tool.  

 

Table 1. Product levels and satellite acquisition dates 

 

The downloaded RapidEye level 3A orthoproduct has undergone 
radiometric, sensor and geometric correction using Ground 

Control Points (GCPs) and fine Digital Elevation Models 

(DEMs). The image was then atmospherically corrected using 

Fast Line-of-sight Atmospheric Analysis of Hypercubes 
(FLAASH) in ENVI 5.0. Image center, illumination azimuth 

angle, spacecraft view angle and other correction parameters are 

incorporated in the RapidEye image. The PlanetScope image was 

downloaded as an Ortho Scene product which is orthorectified, 
scaled Top of Atmosphere Radiance image product (Level 3B), 

and delivered as analytic 4-band product (Planet Team, 2017). 

Conversion to ToA reflectance image were made using a Planet 

Labs python guide (www.planet.com/docs/guides/quickstart-
ndvi). 

 

2.3 Multispectral Bands 

There are 4 common multispectral bands (Blue, Green, Red and 
NIR) among Sentinel-2, RapidEye and Planetscope; and 5 bands 

(+Red-edge) between Sentinel-2 and RapidEye. The Red-edge 1 

of Sentinel-2 (705nm central wavelength) was chosen being the 

closest to the wavelength values of RapidEye’s Red-edge band 
(690nm – 730nm). Additional bands of Sentinel including Red-

edge 1-3 and SWIR 1-2 were tested as a separate group of 

predictor input. 

 

2.4 Vegetation indices 

Indices that were selected as biomass model inputs are 

Normalized Differenced Vegetation Index (NDVI), Soil-adjusted 

Vegetation Index (SAVI), Green-NDVI (GNDVI), Simple Ratio 
(SR) and Red-edge Simple Ratio (SRre). The first four indices 

were generated from the three satellite data while SRre can only 

be generated from Sentinel-2 and RapidEye since it requires a 

Red-edge band. These indices are combinations of visible, red-
edge and NIR bands. The formula for each index is shown in 

Table 2.  
 

Vegetation index Formula Reference 

Normalized Difference 

Vegetation Index (NDVI) 

(NIR-R) / (NIR + R) Rouse et al, 

1973 

Green NDVI (GNDVI) (NIR-G) / (NIR + G) Gitelson et 

al, 1996 

Soil Adjusted Vegetation 

Index (SAVI) 

 Huete, 1988 

Simple ratio (SR) NIR/R Jordan 

(1969) 

Red-edge simple ratio 

(SRre) 

NIR/R-edge Gitelson & 

Merzlyak, 

1994 

Table 2. Equations for the vegetation indices used in the 

biomass models 

 

2.5 Biophysical Variables  

Three biophysical variables were generated from the 

atmospherically corrected and resampled (10m) Sentinel-2 data 

using SNAP tool: Leaf area index (LAI), Fractional vegetation 
cover (FVC), and Leaf chlorophyll content (Cab). The biophysical 

Satellite  Product level Acquisition date 

Sentinel-2A Multispectral image-1C Feb. 11, 2016 

RapidEye Ortho-3A Nov. 14, 2015 

Planetscope Ortho scene-3B Dec. 25, 2015 

(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅+𝐿)
 x (1 + L) 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-3-29-2018 | © Authors 2018. CC BY 4.0 License.

 
30



 

variables describe the spatial distribution of vegetation state and 

dynamics, thus, are useful for biomass estimation (Widlowski et 

al., 2004). LAI, Fraction of absorbed photosynthetically active 

radiation (FAPAR), and FVC are the main variables computed 
by the SNAP toolbox using tested, generic algorithms based on 

specific radiative transfer models. The generation of the variables 

were composed of three main steps: (1) normalization of the 

inputs, (2) implementation of the artificial neural network (ANN) 

algorithm and (3) denormalization of the output and (4) 

generation of quality indicator (Weiss and Baret, 2016). 

 

Rapideye and Planetscope has no biophysical variables included 
in their products. To facilitate comparison of these variables 

among the three satellite data, products such as LAI, FAPAR and 

Ca were derived for RapidEye and PlanetScope using available 

equations. LAI was obtained using Equation 1 (Zeng et al., 2000) 
as implemented by previous studies (Ali, 2015; Zeng et al., 

2003). The NDVIs (bare soil) and NDVIv (dense vegetation) were 

selected through histogram evaluation, scaled between the lowest 

NDVI (NDVIs) and highest NDVI (NDVIv). 
 

 (1) 

 

 
where  FVCNDVI = fractional vegetation cover (NDVI-derived) 

 NDVIs = NDVI values for bare soil  

 NDVIv = NDVI values for vegetation  

   
The output FVC derived from NDVI was then used for 

computing the LAI using a logarithmic equation (Norman et al., 

1995) tested on large-scale field experiments: 

 
(2) 

 

 

where  LAINDVI =   NDVI-derived leaf area index 
 FVCNDVI = fractional vegetation cover  

 𝑘(𝜃) =       light extinction coefficient for a given 

solar zenith angle   

 

The light extinction coefficient k(θ) is a measure of attenuation 

of radiation in the canopy determined by the angle and spatial 

arrangement of the leaves. It can range between 0.4 and 0.65 in a 

variety of mangroves canopies. The average value between this 
ranges, approximately 0.5, was used in this paper as suggested by 

Clough (1997) and Perera et al. (2013).  

 

Alternative data for comparison with Sentinel’s Chlorophyll-a 
(Ca) was obtained by using the Green Chlorophyll Index model 

(CIGREEN) developed by Gitelson (2003): 

 

(3) 
 

Equations 1-3 were also applied to the Sentinel bands to compare 

the correlation between the modeled and the SNAP-generated 

biophysical products. These were labelled Sentinel-2s (SNAP 
generated) and Sentinel-2m for the modeled variables.   

 

2.6 Model Development, Regression and Analysis 

Mean data were obtained from the bands, vegetation indices and 
biophysical variables through zonal statistics extracted using 

thirty 20m x 20m polygons. The first analysis was done using 

linear regression models between the measured AGB and the 
biomass estimation predictors. The coefficient of determination 

values and RMSE’s were recorded and were compared between 

input groups and among the satellite data.  

The second analysis was carried using a Multivariate Adaptive 

Regression Splines (MARS). MARS is a regression and data 

mining technique developed by Friedman in 1991. This method 

uses basis functions in modeling the predictor and response 
variables. The generated basis functions will then be used as the 

new set of predictor variables to generate the final model. The 

initial step of MARS is a forward algorithm, which selects all 

possible basic functions and their corresponding knots. Then, a 

backward algorithm will discard the basis functions which do not 

contribute significantly to the accuracy of the fit (Friedman, 

1991). The final model of MARS consists of a collection of basis 

functions including nonlinear and interaction relationships 
among the predictor variables (Bilgili et al., 2010).  

 

Friedman (1991) suggested a maximum of 15 basis functions. In 

this study, a maximum of 10 basis functions was set to avoid 
overcomplexity of the models. Standard MARS parameter values 

were used for the three satellite data. Other MARS parameters 

are the minimum observation between knots (1), maximum 

interaction (10), ridge value (-7), degree of freedom for knot 
optimization (1) and speed factor (1). This was implemented in 

Salford Predictive Modeler v.8 (Salford Systems, San Diego, 

California, USA). The r2 and RMSE per test input group were 

obtained.  
 

2.7 Aboveground Biomass Map and Accuracy Assessment 

The best linear or multivariate biomass prediction model per 

satellite data were chosen based on r2 and RMSE values. The 

basis functions per model were converted as individual bands in 

ENVI 5.0 by applying the mathematical equation to the important 

variables per model. The stacked basis functions bands were used 

for the final equation. Ratio and multipliers were used to convert 
the output biomass product (Mg/plot) to biomass per hectare (Mg 

ha-1) for each pixel of the satellite data. This data was used in 

creating the aboveground biomass maps for Baloganon, 

Masinloc. The accuracy was obtained using five 20m x 20m 
validation plots located outside the training plots used for model 

development. The correlation between measured AGB from the 

validation plots with the predicted AGB generated using 

RapidEye, PlanetScope, and Sentinel-2 models was examined. 
 

 

3. RESULTS AND DISCUSSION 

The study compared the correlation between field-measured 
AGB and predicted AGB of three satellite data using two 

statistical regression methods: linear correlation and MARS 

algorithm. 

 

3.1 Linear Regression of Aboveground Biomass 

There are six input groups tested for the regression analysis: 

PlanetScope multispectral bands, PlanetScope derived indices, 

RapidEye bands, RapidEye derived indices, Sentinel-2 derived 
indices and Sentinel-2 bands. The best linear regression models 

for each satellite data are the PlanetScope SR-based model (r2 = 

0.56), RapidEye NIR-based model (r2 = 0.71) and Sentinel-2 SR-

based model (Table 3, Figure 2). The highest r2 and lowest RMSE 
(9.75 Mg ha-1) among all data inputs were obtained with the NIR 

band of RapidEye. SR was seen to be an efficient biomass 

predictor index, providing the highest r2 for both Sentinel-2 and 
PlanetScope data.  

 

Among the multispectral bands input, the highest coefficient of 

determination values was obtained with RapidEye (r2 = 0.71) 
while Sentinel-2 and PlanetScope have equal coefficient values, 

FVCNDVI = 
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 −𝑁𝐷𝑉𝐼𝑠
 

LAINDVI = 
−𝑙𝑜𝑔(1−  𝐹𝑉𝐶𝑁𝐷𝑉𝐼)

𝑘(𝜃)
 

CIGreen = (NIR-Green) - 1 
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r2 = 0.49. NIR band is the most effective predictor band for both 

RapidEye and Planetscope data. The SWIR 1, SWIR 2 and Red-

edge bands of Sentinel data gave the lowest coefficients of 

determination (r2 = 0.03, 0.003, 0.013). The same result were 
reported by Castillo et al. (2017) where negative correlation (r) 

with biomass were observed. Higher r2 were obtained with the 

Blue, Red and NIR bands. The green band gave the lowest 

coefficient of determination value for the PlanetScope and 

RapidEye, with r2 = 0.20 and 0.06, respectively. 

 

The efficiencies of all satellite data as biomass predictors are 

relatively higher with the use of vegetation indices with mean 
increase of 0.2, 0.14 and 0.19 for PlanetScope, RapidEye and 

Sentinel-2, respectively. This is driven by the potential of the 

vegetation indices to highlight plant intrinsic properties that are 

well related with biomass accumulation, such as leaf greenness 
and vigor. Each index has its specific expression which can 

represent  green vegetation properties better than using individual 

bands.  

 

Modelling 

Group 
Predictor 

Correlation, 

 r 

Correlation, 

r2 
(Mg/ha-1) 

PlanetScope 

derived 

indices 

NDVI 0.72 0.51 12.50 

SAVI 0.72 0.52 12.25 

GNDVI 0.71 0.50 12.50 

SR 0.75 0.56 11.75 

PlanetScope 

Multispectral 

Bands 

Blue 0.56 0.31 14.75 

Green 0.44 0.20 16.00 

Red 0.53 0.29 15.00 

NIR 0.70 0.49 12.75 

RapidEye 

Derived 

Indices 

NDVI 0.71 0.50 12.75 

SAVI 0.71 0.50 12.75 

GNDVI 0.72 0.52 12.25 

SR 0.78 0.61 11.25 

SRre 0.71 0.51 12.50 

RapidEye 

Multispectral 

Bands 

Blue 0.59 0.35 14.5 

Green 0.25 0.06 17.25 

Red 0.50 0.25 15.50 

Red-edge 0.76 0.57 11.75 

NIR 0.84 0.71 9.75 

Sentinel-2 

Derived 

Indices 

NDVI 0.70 0.49 12.75 

SAVI 0.70 0.50 12.75 

GNDVI 0.70 0.47 13.00 

SR 0.73 0.53 12.25 

SRre 0.62 0.38 14.00 

Sentinel-2 

Multispectral 

Bands 

Blue 0.69 0.49 13.00 

Green 0.51 0.26 15.25 

Red 0.67 0.45 13.25 

Red-edge1 0.11 0.01 17.75 

Red-edge2 0.62 0.38 14.00 

Red-edge3 0.62 0.39 14.00 

Red-edge4 0.62 0.39 14.00 

NIR 0.66 0.44 13.25 

SWIR 1 0.18 0.03 17.50 

SWIR 2 0.02 0.003 17.75 

 

Table 3. Linear correlation of measured above-ground biomass 
and satellite-based predictors. Values of r2 in bold text are 

significant with p > 0.001. 

 

 
Figure 2.  Highest obtained linear correlation (r2) of observed 

aboveground biomass and satellite data 

 

3.2 MARS Aboveground Biomass Models  

Vegetation indices, multispectral bands and an additional set of 

Sentinel-2 bands consisting of Red-edge 2-4 and two SWIR 

bands were used as inputs for MARS. Sensitivity analysis was 

performed to determine the most effective parameter values for 
the multivariate modeling. This set of parameters was applied to 

the different inputs group with a total of 30 samples per predictor 

variable.   

 

Input Data 
Satellite 

Data  r2 

RMSE 

(Mg ha-1) 

Important 

Variables 

Vegetation 

Indices 

(NDVI, 

SAVI, 

GNDVI,  

SR, SRre) 

Planetscope 0.80* 7.68 

GNDVI, 

NDVI, SAVI 

Rapideye 0.82 7.24 

GNDVI,    

SR, NDVI 

Sentinel-2 0.89* 5.69 

SR, SRre, 

NDVI 

Bands 

(B,G,R, NIR, 

RE**) 

Planetscope 0.80 7.78 

NIR, Red, 

Green 

Rapideye 0.92* 4.96 

NIR, Blue, 

Red 

Sentinel-2 

Set A 0.62 10.66 

Blue, Red- 

edge1 

Additional 

Bands (Set A 

+ RE2-4, 

SWIR 1,2) 

Sentinel-2  

Set B 
0.84 6.94 

Blue, SWIR1, 

Red- edge1  

   *Best model per satellite data          ** Not applicable for PlanetScope  
 

Table 4. Important variables and correlation of measured above-
ground biomass and satellite-based predictors using 

Multivariate Adaptive Regression Splines (MARS)  
 

The best predictive models were obtained with the multispectral 

bands of Rapideye with the highest r2 value of 0.89 and smallest 

RMSE of 4.96 Mg ha-1 (Table 4). The three important variables 
of RapidEye are NIR (100%), Blue (42%) and Red bands (38%).  

This conforms to the results of Huang et al. (2017) which 

reported that NIR was the most important RapidEye band for 

biomass estimation.  
 

The best model for Sentinel-2 was generated with vegetation 

indices SR, SRre and NDVI (r2 = 0.89; RMSE = 5.69 Mg ha-1) 

(Figure 3 - top). Simple ratio has 100% variable importance in 
the final model. Also known as Ratio Vegetation Index, SR do 

not have normal distribution compared to indices such as NDVI. 

High efficiency of SR as biomass predictor is commonly 

observed in areas with closed and dense vegetation cover, 
including biomass estimates in tropical forests (Clerici et al., 

2016). SR is also an important variable in the RapidEye index-

based model and in the two best linear regression models. 

Meanwhile, NDVI is known to perform best in estimation of leaf 
biomass (Kross et al., 2015) and is usually a successful biomass 

predictor for a wide range of satellite data. 

 

0.00 0.20 0.40 0.60

PlanetScope

RapideEye

Sentinel-2

Multispectral Bands Vegetation Index
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The vegetation index of PlanetScope generated the best model 

for this satellite system (r2 = 0.80; RMSE = 7.68 Mg ha-1) 

although the coefficient of determination is lower than that of 

Sentinel-2 and Planetscope. Among the important variables, 
GNDVI provided 100% importance to the model followed by 

NDVI (89%) and SAVI (56%). GNDVI was also significant for 

the RapidEye model; while NDVI was consistently an important 

index for the three satellite data. 

 

3.3 Regression of Biophysical Variables  

Linear regression of LAI, FVC and ClGreen for the three satellite 

systems resulted to low r2 values of LAI and FVC with measured 
AGB (LAI r2 = 0.01 to 0.44; FVC r2 = 0.01 to 0.45) while high r2 

values were obtained between AGB and CIGreen (r2 = 0.42 to 0.69). 

The weak r2 values between AGB and LAI and between AGB 

and FVC were considered to be affected by the presence of 
undergrowth vegetation and layering in the study site. This was 

also the reason observed by Russel and Tompkins (2005) and 

Heiskanen (2006) in their test areas. It is important to note that 

among the modeled LAI and FVC data, PlanetScope produced 
higher r2 than RapidEye while RapidEye has higher r2 than 

Sentinel 2-m. This observation proves that canopy and 

understory mixing was partly reduced by using higher resolution 

data. Unlike these two parameters, Chlorophyll-a values derived 
for each pixel may not have been significantly affected by 

undergrowth vegetation, thus, less errors were introduced. The 

highest coefficient of determination among the CIGreen-based 

models was generated with RapidEye data (r2 = 0.69). Sentinel 

2-m models performed better than Sentinel 2-s models for both 

LAI and FVC inputs. Between the modeled and the SNAP-

generated biophysical variables, only the CIGreen values have high 

correlation (r = 0.81, p > 0.001).   
  

Input Variables Satellite Data r2 

 

Important 

Variables 

LAI, FVC, Cab 

Planetscope 

 

0.47 

 

CIGreen,  

LAI, FVC,  

Rapideye 0.71 CIGreen 

Sentinel 2-m 0.45 CIGreen  

Sentinel 2-s 0.53 CIGreen / Ca 

Table 5. Important variables and correlation of measured above-
ground biomass and biophysical variables using MARS  

 

MARS regression of AGB and the biophysical variables resulted 

to higher r2 values (Table 5) than linear regression results, except 
for Sentinel-2m where correlation between AGB and ClGreen is 

lower. CIGreen was the sole important variable for Sentinel and 

RapidEye while all three variables were used in PlanetScope. 

 

3.4 Basis Functions and Final Models  

The best biomass prediction models for each satellite data were 

chosen based on the highest r2 and lowest RMSE value. These 

models are the Sentinel-2 index-based model, PlanetScope 
index-based model and the RapidEye multispectral bands-based 

model (Figure 3). The basis functions and final equation were 

generated by MARS. Table 6 shows the basis functions and final 

models for predicting the biomass using the observed AGB data. 
 

BFs are functions used to demonstrate each distinct interval of 

the predictors in the form below: 
 

(4) 

 

where  BFn = basis function number 

 x = independent variable  

 k = constant corresponding to a knot   

 

 

 
 

Figure 3. Best MARS regression models showing relationship 
of observed and predicted AGB from Sentinel (top), RapidEye 

(middle) and PlanetScope (bottom). 

 

All MARS models performed better than the linear regression 
models. The result of MARS is consistently high using the 

vegetation indices of Sentinel-2, RapidEye and PlanetScope. 

This is partially attributable to the close association between the 

indices. Bilgili et al. (2010) suggested that the accuracy of MARS 
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BFn = max (0, x-k) or = max (0, k-x) 
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models depends more on the range of data values and their degree 

of autocorrelation rather than the effect of spectral pre-treatment 

on the band reflectance data. The advantages of MARS compared 

to other machine algorithms includes predictive accuracy, 
computational speed and simplicity of interpretation (Mina and 

Barrios, 2010). Compared to linear regression, MARS can 

transform variables and identify higher order interactions 

between variables. MARS also performed better than multiple 

linear regression when applied to LiDAR-based biomass 

estimation (Laurin et al., 2016). 

 
Satellite Data Model and Basis Functions 

Sentinel-2 

 

y =  5.54388 - 0.384761 * BF2 - 1.25011 * BF3 - 1.37807 * BF4+ 
9.34749 * BF6 - 0.0339066 * BF7 - 0.69426 * BF8+ 23.3997 

* BF9 + 82.4958 * BF10 
 

 BF2 = max( 0, 19 - SR);   
 BF3 = max( 0, SRRE - 2.75);   

 BF4 = max( 0, 2.75 - SRRE);   
 BF6 = max( 0, 0.747658 - NDVI);   

 BF7 = max( 0, SR - 10.5) * BF3;   
 BF8 = max( 0, 10.5 - SR) * BF3;   

 BF9 = max( 0, NDVI - 0.747658) * BF8;   
 BF10 = max( 0, 0.747658 - NDVI) * BF8  

 

RapidEye 

 

y = 0.366588 + 0.00333015 * BF2 + 5.50533e-005 * BF4 + 

1.19337e-005 * BF5 - 6.37222e-007 * BF6 - 3.51081e-006 * 
BF7 - 0.00277732 * BF8 

 
 BF2 = max( 0, NIR - 1682.25);   

 BF4 = max( 0, BLUE - 247.25) * BF2;   
 BF5 = max( 0, 247.25 - BLUE) * BF2;   

 BF6 = max( 0, RED - 245) * BF4;   
 BF7 = max( 0, 245 - RED) * BF4;   

 BF8 = max( 0, NIR - 1906.25)   
 

PlanetScope 

 

Y =  4.34818 - 23.786 * BF2 + 20.8186 * BF4 + 71.1518 * BF5- 

16.1731 * BF7 - 779.811 * BF9 
 

 BF2 = max( 0, 0.613744 - NDVI);   
 BF4 = max( 0, 0.339722 - GNDVI);   

 BF5 = max( 0, GNDVI - 0.494629);   
 BF7 = max( 0, SAVI - 0.223856);   

 BF8 = max( 0, 0.223856 - SAVI);   
 BF9 = max( 0, NDVI - 0.366894) * BF8  

  

 
Table 6. Basis functions and final model generated for each 

satellite data to predict aboveground biomass of mangroves 

 

 

3.5 Aboveground Biomass Maps 

The basis functions of the best model per satellite data were 

applied to either bands or vegetation indices. The maps were 

generated using the native resolution of the input data (Figure 4) 
after converting the aboveground biomass per plot to AGB per 

hectare for each generated pixel. The ideal output of the pixel-

based maps is that the total biomass per hectare of four Sentinel 

pixels will be equal to the total biomass of 16 RapidEye pixels 
and 44.44 PlanetScope pixels, having a similar area of 20m x 

20m. Aboveground biomass totals of 690 Mg ha-1, 613 Mg ha-1, 

and 793 Mg ha-1 were recorded for Sentinel-2, RapidEye and 

PlanetScope data, respectively. 
 

3.6 Map Accuracy Assessment  

Accuracy of maps generated by MARS algorithm were assessed 

by using five validation plots with an area of 20m x 20m each. 
These plots were not included as training data to test the biomass 

predictive mapping efficiency of the generated models when 

predictors are correlated to a response variable outside the 

training sample. The accuracy of predicted biomass maps cannot 
be evaluated by inter-comparison of maps, thus validation data is 

needed. The RMSEs and coefficients of determination (r2) 

between predicted values and field measurements were recorded 

(Table 7).  

 

 
 

Figure 4. Predicted Aboveground Biomass Map using data from 

a) Sentinel-2, b) RapidEye and c) PlanetScope Imageries 

(a) 

(b) 

(c) 
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Satellite Data  Correlation (r2) RMSE (Mg ha-1) 

Sentinel-2 0.92 8.79 

RapidEye 0.91 4.27 

PlanetScope 0.40 13.75 

 

Table 7.  Result of accuracy assessment through regression of 
the predicted AGB raster data and the field validation dataset 

 

For models developed through MARS, a suggested validation 

technique is to test the applicability of the models to a new set of 
target variables. This technique will determine if the model 

generated are over-fitted or under-fitted with the training 

samples. Among the three satellite data, only the coefficient of 

determination values of PlanetScope reflected possible 
overfitting with a relatively higher coefficient in the training 

dataset. The accuracy, however, can be affected by the fewer 

number of samples used as validation data. Lower values of 

important vegetation indices derived from Planetscope, 
significantly different with RapidEye and Sentinel-2 (p < 0.001), 

may have affected the knot value computed for each basis 

function in the PlanetScope model. 

 
The current study showed satisfactory result for RapidEye and 

Sentinel-based predictive mapping and estimation of 

aboveground biomass. Multivariate regression model with 

Sentinel-2 generated an RMSE of 5.69 Mg ha-1, one of the lowest 
RMSE’s comparable to recent studies (Castillo et al., 2016; 

Clerici et al, 2016). RapidEye result is satisfactory with an RMSE 

values of 4.96 Mg ha-1 and 4.27 Mg ha-1 from the training and 

validation data, respectively. 

 

4. CONCLUSION 

Reliable biomass estimates are essential for obtaining the net 

primary production in ecological studies. Forest aboveground 
biomass is one of the baseline data needed for carbon stocks 

assessment and climate change studies. 

 

The relationships between AGB and the set of predictor variables 
were established. This study have demonstrated the efficiency of 

the multispectral band, vegetation indices, and biophysical 

variables derived from three novel optical satellite imageries: 

Sentinel-2, PlanetScope and RapidEye. Multispectral bands are 
the preferred input predictors for RapidEye while derived 

vegetation indices are recommended when Sentinel-2 and 

Planetscope were employed. Simple Ratio consistently provided 

high r2 for RapidEye and Sentinel both through linear and 
multivariate regression. NIR band is the most effective predictor 

band for RapidEye and Planetscope. For Sentinel-2, the 

important bands are Blue and Red-edge 1. Weak linear 

correlations were observed between AGB and the other Red-edge 

bands and the two SWIR bands. However, addition of these 

bands (Sentinel2 Set-B) increased the coefficients from 0.62 to 

0.84 in the case of MARS regression. The biophysical variables 

generated from Sentinel-2, PlanetScope, and RapidEye generated 
low coefficient of determination values except for the Green 

Chlorophyll Index (CIGreen). 

 

The multivariate non-parametric MARS is a robust classification 
method that can be used in remote sensing analysis. It is efficient 

in determining the relevant variables with good predictive 

accuracy, computational speed and flexibility with the choice of 
parameter values for penalty parameter and degree of freedom 

for knot optimization, among others. In this study, MARS models 

performed better than the linear regression results. As MARS was 

reported to be sensitive to data size and outliers, we would 
recommend further studies to introduce more test and validation 

datasets to the algorithm. This paper is one of the few studies on 

mangroves biomass prediction conducted using PlanetScope 

data. Improvement of result with the generated PlanetScope-

based models is also recommended such as assessing other 
vegetation indices and band ratios. 

 

Overall, the study recommends both Sentinel-2 and RapidEye for 

mangrove biomass prediction due to consistently high coefficient 

of determination and low RMSE values based on test and 

validation data. Through the methods employed in this study, a 

plot level and pixel-based aboveground biomass estimates can be 

generated which can aid in mangrove management and 
conservation. 
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