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ABSTRACT: 

 

Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios 

is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have 

predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been 

limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping 

system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 

2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential 

correlations with respect to the climate change drivers at a global scale. Results show that 82.97% of global cropland maximum 

NDVI witnesses an increased trend while 17.03% of that shows a decreased trend over the past three decades. The spatial 

distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping 

intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious 

upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes 

have had a measurable impact on the crop growth trend. 

 

 

1. NTRODUCTION 

Propelled by a 2.3-billion global population growth and higher 

per capita incomes anticipated through the mid-21st century, 

global demand for agricultural crops is increasing and may 

continue to witness an upward trend for decades (Godfray et al. 

2010). Food provision serves a prerequisite for the function of 

human society, and cropland where food and feed are grown is 

the central, limiting resource for food production (Kastner et al. 

2012). Thus, the crop growth situation with regard to the global 

cropland areas is sensitively correlated to the food security 

issue including the four key dimensions of food supplies: 

availability, stability, access, and utilization (Food and 

Agriculture Organization (FAO), www.fao.org). Besides, crop 

production gains can also come from intensification, such as 

increased cropping intensity, and shorter fallow periods. The 

spatiotemporal pattern change of agricultural cropping intensity 

has a direct impact on the crop production and its related food 

security issue. All these emergent and potential issues point to 

the need for comprehensive monitoring and inventorying 

efforts on the global spatiotemporal change trend of long-term 

crop growth and different cropping system distribution. 

Global crop monitoring is a long-term, large-scale complicated 

scientific project. Fortunately, satellite remote sensing has 

greatly facilitated the mapping and monitoring of croplands by 

providing spatially explicit and temporally continuous 

observations. Over the past decades, a number of studies have 

utilized remotely sensed data to extract cropland extents, 

quantify crop types, estimate crop yields, and monitor crop 

growth trend (Benedetti and Rossini 1993; Biradar et al. 2009; 

Dong et al. 2015; Fritz et al. 2010; Pittman et al. 2010; Seelan 

et al. 2003; Siebert et al. 2010). However, the majority of 

previous studies focuses on either regional/continental scales, 

or seasonal/short-term period. The long-term crop growth trend 

at a global scale is still limited, and the spatiotemporal pattern 

of global agriculture intensification is poorly characterized and 

understood. 

Being one of the top threats for the Earth in the 21st century, 

the magnitude, rate, and pattern of climate change also greatly 

impacts on agricultural productivity. Crop growth is affected by 

biophysically by meteorological variables, including rising 

temperatures, changing precipitation regimes, and increased 

atmospheric carbon dioxide levels (Parry et al. 2004). 

Biophysical effects of climate change on agricultural 

production will be positive in some agricultural systems and 

regions, and negative in others, and these effects will vary 

through spatial and temporal difference (Parry et al. 2004). 

To address the aforementioned issues, here we employed long-

term Global Inventory Modelling and Mapping Studies 

(GIMMS) dataset from 1982 to 2012 to provide a global crop 

monitoring with the following three major objectives in this 

article: (i) examine global crop growth trend over the past three 

decades; (ii) investigate spatiotemporal pattern change of 

multiple cropping system; and (iii) attribute the major drivers 

of crop growth trend within climate change scenarios. 

 

2. DATA AND METHOD 

2.1 Datasets 

The Normalized Difference Vegetation Index (NDVI), defined 

as the ratio of the difference between near-infrared and red 

visible reflectance to their sum, is a remotely sensed vegetation 

index widely used to measure vegetation greenness (Myneni et 

al. 1997; Tucker 1979). Here we used the GIMMS third 

generation biweekly NDVI dataset derived from AVHRR 

sensors (NDVI3g) with a spatial resolution of 8 km from 1982 

to 2012 (Tucker et al. 2005). This GIMMS NDVI dataset has 

been corrected to reduce the deleterious variation arising from 
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the calibration, viewing geometry and volcanic eruptions (Piao 

et al. 2011; Tucker et al. 2005), and has been widely used in 

terrestrial net primary production (NPP) estimation, vegetation 

phenology monitoring, and continental scale trends associated 

with environmental changes. The MODIS monthly global 

vegetation product dataset (MOD13C2) (Solano 2010) at a 

spatial resolution of ~5.6 km, spanning from 2000 to 2012 was 

also integrated. In order to be spatially and temporally 

comparable to the GIMMS and MODIS dataset, we acquired 

the AVHRR GLCF map at a spatial resolution of ~8 km (De 

Fries et al. 1998), which is utilized to mosaic cropland type 

from the time-series GIMMS dataset. In this way, we can 

greatly eliminate the impacts from other land cover types such 

as forests and meadows.  

The CRU TS 3.0 climate dataset including monthly 

temperature and precipitation dataset that spanning from 1982 

to 2012 was obtained from the Climate Research Unit (CRU) at 

the University of East Anglia (Mitchell and Jones 2005). This 

gridded dataset with a spatial resolution 0.5° x 0.5°, was based 

on climate observations from more than 4000 meteorological 

stations (Mitchell and Jones 2005; Wang et al. 2011). 

The Palmer Drought Severity Index (PDSI), one of the most 

commonly used drought indices, was adopted to indicate 

spatiotemporal variations of drought. The monthly PDSI 

dataset produced by Dai et al. (Dai et al. 2004) with a spatial 

resolution of 2.5° x 2.5° was used in this study, which also 

covers the entire study period (1982-2012).  

Nine major crop zones were defined for regional analysis based 

on the global digital crop maps developed by Monfreda et al. 

(Monfreda et al. 2008) The nine major crop zones selected in 

this study are Central Europe and Russia (Eur_Rus) zone, East 

China zone, North America zone, South Australia zone, 

Southeast Latin America zone, West Latin America zone, 

Southwest Africa zone, Southwest Asia zone, and West Europe 

zone. Geographic locations of each major crop zone are given 

in Figure S1. 

The statistics of main crop yields and harvested areas were 

downloaded from the FAO statistics division 

(http://faostat3.fao.org/), and the final yield of each major crop 

zone was computed through the harvested area weight-based 

average of yields in its corresponding inclusive countries. The 

inclusive countries of each major crop zone were listed in 

Table S1. 

2.2 Method 

The GIMMS dataset was first filtered by an automated 

compound smoother named RMMEH (Jin and Xu 2013) to 

efficiently reduce remaining noise and reconstruct high quality 

NDVI time-series dataset (Figure S2). A simple maximum 

value composite (MVC) method was applied to the filtered 

GIMMS data of each year to generate annual maximum NDVI 

data. 

To detect the change trend of NDVI and climate variables 

(temperature, precipitation, and drought) over the entire study 

period (1982-2012), a least-square linear regression model 

(Piao et al. 2011) was applied as follows: 

y a bt                               (1) 

where y represents annual NDVI or climate variable, t is year, a 

and b are the least-square fitted coefficients (a is the intercept 

and b is the trend slope), and ε is the residual bias. 

A double subtraction algorithm (Peng et al. 2012) was 

employed to calculate the number of peaks in the filtered 

GIMMS temporal profiles of each year (Figure S3). The 

multiple cropping index (MCI) is used to indicate the planting 

frequency and intensity.  

Climate change is regarded as one of major drivers of the crop 

productivity changes. For nine major crop zones, we applied 

the linear regression analysis between NDVI and climate 

variables to detect whether a positive or negative correlation 

exists. A p value < 0.05 was considered significant in this study. 

Because of the regular latitude/longitude grid used in this study, 

the area of grid cells varies with the latitude. The global mean 

NDVI value or climate variables are therefore calculated 

through a grid-based weighted average as follow:  
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where T is the grid-based weighted average result, ai is the grid 

area, and ti is the corresponding NDVI or climate variable 

value of the ith pixel. 

 

3. RESULTS 

3.1 Global crop growth trend over the past three decades 

The max value of annual time-series NDVI can be used to 

define the magnitude of crop productions. Higher NDVI is 

expected to be an indicator of better agricultural growth or 

productivity. Figure 1a shows the spatial distribution of global 

crop maximum NDVI trend over the past three decades (1982-

2012). A significant increased trend of crop maximum NDVI is 

observed globally. Statistically, 82.97% of global cropland 

witnesses a greener trend while 17.03% of that shows a 

yellower trend. With a zoomed major crop zone of the East 

China (Figure 1b), we can clearly identify the spatial 

distribution of greener and yellower crop growth. We further 

investigate the crop growth trend in terms of nine major crop 

zones (Figure S1). All the crop pixels of each major crop zone 

were averaged to produce the mean maximum NDVI value for 

each year. Figure 2a-b provide a visual assessment of crop 

growth trend of nine major crop zones from 1982 to 2012, 

based on the GIMMS dataset. Statistically, a significant upward 

trend of crop growth over the past three decades was observed 

for all global major crop zones, i.e., the Central Eur_Rus zone 

(R2 = 0.68, p < 0.001), East China zone (R2 = 0.24, p = 0.005), 

North America zone (R2 = 0.58, p < 0.001), South Australia 

zone (R2 = 0.29, p = 0.002), Southeast Latin America zone (R2 

= 0.73, p < 0.001), Southwest Africa zone (R2 = 0.59, p < 

0.001), Southwest Asia zone (R2 = 0.62, p < 0.001), West 

Europe zone (R2 = 0.64, p < 0.001), and West Latin America 

zone (R2 = 0.66, p < 0.001).  

 
Figure 1. Global crop maximum NDVI trend during the entire 

study period (1982-2012). (a) is the spatial distribution of 

global crop NDVI trend, and (b) is the corresponding zoomed 
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sub-region (taking the complete geographical outline of East 

China Zone for an example). The green denotes the increased 

crop growth trend while the yellow represents the decreased 

crop growth trend. The darker green/yellow is expected to be a 

higher level of corresponding increased/decreased crop growth 

trend. 

Coincident yield statistics of seven main crops from the Food 

and Agriculture Organization of the United Nations (FAO) 

were also integrated for an inter-comparison regarding each 

major crop zone. Figure 3 shows the annual yield change trend 

of main crops (i.e., barley, maize, rice, sorghum, wheat, and 

total cereals) during the entire study period 1982-2012. Visual 

inspections reveal that almost all crops witness an obvious 

upward yield trend in the nine crop zones (Figure 3a-i), and the 

corresponding statistical report in Table. S2 verifies that except 

the barley in the West Europe zone, the rice in the Southwest 

Africa zone, the sorghum in the Central Eur_Rus and North 

America zones, the Soybeans in the West Latin America and 

West Europe zones, the wheat in the South Australia and 

Southwest Africa zones, and the total cereals in the South 

Australia zone, the remaining crops’ yields in all crop zones all 

achieve significant increasing trend (p < 0.05).  

 
Figure 2. Maximum NDVI trend of nine major crop zones 

during the entire study period (1982-2012) using GIMMS 

dataset. 

 
Figure 3. Annual yield change trend of seven main crops in 

nine major crop zones. 

Further analyses are performed on annual mean NDVI (Figure 

S4a) and annual maximum NDVI (Figure S4b) change trend 

along with different latitudes, and results show that both trends 

increase significantly for geographic latitude zones with 15° 

latitude intervals from 60° N to 45° S (p < 0.05). The 

corresponding statistic reports are provided in Table S3. 

 

3.2 Spatiotemporal distribution change of multiple 

cropping system 

Multiple cropping index (MCI) defines the planting frequency 

and intensity of the crop in the same arable land in one year, it 

is a composited reflection of the natural resources, including 

the utilization ration of water, soil, photosynthesis, and 

economic requirement corresponds to agricultural cropping 

systems. Figure 4 shows the spatial distribution of multiple 

cropping system in four selected years (1982, 1992, 2002, and 

2012) with a 10-year interval. It indicates that single cropping 

system is the dominant cropping system globally, and cropping 

intensity increases gradually from areas with a higher to lower 

latitude, and for example, MCI increases from one to three 

from northern to southern China (Piao et al. 2010). The 

multiple cropping system including double or triple cropping 

system is mainly distributed in Asia (e.g., China, India, 

Thailand, Laos, and Vietnam), Southwest Africa, Southeast 

Latin America (e.g., Argentina), and Mexico. Increased crop 

intensity was observed during the past three decades in Figure 

4a-d, and to be specific, the cropland area with double cropping 

system increased from 31.79% to 49.77% globally during 

1982-2012. MCI change trend in terms of separate major crop 

zones in Figure 5 also reveals that almost all major crop zones 

witness an upward trend of average MCI change except a 

relatively stable MCI trend shown in three zones (East China in 

Figure 5b, West Latin America in Figure 5f, and Southwest 

Asia in Figure 5h).  

 
Figure 4. Spatial distribution of multiple cropping system in 

selected years from 1982 to 2012. (a)-(d) indicate the spatial 

distribution of MCI in 1982, 1992, 2002 and 2012 with a 10-

year interval, respectively. The green represents the spatial 

distribution of single cropping system, the orange represents 

that of the twice cropping system, and the dark red represents 

that of the triple cropping system. The insets show the global 

percentage of different cropping systems. 

Figure 6 illustrates the multiple cropping system percentage 

changes with respect to different latitude zones. It is quite 

interesting to identify that a significant upward trend of 

multiple cropping intensity is observed for N45°_60° (p = 

0.015), N30°_45° (p = 0.050), and N0°_15° (p = 0.011) in the 

north hemisphere (Figure 6a), S0°_15° (p = 0.012), and 

S30°_45° (p = 0.040) in the south hemisphere (Figure 6b). The 

result indicates that the spatial distribution of multiple cropping 

system is expanded from zones with a lower latitude to a higher 

latitude, and zones with a higher latitude show possible 

increased multiple cropping 

intensity.
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Figure 5. Spatial distribution of multiple cropping system in 

selected years from 1982 to 2012. (a)-(d) indicate the spatial 

distribution of MCI in 1982, 1992, 2002 and 2012 with a 10-

year interval, respectively. The green represents the spatial 

distribution of single cropping system, the orange represents 

that of the twice cropping system, and the dark red represents 

that of the triple cropping system. The insets show the global 

percentage of different cropping systems. 

 
Figure 6. Changes in the percentage of multiple cropping 

system (double or triple cropping zones) along geographic 

latitude zones with 15o latitude intervals from 60o N to 45o S 

over the past three decades. (a) Changes in percentage of 

multiple cropping system in the north hemisphere, and (b) the 

corresponding changes in the south hemisphere. In (a) and (b) 

the scatters indicate the upward trends of zones N45o_60o (p = 

0.015), N30o_45o (p = 0.050), N0o_15o (p = 0.011), S0o_15o (p 

= 0.012), and S30o_45o (p = 0.040) are statistically significant, 

while the insignificant trends are shown in zones N15o_30o (p 

= 0.797) and S15o_30o (p = 0.255). Noted that limited cropland 

is distributed above S45o, thus we only show three zones 

including S0o_15o, S15o_30o, and S30o_45o in the south 

hemisphere. 

 

3.3 Climatic drivers of the crop NDVI change trends 

Climate change is regarded as one of the major drivers of the 

vegetation or crop growth changes (Piao et al. 2011; Zhou et al. 

2001). In this study, we partially stand on the side of climatic 

driven analysis of crop growth changes. The spatial pattern of 

climate variables’ change trend during the period 1982-2012 

was provided in Figure S5, including temperature, precipitation, 

and Palmer Drought Severity Index (PDSI). Statistic results 

show that global warming is quite significantly observed in 

Figure S5a, and to be specific, 91.59% of the terrestrial surface 

witnesses an upward trend of temperature globally. 76.13% of 

the terrestrial surface is encountering increased precipitation 

while 23.87% of that is undergoing decreased precipitation 

(Figure S5b). 47.65 % of the terrestrial surface shows a more 

serious drought (Figure S5c). The statistical report of climate 

change trend in terms of individual major crop zone is 

summarized in Table S4.  

Using the linear regression analysis between NDVI and climate 

variables zone by zone in Table S5, we infer that crop NDVI is 

significantly positive correlated to the temperature for the 

Central Eur_Rus zone (p = 0.043), Southeast Latin America 

zone (p < 0.001), Southwest Africa zone (p = 0.017), 

Southwest Asia zone (p = 0.001), and West Europe zone (p = 

0.012). The remaining zones including the East China zone, 

North America zone, South Australia zone, and West Latin 

America zone do not show significant positive correlation 

between NDVI and temperature. Nevertheless, as for the South 

Australia zone and West Latin America zone, it shows that 

NDVI is significantly positive correlated to the precipitation (p 

= 0.010, and p = 0.031, respectively). The statistically 

significant correlation between NDVI and precipitation is also 

observed for Southwest Africa zone (p = 0.010), and West 

Europe zone (p = 0.046). However, insignificant relationship 

between the crop NDVI and PDSI for any specific major crop 

zone is shown in Table S5 (p > 0.05). 

4. DISCUSSION 

Due to the relative coarse spatial resolution (~8 km) of GIMMS 

data, land cover changes related to cropland (e.g., from others 

to cropland, or cropland to others) under sub-pixel resolution 

during the past three decades are neglected in this study. 

However, in spite of some inevitable cropland related land-

cover changes, the general spatial distribution of main 

croplands does not change largely over time. It is reasonable to 

utilize the AVHRR GLCF data that corresponds to the same 

spatial resolution of GIMMS data as the benchmarking map to 

mosaic the cropland boundary during the entire study period 

(1982-2012).  

Globally, trends in the GIMMS NDVI3g series compare 

favourably with trends derived from Landsat (Beck et al. 2011) 

and the Moderate Resolution Imaging Spectrometer (MODIS) 

NDVI (Fensholt and Proud 2012). Here we further designed to 

perform the inter-comparison between GIMMS NDVI3g and 

MODIS NDVI during the overlapped period (2000-2012) in 

Figure S6, aiming at the efficiency check of long-time GIMMS 

dataset in monitoring global crop growth. Figure S6a indicates 

the trend of GIMMS NDVI profile achieves an acceptable 

agreement with that of MODIS NDVI data, in spite of some 

biases in the absolute value level derived from the sensor and 

calibration differences (Fensholt and Proud 2012). When 

plotting the time-series MODIS (MODIS/Time) significant 

linear regression slope values against time-series GIMMS 

(GIMMS/Time) significant linear regression slope values for 

cropland areas at a global scale (Figure S6b), it shows clear that 

the majority of pixels have a slope value lager than 0, and the 

density scatter shows the densest proportion also falls into the 

1-to-1 areas with a high correlation between MODIS and 

GIMMS NDVI change trend.   

The human-related activities including the social-economic 

policy management, land cover changes, and urban sprawl are 

also one type of major drivers addressing the crop growth 

change. With a visual inspection of the spatial distribution of 

yellower crop growth in Figure 1, an interesting phenomenon 

can be identified that areas with a yellower crop growth are 

mainly distributed the developing countries such as China, 

Mexico, Thailand, and so on. For these countries, their 

terrestrial surfaces are experiencing an unprecedented change 

during the past three decades caused by land-use activities 

including converting natural landscapes for human use and 

changing management practices on human-dominated lands 

(Foley et al. 2005). Taking the East China zone in Figure 1b for 
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an example, the major yellow areas cluster in the Yangtze River 

delta, Pearl River Delta, and the Central China. These places 

are rapidly developing in China during the past decades, which 

results in the land reclamation at the sacrifice of croplands. On 

the other side, we only analysed the climate variables including 

temperature, precipitation, and drought, and its corresponding 

impact on crop growth in this study. In fact, some of the crop 

growth gains may also result from “Green Revolution” 

technologies, including high-yielding cultivars, chemical 

fertilizers and pesticides, and mechanization and irrigation 

(Foley et al. 2005; Matson et al. 1997). Besides, carbon dioxide 

(CO2) concentration is also another potential factor impacting 

on crop growth. Most plants growing in atmospheric CO2 

higher than ambient exhibit increased rates of photosynthesis. 

Thus, taking the impact of human activities, and more 

compound climate-derived factors into consideration at both 

global and regional scales deems to be open topics for our 

further research. 

 

5. CONCLUSIONS 

This study sought to use long-term GIMMS dataset from 1982 

to 2012 to provide the global crop monitoring in terms of crop 

growth and cropping intensity. The results show that 82.97% of 

global cropland maximum NDVI witnesses an increased trend 

while 17.03% of that shows a decreased trend over the past 

three decades. The spatial distribution of multiple cropping 

system is observed to expand from lower latitude to higher 

latitude, and the increased cropping intensity is also witnessed 

globally. In terms of regional major crop zones, results show 

that all nine selected zones have an obvious upward trend of 

crop maximum NDVI (p < 0.001), and as for climatic drivers, 

the gradual temperature and precipitation changes have had a 

measurable impact on the crop growth trend. However, no 

significant correlation between crop NDVI and drought index 

for any major crop zone is identified. 
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APPENDIX 

Supplementary Figures 

 

 
Figure S1. Geographical locations of nine major crop zones, 

and their corresponding coverage of countries. 

 

 

 
Figure S2. Schematic diagram showing the use of RMEEH to 

reduce the noise of time-series NDVI dataset. (a) one-year 

GIMMS data with a biweekly interval; and (b) one-year 

MODIS data with a monthly interval. The blue lines are 

original NDVI while the orange ones are the filtered NDVI 

using RMMEH. Results show that RMMEH efficiently reduces 

noise of NDVI time series while preserving accurate temporal 

profiles. 

 

 

 
Figure S3. Calculation of the MCI using double subtraction 

algorithm. The original NDVI data (blue lines) with 24 points 

in a complete year were first stacked in a column, then a 

dislocation phase subtraction with one temporal phase was 

applied to original time series (e.g., t2-t1, t3-t2), this produced 

a new temporal profile (green lines named as S1). For these 23 

points, the positive value was assigned with value of +1, 

whereas the negative was assigned with -1. Subsequently, a 

repeated dislocation subtraction with one temporal phase was 

applied to the previously derived profile, producing a third 

temporal sequence (orange lines named as S2) with 22 points 

and the values of the data were -2, 0 and 2. Finally, the -2 

points (red arrows) were reported as the peaks of this annual 

NDVI profile, and the total number of -2 points was nominated 

as the multiple cropping index (MCI). (a) is the MCI 

calculation flowchart of single cropping system, and (b) is that 

of double cropping system. 

 

 

 
Figure S4. Annual mean NDVI (a) and annual maximum NDVI 

(b) changes along geographic latitude zones with 15o latitude 

intervals from 60o N to 45o S over the past three decades.  
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Figure S5. Spatial distribution of climate change over the past 

three decades. (a) Annual average precipitation change trend, 

(b) Annual average temperature change trend, and (c) Annual 

average PDSI change trend. The insets show the percentage 

distribution of corresponding change trends, and the marks 

“++” and “--” represent the total percentage of increase and 

decrease trend, respectively. 

 

 

 
Figure S6. The inter-comparison of change trend between 

GIMMS NDVI3g and MODIS NDVI during the overlapped 

period (2000-2012). (a) Annual maximum and mean crop 

NDVI change trend derived from GIMMS and MODIS datasets; 

and (b) Density scatterplot (global) of regression slope values 

from linear regression trend analysis of annual maximum 

MODIS NDVI and time period 2000-2012 against that of 

annual GIMMS NDVI and time period 2000-2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Tables 

 
Crop zone Inclusive countries 

Central Eur_Rus Armenia, Azerbaijan, Georgia, Russia, Turkey 

East China China, Mongolia 

North America Canada, United States 

South Australia Australia, New Zealand 

Southeast Latin 

America 

Argentina, Brazil, Uruguay  

West Latin America Bolivia, Colombia, Ecuador, Peru, Venezuela 

Southwest Africa Angola, Benin, Cameroon, Congo, Equatorial Guinea, Gabon, Ghana, Guinea, Liberia, 

Nigeria, Sierra Leone, Togo 

Southwest Asia Afghanistan, Bangladesh, Cambodia, India, Malaysia, Myanmar, Nepal, Pakistan, Sri 

Lanka, Thailand 

West Europe Albania, Andorra, Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Morocco, Netherlands, Poland, Portugal, Romania, Slovakia, Spain, 

Switzerland, Ukraine, United Kingdom, Yugoslav 

Table S1. The inclusive countries list of nine major crop zones. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-3-45-2018 | © Authors 2018. CC BY 4.0 License.

 
51



 

 
  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ 

Barley R2 0.539 0.612 0.500 0.171 0.770 0.341 - 0.879 0.011 

p 0.000 0.000 0.000 0.021 0.000 0.000 - 0.000 0.575 

Maize R2 0.686 0.840 0.646 0.756 0.931 0.890 0.846 0.897 0.551 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Rice R2 0.942 0.899 0.894 0.383 0.953 0.822 0.033 0.975 0.843 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.325 0.000 0.000 

Sorghum R2 0.014 0.327 0.003 0.473 0.359 0.090 0.238 0.355 0.376 

p 0.613 0.001 0.777 0.000 0.000 0.100 0.005 0.000 0.000 

Soybeans R2 0.667 0.614 0.707 0.293 0.801 0.045 0.866 0.568 0.020 

p 0.000 0.000 0.000 0.002 0.000 0.249 0.000 0.000 0.446 

Wheat R2 0.571 0.948 0.653 0.075 0.719 0.544 0.038 0.948 0.369 

p 0.000 0.000 0.000 0.137 0.000 0.000 0.290 0.000 0.000 

Total cereals R2 0.706 0.964 0.843 0.114 0.939 0.911 0.599 0.984 0.430 

p 0.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.000 

Table S2. The statistic report of the seven crops’ yield change trend in nine major crop zones from 1982 to 2012. Note that the 

Central Eur_Res zone is analyzed during 1992-2012 owing to the FAO’s data availability. 

 

 

 

  N45_60 N30_45 N15_30 N0_15 S0_15 S15_30 S30_45 N45_60 

Mean NDVI R2 0.227 0.476 0.283 0.440 0.122 0.113 0.048 0.227 

p 0.006 0.000 0.002 0.000 0.054 0.064 0.235 0.006 

Max NDVI R2 0.641 0.645 0.444 0.649 0.519 0.684 0.572 0.641 

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table S3. The Statistic report of annual mean and maximum NDVI across the geographic latitude zones with a 150 interval. 

 

 

  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ 

Temperature R2 0.242 0.190 0.219 0.138 0.595 0.001 0.150 0.538 0.342 

p 0.005 0.014 0.008 0.039 0.000 0.898 0.031 0.000 0.001 

Precipitation R2 0.019 0.012 0.048 0.009 0.007 0.164 0.164 0.078 0.112 

p 0.460 0.561 0.239 0.620 0.652 0.024 0.024 0.129 0.066 

PDSI R2 0.022 0.352 0.078 0.096 0.198 0.033 0.000 0.018 0.001 

p 0.426 0.000 0.127 0.090 0.012 0.325 0.964 0.474 0.888 

Table S4. The statistical report of climate change trend in terms of nine major crop zones. Where ①~⑨ represent the Central 

Eur_Rus zone, East China zone, North America zone, South Australia zone, Southeast Latin America zone, West Latin America zone, 

Southwest Africa zone, Southwest Asia zone, and West Europe zone, respectively. 

 

 

  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ 

Temperature R2 0.134 0.001 0.054 0.068 0.377 0.002 0.180 0.307 0.197 

p 0.041 0.931 0.207 0.157 0.000 0.798 0.017 0.001 0.012 

Precipitation R2 0.014 0.028 0.016 0.208 0.014 0.151 0.210 0.107 0.130 

p 0.527 0.368 0.501 0.010 0.531 0.031 0.010 0.072 0.045 

PDSI R2 0.019 0.020 0.005 0.087 0.075 0.017 0.054 0.003 0.023 

p 0.459 0.454 0.708 0.108 0.136 0.488 0.207 0.764 0.416 

Table S5. The statistical report of the correlation between NDVI and climate variables in terms of nine major crop zones. where ①~

⑨ represent the Central Eur_Rus zone, East China zone, North America zone, South Australia zone, Southeast Latin America zone, 

West Latin America zone, Southwest Africa zone, Southwest Asia zone, and West Europe zone, respectively. 
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