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ABSTRACT: 
 
The principle of exponent Knothe model was introduced in detail and the variation process of mining subsidence with time was 
analysed based on the formulas of subsidence, subsidence velocity and subsidence acceleration in the paper. Five scenes of radar 
images and six levelling measurements were collected to extract ground deformation characteristics in one coal mining area in this 
study. Then the unknown parameters of exponent Knothe model were estimated by combined levelling data with deformation 
information along the line of sight obtained by InSAR technique. By compared the fitting and prediction results obtained by InSAR 
and levelling with that obtained only by levelling, it was shown that the accuracy of fitting and prediction combined with InSAR and 
levelling was obviously better than the other that. Therefore, the InSAR measurements can significantly improve the fitting and 
prediction accuracy of exponent Knothe model. 
 
 

                                                                 
*  Lei Chen, cl_cumtb@hotmail.com 
 

1. INTRODUCTION 

Underground mining can induce the ground deformation and 
destroy the buildings, roads, farmlands and other infrastructures 
(Zhang et al, 2015). Therefore, it is necessary to subsidence 
prediction in the mining area for preventing the loss of life and 
property, and analysing the subsidence damages.  
 
Mining-induced subsidence is a very complicated process and 
the subsidence process is mainly divided into three phases: 
initial subsidence, main subsidence and residual subsidence 
(Gao et al, 2009; Liu et al, 2010). Now a lot of empirical 
models and influence function models are used to predict the 
mining-induced subsidence, for example, Probability Integral 
Method (Wang et al, 2012; Guo et al, 2014), Logistic model 
(Zhang et al, 2009; Xi et al, 2013), Knothe model (Gao et al, 
2009; Hu et al, 2011; Lian et al, 2011), and so on. Among these 
methods, Knothe model is one of the most widely used models 
in predicting ground subsidence in every surface point of 
workface in the coal mining area (Cui et al, 2001; Hu et al, 
2011; Zhang and Liu, 2012). However, the deformation curve 
of subsidence velocity and acceleration is inconsistent with 
actual mining process (Han et al, 2012; Zhang et al, 2016). To 
overcome the shortage of Knothe model, segment Knothe 
model and exponent Knothe model are presented by some 
researchers (Shen et al, 2016; Chen et al, 2017). Assuming the 
middle moment is the moment of maximum subsidence velocity 
in segment Knothe model, but the expression is unreasonable to 
describe the process of actual mining subsidence (Zhang and 
Cui, 2017). Exponent Knothe model not only fits well with the 
curve of mining subsidence, but also with the formulas of 
subsidence velocity and acceleration (Liu et al, 2010).  

 
Many researches have applied some traditional deformation 
monitoring techniques, combined with some subsidence models 
to estimate and predict subsidence information in the mining 
areas (Cui et al, 2001; Wang et al, 2012; Xi et al, 2013; Guo et 
al, 2014). Traditional mining-induced subsidence monitoring 
methods are usually divided into two kinds: levelling and 
Global Position System (GPS). The deformation characteristics 
of sparse points are achieved in levelling or GPS monitoring 
and a large number of sparse point sets need to be installed to 
retrieve the continuous surface deformation of wide study areas 
(Colesanti et al, 2005). Therefore, they need more timing 
consuming, more labor, higher cost and hardly get the surface 
deformation information of wide areas (Du et al, 2007; Cuenca 
et al, 2013).Interferometric synthetic aperture radar (InSAR) is 
a powerful technology that widely used in obtaining high 
precise digital elevation model and surface deformation 
characteristics of wide areas along the line of sight (LOS) 
(Zebker and Goldstein, 1986). And underground mining often 
introduces the large gradient deformation for a short time, such 
as one day or two days. However, the revisit cycle of SAR radar 
is fixed and we hardly get enough images according to the 
experiment requirements. 
 
Based on above-mentioned literatures, mining-induced 
subsidence prediction was analysed by exponent Knothe model, 
combined with the advantage of InSAR and levelling in this 
paper. We collected six levelling measurements and five radar 
images to estimate the unknown parameters of exponent Knothe 
model. The accuracy of fitting and prediction of exponent 
Knothe model was further verified by comparing the fitting and 
prediction results with the measured data. Finally, by compared 
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the fitting and prediction results obtained by InSAR and 
levelling with that obtained only by levelling, the effect of 
InSAR technique on the fitting and prediction accuracy of 
exponent Knothe model was analysed in detail.  
 

2. EXPONENT KNOTHE MODEL 

2.1 Principle of Knothe Model 

Knothe model is one of the most widely used to predict mining-
induced subsidence and suppose that the speed of subsidence 

( )dw t
dt

 at the moment t  is proportional to the difference 

between the final maximum subsidence mw  and the subsidence 
value ( )w t  at the moment t  (Cui et al, 2001; Hu et al, 2011): 
 

 ( ) ( )( )m

dw t
c w w t

dt
= −                             (1)              

 
where c is time influence coefficient related to the mechanical 
properties and mining condition. 
 

According to the boundary condition at initial moment, the 
equation (1) can be transformed to the expression of subsidence 
value in the Knothe model:  
 

 ( ) ( )1 ct
mw t w e−= −                                (2)              

 
To research the surface subsidence process expressed by Knothe 
model, the subsidence velocity ( )v t  and acceleration ( )a t  over 
time can be described respectively as follows: 
 

 ( ) ct
mv t cw e−=                                   (3)               

 
 ( ) 2 ct

ma t c w e−= −                                (4)               
 
Suppose that mw = -1, t = 0  500 and c = 0.025, the 
relationship curve between surface subsidence value ( )w t , 
subsidence velocity ( )v t  and subsidence acceleration ( )a t  with 
time t  are constructed and shown in Figure 1.  

 

w(t) v(t) a(t)

 
Figure 1. The surface subsidence, subsidence velocity and subsidence acceleration curve of Knothe model 

 
As shown in Figure 1, the subsidence velocity and acceleration 
at the initial moment are not zero, so the subsidence curve 
expressed by Knothe model is not agreement with the actual 
process of coal mining subsidence.  
 
2.2 Principle of Exponent Knothe Model 

Exponent Knothe model is by adding a parameter to Knothe 
model and expressed as follows (Liu et al, 2010): 
 

  ( ) ( )1
kct

mw t w e−= −                              (5)              
 
where k  is the fitting parameter. 
 

To research the surface subsidence process expressed by 
exponent Knothe model, the curve formulas of subsidence 
velocity ( )v t  and acceleration ( )a t  are described respectively 
as follows:  
 

 ( ) ( ) 1
1

kct ct
mv t w kce e

−− −= −                        (6)              
 

 ( ) ( ) ( ) ( )1 22 2 21 1 1
k kct ct ct ct

ma t w kc e e k k c e e
− −− − − − = − − + − −  

  (7)     

 
Suppose that mw = -1, t = 0 500, c = 0.025 and k = 20, the 
relationship curve between surface subsidence value ( )w t , 
subsidence velocity ( )v t  and subsidence acceleration ( )a t  with 
time t  are shown in Figure 2.  

 

w(t) v(t) a(t)

 
Figure 2. The surface subsidence, subsidence velocity and subsidence acceleration curve of exponent Knothe model 
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It is shown that the deformation curve of exponent Knothe 
model can be well fitted with the actual mining process and the 
model are widely used to predict mining induced subsidence. 
Furthermore, only three unknown parameters are needed to be 
estimated to analysis mining-induced subsidence characteristics 
in reality (Liu et al, 2010). 
 

3. METHODOLOGY 

The block diagram of the used method in the paper was shown 
in Figure 3. The deformation information along LOS was 
obtained by D-InSAR technique and transformed to subsidence 
values. The time series subsidence information of every 
levelling point was extracted combined with D-InSAR results 
and levelling measurements. The unknown parameters of 
exponent Knothe model were estimated by time series 
subsidence of every levelling point and the effect of InSAR 
results on the fitting and prediction accuracy was analysed by 
comparing the estimated values using InSAR and levelling with 
that only using levelling measurements.  
 

SAR images

Surface deformation

Leveling 
measurements

Time series subsidence 
in leveling points

Unknown parameters estimation 
of exponent Knothe model

Compare the fitted and predicted results 
with the measured results

 
Figure 3. The block diagram of the used method 

 
One image was selected as the reference image based on the 
principle of minimum sum of temporal, spatial and doppler 
baseline (Berardino et al., 2002) and other images were co-
registered to the master image. Four interferograms were 
generated by two adjacent co-registered images and the external 
DEM was selected to remove the effect of topography phase in 
the interferograms. Now the traditional D-InSAR technique had 
been widely used to achieve the ground deformation induced by 
coal mining (Dong et al, 2013; Yerro et al, 2014), so we applied 
the D-InSAR technique to obtain the ground deformation along 
the line of sight of study area in the paper. 
 
Subsidence was the main deformation component induced by 
underground mining and we neglected the horizontal 
deformation component in this paper (Yang et al, 2015, 2016). 
The deformation along line of sight (LOS) LOSd  obtained by 
InSAR technique was transformed to the subsidence value w  as 
follows:  
 

 
cos

LOSdw
θ

=                                        (8)                

 
where θ  is the incidence angle of radar images.  
 
Because of the difference between the date of levelling and 
SAR measurements, the least square fitting algorithm was 
applied to achieve the subsidence value in the levelling points 

on the time of SAR images acquisition. Suppose that we 
collected M InSAR observations SAR

Md  and N levelling 

measurements level
Nd , and the levelling measurements were 

interpolated to the date of SAR imaging level
Md . The average 

subsidence value of SAR
Md  and level

Md  was regarded as the 
subsidence value at the date of SAR imaging Md  and the time 
series subsidence information of levelling points M Nd +  was 

obtained by combined Md  with level
Nd .  

 
The unknown parameters of exponent Knothe model were 
estimated based on InSAR with levelling M Nd + , and only on 

levelling level
Nd , respectively. The fitted subsidence values can be 

obtained by the fitted curve and the dynamic subsidence values 
in different levelling points can be predicted by the fitted 
exponent Knothe model. Finally, the fitting and prediction 
accuracy was analysed by comparing the fitted data and 
predicted data with the measured data. The impact of InSAR 
observations on the accuracy of exponent Knothe model was 
further investigated.  
 

4. STUDY AREA AND DATA 

One mining workface was selected as the study area, which is 
located in Huainan, Anhui province. The average mining depth 
is about 802 m and the average mining thickness is about 2.7 m. 
The length of workface along strike direction is about 1150 m 
and the length along dip direction is about 260 m. The direction 
of extraction is from west to east, the extraction time is about 
during from March 2012 to March 2013 and the average 
advancing rate is about 4 m/d. The study area is covered with 
farmlands, roads, rivers and some infrastructures (Dong et al, 
2013, 2015; Zhang et al, 2015a, 2015b).  
 
To minimize the effect of farmlands or vegetation on the 
interferometric phases, we collected five scenes of C-band 
ascending Radarsat-2 images acquired in winter with a spatial 
pixel spacing of 2.66 m in the range and 2.50 m in the azimuth. 
The acquired SAR images spanned from December 2012 to 
April 2013. The SAR amplitude map of study area located in 
WGS 84 is shown in Figure 4 and the coverage of workface is 
denoted by black rectangle. The external DEM used to remove 
the topography phase of the interferograms was the SRTM 
DEM with 30 m resolution.  
 

 
Figure 4. The amplitude map of study area 

 
We collected six levelling measurements from March 2012 to 
January 2013 and the monitoring result obtained on March 2, 
2012 was known as the initial reference data without 
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deformation. The date of levelling measurements and SAR 
imaging was shown in Table 1. To validate the accuracy of 
fitting and prediction of exponent Knothe model, six levelling 
points A, B, C, D, E and F along the strike direction, denoted by 
black star in Figure 4, were selected to analysis the deformation 
characteristics. During SAR imaging acquisition, points A and 
B were in the phase of residual subsidence, points C and D were 
in the phase of main and residual subsidence, points E and F 
were in the phase of main subsidence.  
 

Way of monitoring Date 

Levelling measurement 

20120302 
20120503 
20120604 
20120905 
20121027 
20130112 

SAR observation 

20121205 
20130122 
20130215 
20130311 
20130404 

Table 1. The date of levelling and SAR imaging 

 
5. RESULTS AND ANALYSIS 

5.1 Interferometric Results Analysis 

The image acquired on December 5, 2012 was selected as the 
master image and other four images were co-registered to the 
common image. Four interferometric pairs were generated by 
two adjacent co-registered images and their parameters were 
shown in Table 2.  
 

ID Master Slave Baseline /m Time /d 
1 
2 
3 
4 

20121205 
20130122 
20130215 
20130311 

20130122 
20130215 
20130311 
20130404 

137.661 
141.815 
81.824 
30.404 

48 
24 
24 
24 

Table 2. Parameters of interferometric pairs 

 
In order to research the main reason of ground deformation, the 
consistency between the deformation range and the location of 
workface was analysed. Then four scenes of differential 
interferograms generated by D-InSAR technique were shown in 
Figure 5, the coverage of workface is denoted by black 
rectangle and the centre of subsidence is denoted by black star. 
It is shown that the deformation range of study area was 
consistent with the location of workface, so the deformation was 
mainly induced by coal mining. Furthermore, the centres of 
interferometric fringe denoted by black star were moved from 
west to east as the direction of extraction.  
 
The relative ground deformation characteristics along the line of 
sight (LOS) between two adjacent SAR images obtained by D-
InSAR technique were shown in Figure 6. The maximum 
deformation of each time period was about -0.25 m, -0.21m, -
0.15 m and -0.05 m, respectively. The maximum subsidence 
was happened during December 2012 and January 2013, the 
minimum subsidence was happened during March 2013 and 
April 2013 because of the end of extraction. 
 

 20130215--20130311  20130311--20130404

 20130122--20130215 20121205--20130122

0

2π

 
Figure 5. The differential interferograms of study area  

 

 20121205--20130122  20130122--20130215

 20130215--20130311  20130311--20130404

0

-0.25
 

Figure 6. The ground deformation of four interferometric pairs 
(Unit: m) 

 
5.2 Fitting Accuracy Analysis 

To analysis the fitting accuracy of exponent Knothe model, the 
unknown parameters in six levelling points were estimated by 
combined levelling with InSAR, and only by levelling, 
respectively. The unknown parameters values in six points were 
shown in Table 3.  
 

Point Measurement mw /m c  k  

A Levelling and SAR 0.474 0.021 7.679 
Levelling 0.467 0.023 8.757 

B Levelling and SAR 0.598 0.022 8.969 
Levelling 0.589 0.024 10.325 

C Levelling and SAR 0.825 0.019 91.704 
Levelling 1.042 0.013 30.768 

D Levelling and SAR 0.792 0.017 90.664 
Levelling 1.458 0.009 18.142 

E Levelling and SAR 0.432 0.019 269.32 
Levelling 234.36 0.002 2.891 

F Levelling and SAR 0.332 0.019 265.52 
Levelling 154.37 0.002 2.763 

Table 3. The unknown parameters values in six points 

 
The unknown parameters of exponent Knothe model estimated 
by combining levelling with InSAR were obviously different 
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from the parameters obtained only by levelling, especially in 
points E and F. Among them, the parameters obtained only by 
levelling in points E and F were obviously two sets of abnormal 
values, the difference between parameters obtained by levelling 
and InSAR with that only by levelling in points C and D were 
much bigger than the difference in points A and B.  
 
To better compare the fitting and prediction accuracy of 
exponent Knothe model, the fitted curves and measured data in 
points A, B, C, D, E and F were shown in Figure 7.  
 

A B

C D

E F

 
Figure 7. The fitted curves and levelling in six points  

 
As can be seen from Figure 7, the difference between the fitted 
curve obtained by levelling and InSAR with the curve only by 
levelling was much less in points A and B than that in other 
four points. The time of levelling was basically covered with 
three phase of mining-induced subsidence in points A and B, 
however, the levelling covered with the phase of initial and 
main subsidence in points C and D, the levelling data only 
covered with initial subsidence in points E and F. Therefore, the 
improvement of fitting accuracy was related to the InSAR data 
and the high precision fitting curve can be obtained by 
combining levelling measurements and InSAR observations. 
 
In conclusion, the fitting accuracy obtained by levelling and 
SAR was obviously better than that only by levelling 
measurements. Therefore, InSAR observations can be important 
for improving the fitting accuracy of exponent Knothe model.  
 
5.3 Prediction Accuracy Analysis 

To analysis the prediction accuracy of exponent Knothe model, 
the subsidence values at five different moments were collected 
to verify the difference between the predicted data and 
measured data. The predicted data at five moments achieved by 
above estimated fitted curve and the levelling measurements at 
same moments were shown in Figure 8. 
 

BA

C D

E F

 
Figure 8. The fitted curve and levelling at five moments 

 
As shown in Figure 8, the error between the predicted data 
obtained by the red curve with the measured data was obviously 
less than that by the green curve. And the initial subsidence was 
not zero in points E and F because of the coal mining extraction 
of advancing positions.  
 
To analysis the prediction accuracy of exponent Knothe model 
quantitatively, the mean errors were calculated between the 
predicted data with the measured data in six points, which were 
shown in Figure 4. The mean errors obtained by levelling and 
SAR in points A, B, C and D were less than the values obtained 
only by levelling. The mean errors obtained by levelling and 
SAR in points E and F were bigger than that only by levelling, 
but the subsidence curve fitted only by levelling was not fit with 
the actual mining subsidence process and it was meaningless to 
compare with the errors.  
 

Point Measurement Mean error /m 

A Levelling and SAR 0.0076 
Levelling 0.0100 

B Levelling and SAR 0.0062 
Levelling 0.0079 

C Levelling and SAR 0.0146 
Levelling 0.0311 

D Levelling and SAR 0.0153 
Levelling 0.0364 

E Levelling and SAR 0.0148 
Levelling 0.0118 

F Levelling and SAR 0.0121 
Levelling 0.0105 

Table 4. The mean error values in six points 

 
Above all, the prediction accuracy obtained by levelling and 
InSAR was obviously better than that only by levelling. So, 
InSAR measurements were effective for improving the 
prediction accuracy of exponent Knothe model.  
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6. CONCLUSIONS 

In this paper, we successfully obtained the unknown parameters 
of exponent Knothe model and predicted subsidence value at 
different moments in the mining workface by combining InSAR 
results with levelling measurements.  
 
Compared the fitting and prediction accuracy estimated by 
InSAR and levelling with only by levelling, it was shown that 
the accuracy obtained by InSAR and levelling was obviously 
better than the other one. Therefore, InSAR observations were 
contribute to improving the fitting and prediction accuracy of 
exponent Knothe model. However, the number of feature points 
used to validate the fitting and prediction accuracy of exponent 
Knothe model in this study was limited and more points were 
needed to further verify the accuracy later.  
 
In the future, more different mining-induced subsidence models 
and radar images with higher resolution will be applied to 
extract more accurate ground subsidence information in coal 
mining areas.  
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