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ABSTRACT: 
 

Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme 
weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. 
A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have 
been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine 
conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to 
leverage past conditions to predict TC rapid intensifications. 
 

 
1. INTRODUCATION 

 
 

Tropical cyclones (TCs), as one of the most dangerous natural 
disasters, threaten life and health of human beings and cause 
enormous economic loss. If the TC intensity can be predicted 
accurately, the potential damage caused by these storms can be 
significantly reduced. However, TC intensity forecasting, 
especially rapid intensification (RI), remains a challenge 
(DeMaria 1996, Rappaport et al. 2009, Yang 2016) because 
multiple factors control TC intensify changes. As defined, TC 
intensity is measured by the maximum wind.  A TC undergoes 
RI if its intensity has increased at least 30 knots (15.4 m/s) over 
the past 24 hours (Kaplan and DeMaria 2003). A lot of studies 
have been conducted to learn factors favorable to TC rapid 
intensifications (DeMaria, Knaff and Sampson 2007).Those 
factors include but not limited to warm ocean eddies (Hong et 
al. 2000), the contraction of an outer eyewall (Lee and Bell 
2007), an environment with low vertical shear (Frank and 
Ritchie 2001) interactions between the upper-level trough and a 
TC (DeMaria 1996). 
  
Traditional statistical analysis methods usually focus on only 
one type of factors to find the relationship between TC intensity 
changes and the selected factors. Those factors fall into three 
main categories: ocean characteristics, inner-core processes, and 
environmental interactions (Yang, Tang and Kafatos 2007). 
Holliday and Thompson (Holliday and Thompson 1979) found 
that a deep layer of warm water, the development at night time, 
and a small eye size were favorable for northwest Pacific RI 
typhoons. This kind of method is know -to-

-to-
community to discover hidden relationships in vast amount of 
data.  Yang et al. (Yang et al. 2007) leveraged the associations 
rule technique to automatically examine all possible 
combinations of frequent condition set to detect multiple 
conditions that may lead to RI. For example, for the whole 
Atlantic hurricanes across 1980 to 2003, Yang et al. (2007) 
discovered a combination related to high RIP is (LAT = H, LON 
= L, PD12 = H, POT = H, PSLV = H, REFC = L). However, to 
apply association rule to analysis intensity change, TC 
parameter values should be converted from real number to 

binary ranges at first. Much information is lost during this process 
that the mined results can only illuminate TC intensity changes 
but cannot be directly used for TC intensity prediction.  
  
As one of the most useful data mining techniques, neural network 
has been significantly improved in recent years. Deep learning 
(LeCun, Bengio and Hinton 2015), also known as deep structured 
learning, is proposed to improve performance of neural network 
and has been widely used in multiple research areas, such as image 
processing and object detection. Different network architectures 
are designed to address certain kind of problem, in which Long-
Short Term-Memory (LSTM) model can predict value based on 
history information (Hochreiter and Schmidhuber 1997). The 
LSTM model inspires us to do a research that predict TC intensity 
changes based on parameters values of past hours. The goal of this 
study is to use the LSTM network to explore multiple geophysical 
characteristics that are associated with rapidly intensifying TCs.  
 
The outline of this paper is as follows. In section 2, the datasets 
for this study and the LSTM model are introduced. Section 3 
discusses data preprocessing method and strategies to overcome 
the imbalanced data problem. Section 4 describes the experiments 
of studies of rapid intensification. Section 5 discusses the potential 
improvement of the learning result for TC intensity change. 
 
 

2. DATA AND METHOD 
 

2.1 Data set 
 

SHIPS (DeMaria and Kaplan 1994) database is chosen for this 
study as it contains most well-known environmental predictors 
relevant to TC intensity changes, such as Reynolds SST (sea 
surface temperature), SLP (sea level pressure). These predictor 
values are from reanalysis fields as well as satellite derived 
variable values and stored as a text file in ASCII format. TCs are 
listed in temporal sequences in the file and each TC consists of 
multiple lines that each line stores values of a certain parameter 
(variable, feature, or attribute) during the storm life span. 47 
predictor values are recorded up to 120 hours from the initial time 
of storm at 6 hour intervals. Figure 1 shows part of records of 
Hurricane ALBE happened on July 02, 1982 in the text file. In our 
study, TCs happened during 1982 to 2013 are selected for study. 
 
2.2 Long short-term memory network * Corresponding author 
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Recurrent neural network (RNN) is a class of artificial neural 
network designed to process sequential input (Graves 2012). In 
a traditional neural network, all inputs are assumed independent 
of each other, but for some tasks, traditional neural network 
cannot make full use of valuable information. For example, to 
predict the next word in a sentence, multiple words come before 
it provides useful hints. To predict the number of passengers of 
an airport in the following months, passenger information in the 
past months are good references.  RNN is designed to address 
such problems. It is called recurrent because the same function 
is performed on every element in the sequential input.  RNNs 
are supposed to have memory as the networks capture all the 
information that has been calculated so far. In theory, RNNs can 
make use of all information in the sequence, but, in practice they 
are limited to looking back only a few steps because traditional 
RNNs are trained using Backpropagation Through Time (BPTT) 
which is simple but causes the vanishing gradient problem 
(Pascanu, Mikolov and Bengio 2013).  The bad effect of 
vanishing gradient is that long memory cannot be utilized for 
prediction. The Long Short-Term Memory (LSTM) network 
(Schmidhuber 2015), as a special type of RNN, improved 
traditional RNN by introducing cell state to keep memory and 
overcome the vanishing gradient problem. Fundamentally, 
LSTM does not have different architecture from RNN, but it 
computes the hidden state with three types of gate, which are 
input gate, forget gate and update gate. Those gates work 
together to decide what to keep in and erase from memory.  

nput 

update layer creates an update to the cell state. It turns out that 
LSTM network are very efficient at utilizing long-term 
dependencies. 

 

 
Figure 1. SHIPS data. 

 
 

 
3. DATA PROCESSING 

 
3.1 Convert TCs in SHIPS database to RI/Non-RI cases   
 
As described in the data set part, each TC in the SHIPS database 
consists of multiple lines and each line records one 
environmental parameter or TC attribute during the life span of 
storm. In order to predict TC rapid intensity change, those lines 
should be converted to multiple records and each record contains 
environmental parameters and TC attributes in a time step. 
According to the definition of RI, if the maximum wind 
increased more than 30 knots (15.4 m/s) over the past 24 hours 
(Kaplan and DeMaria 2003), the record is marked as RI case, 
otherwise, it is labeled UNRI. 
 

Most previous studies worked on mining pattern from parameters 
at a time step for prediction. In order to leverage LSTM network 
to predict rapid intensifications based on predictors in several past 
time steps, SHIPS files should be further processed to TC intensity 
cases. A threshold T is predefined, and for each record of a TC, 
the record and its previous T time steps records are combined as a 
TC intensity case. If the selected record is a RI record, the TC 
intensity case is marked as RI, vice versa. Importantly, since some 
predictors values are missing in the SHIPS file, for each TC, those 
values should be interpolated using mean value. 
 
3.2 Unbalanced data 
 
After preprocessing, the number of RI cases are much less than 
that of UNRI cases. If these cases are used to train a classification 
model directly, take binary classification for example, a model fit 
the train data would assign all data to the majority class to achieve 
higher accuracy. The reason is that accuracy is measured by the 
number of cases with the accurate labels divided by the total 
number of cases. If the dataset is highly imbalanced, the accuracy 
would be higher if all cases are assigned to the majority class. 
However, in such case for the minority class, the accuracy would 
be zero. It is known as a class imbalanced problem (Li, Liu and 
Hu 2010).  Nevertheless, detecting minority class plays an 
important role in most situations, such as fraud transaction 
detection, crawler detection and RI prediction in our study. 
  
A lot of methods has been proposed to solve the imbalanced class 
problem (He and Garcia 2009). They fall into two main 
approaches, including data-based approaches and model-fit 
approaches.  In Data-based approaches, either majority train data 
can be undersampled or minority data can be oversampled 
(Ganganwar 2012). Undersampling means reducing majority 
class in the train data. It works well when a large amount of train 
data is available, or it causes the learner missing valuable 
information. In our study, we only have 9401 UNRI cases and 462 
RI cases in total, it is unsuitable to apply undersampling to balance 
train data. Oppositely, oversampling works by enlarging minority 
class in the train data but it increases the risk of overfitting. 
Multiple methods have been proposed to solve the imbalanced 
problem. One of them is EasyEnsemble, in which the majority 
class are independently sampled to generate several subsets and 
then these subsets are combined with all the minority class data to 
train multiple classifier for classification. 
  
Model fitting approaches modify component in the learning 
algorithm to overcome the bad effect of imbalanced data 
(Ganganwar 2012).  For example, loss function calculates the 
difference between predicted value and the true value. The more 
difference between predict value and true value, the more loss 
caused by the trained model.  Loss function is used to adjust 
parameter weighs to improve the accuracy or other metric.  One 
method is applying class-specific weights in the loss function, that 
is assigning larger weight to the minority class. Binary 
classification can also be changed to a one class classifier 
problem, learning the boundary for one class and treating the other 
class as outliers. In our case, RI cases can be viewed as outliers. 
  
In this study, TC RI and UNRI cases are balanced by assigning 
larger class weight to RI class. To assign an initial value of class 
weights, class ratios in the train data is chosen as the weight. If the 
number of RI and UNRI cases are m and n and the class weight of 
UNRI is 1, the initial class weight of RI would be n/m. Then the 
weight could be increased or decreased slightly to train multiple 
classifiers. The one with the best performance on the test data is 
chosen as the final classifier. 
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4. EXPERIMENTS 
 

4.1 Workflow and Metrics 
 

In the data preparation step, the original 1982-2013 SHIPS data 
records 169 TCs in total. Missing parameter values are 
complemented by the open source software ski-learn. Then 
those TCs are converted to 462 RI and 9401 UNRI cases, 70% 
of which are chosen as train data and the left are test data.  The 
deep learning library Keras (https://github.com/fchollet/keras) is 
used to train a LSTM network to predict RI. 

 
To evaluate the performance of trained model, in addition to 
accuracy, two custom metrics, POD (Probability Of Detection) 
and FAR (False Alarm Ratio),  are introduced to compare the 
predict values and true values. These two metrics are widely 
used in atmosphere science and the definitions by Wilks (Wilks 
1995) are as follows: 
 
POD: the ratio of warned events to total events. 
FAR: the ratio of warnings without an event to total warnings 
 
Accuracy is the difference between predicted values and true 
values. It gives a general idea about learner performance. The 
range of POD and FAR is 0 to 1, the larger POD is, the better a 
learner is. The larger FAR is, the worse a learn is.  
 
Table 1 lists four outcomes for evaluating learner performance. 
The combination of them can be used to calculate accuracy, 
POD and FAR shown in following equations. 
 

             True 
Perdition 

RI UNRI 

RI True Positive 
(TP) 

False Positive (FP) 

UNRI False Negative 
(FN) 

True Negative 
(TN) 

Table 1. Confusion matrix. 
 

                       (1) 

 

                               (2) 

 

                                (3) 

 
 

4.2 Learn from imbalanced data 
 

In this experiment, train data are directly learned by the LSTM 
model without assigning different weights to RI and UNRI class. 
Figures 2 and 3 shows the evaluation result of test data. The 
accuracy of total cases is higher than 0.95. However, all the RI 
cases are classified as UNRI class. POD is 0 since none of RI 
cases are predicted accurately by the model. It seems good that 
far is zero, but besides FP is equal to 0, TP is also 0. 
 

 
Figure 2. Accuracy of all cases and RI cases.  

 
  

 
 Figure 3. POD and FAR of all cases.  
 

 
4.3 Assign different class weights to RI/UNRI class 

The network structure is same as that created in experiment 1. The 
only difference is that the imbalanced data problem is token into 
account in this model. The class weights of UNRI and RI are set to 
1 and 20.37 separately according to the number of RI cases in the 
train data. Although accuracy of total cases decrease, the accuracy 
of RI cases is significantly improved (Figure 4). However, POD 
value (0.07) is too small and FAR value (0.94) is too large since 
many UNRI cases are predicted as RI class in the learned model 
(Figure 5). 
 

 
Figure 4. Accuracy of all cases and RI cases. 
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 Figure 5. POD and FAR of all cases. 

 
  

4.4 Adjust class weights of RI/UNRI class 
  
Based on the initial class weights set in experiment 1 and 2, the 
weight of UNRI class is set to 1 and RI class weight is adjusted 
from 1 to 29. As the increase of RI weight, total accuracy 
decreases from 1 to nearly 0.5, but the accuracy of RI prediction 
increase from 0 to almost 1. Furthermore, FAR increases 
significantly as POD increases. Although most RI event can be 
predicted but quite a large number of RI warning are wrong.  
From figure 6 and 7, when RI class weight is set to 11, there is a 
trad-off between accuracy, FAR and POD. However, the FAR is 
also relatively too large to meet the goal set by NOAA (Gall et 
al. 2013).  
 

 
Figure 6. Accuracy of all cases and RI cases. 
 
 

 
 Figure 7. POD and FAR of all cases. 

 
 

5. CONCLUSION  
 
In this study, the state-of-the-art neural network LSTM is 
leveraged to predict the rapid intensity change of TC. Although 

the result is not good as expected, the result could provide 
guidance for TC intensity forecasting research using deep 
learning. In our study, different class weights are assigned to RI/ 
UNRI cases to optimize the loss function. The loss function can 
be further improved by introducing different misclassification 
weights. Another potential improvement on this work is to use 
SMOTE (He and Garcia 2009) to resample train data to solve the 
imbalance data problem. In addition, some environmental 
parameters and TC attributes should be filtered out to avoid 
overfit problem. 
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