
EFFICIENT LIDAR POINT CLOUD DATA MANAGING AND PROCESSING
IN A HADOOP-BASED DISTRIBUTED FRAMEWORK

C. Wanga, F. Hub, D. Shab, X. Hana*
a Hainan Geomatics Center, National Administration of Surveying, Mapping and Geoinformation of China, HaiKou,

HaiNan, 570203, China – cx8989@163.com, 110260634@qq.com
b Department of Geography and GeoInformation Science and Center for Intelligent Spatial Computing, George

Mason University, Fairfax, VA, 22030-4444, USA – fhu@gmu.edu, dsha@gmu.edu

KEY WORDS: Lidar Data, Point Cloud, Hadoop, PCL, HDFS, MapReduce, GIS, Distributed Computing

ABSTRACT:

Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping，city
management, forestry, object recognition, computer vision engineer and others. However, it is challenging to
efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order
to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently
manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop’s storage
and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image
and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms
provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently
manage and process big LiDAR data.

1. INTRODUCTION

Developed in the 1960s and incorporated on airborne platforms
in the1980s, light detection and ranging (LiDAR) technologies
such as airborne, mobile and terrestrial laser scanning have been
able to efficiency obtain high-resolution surface data and cover
data (e.g. canopy, buildings) over large spatial extents. LiDAR
data have been applied on and are playing an increasingly
important role in many fields, such as mapping, environments,
natural disaster (Yonglin et al., 2010) and engineering
applications (Youn et al., 2014, Svanberg et al., 2015).

LiDAR data are acquired in the form of three-dimensional point
cloud, and usually contain tens or hundreds of points per square
meter (Guan et al., 2013). As a result, even for processing the
Lidar data in a small area will still be quite computing- and data-
intensive. However, the current LiDAR processing applications,
such as LASTools, Terrosolid and Point Cloud Library(PCL), are
based on a single computer, and at most, make use of the multi-
core CPU. In order to process big Lidar data in parallel, this paper
proposes a Hadoop-based framework to efficiently manage and
process data in a distributed and parallel manner, which takes
advantage of Hadoop’s storage and computing ability. At the
same time, the Point Cloud Library (PCL), an open-source
project for 2D/3D image and point cloud processing, is integrated
with HDFS and MapReduce to conduct the Lidar data analysis
algorithms provided by PCL in a parallel fashion.

2. RELATED WORKS

A bunch of LiDAR data processing tools, such as such as
FugroViewer (http://www.fugroviewer.com/), ArcGIS LiDAR
Analyst (Kersting and Kersting 2005), ENVI LiDAR (Lausten
2007), GRASS GIS (Neteler et al. 2012), Point Cloud Library
(Rusu and Cousins 2011) and FUSION/LDV (McGaughey 2009),
have been developed to support Lidar data indexing, conversion,
segmentation, object identification. However, most of these

applications only work on a standalone machine. In order to
process large volume of Lidar data, high performance computing
and cloud computing have begun to be applied on big LiDAR
data processing. For example, Hanusniak, V., et al (2015) have
developed a Hadoop framework for point cloud data storage
system. Li, Z., et al. (2017) developed a general-purpose scalable	
framework coupled with a sophisticated data decomposition and
parallelization strategy to efficiently handle "big" LiDAR data by
coupling existing LiDAR processing tools LASTools with
Hadoop. The geoprocessing applications can also be expedited
by processing LiDAR data processing in a highly scalable
distributed computing environment. For example, Jian, X., et al.
(2015) developed a Hadoop-based algorithm of generating DEM
grid from point cloud data. Liu, K. used cloud computing for
change detection of mobile Lidar data (Liu, Boehm et al. 2016).
Rizki, P. N. M., et al. (2017) investigated the use of in-memory
processing with Spark for creating a digital elevation model from
massive light detection and ranging (LiDAR) point clouds, which
can be considered an iterative process. In this paper, we integrate
PCL, a sophisticated C++ library that provide functions for point
could data indexing, filtering, registration, segmentation and
object identification, with Hadoop distributed file system and
Map-reduce process to take advantage of parallel storage and
computing.

3. METHODOLOGY

The proposed framework is composed of two parts: data
management and data processing as shown in Figure 1. In the
data management part, the Lidar data can be directly fetched
from other data platforms, and then stored in HDFS in the
original data formats. In the data processing part, the input point
cloud data will be assigned with a reasonable number of Map
tasks considering data locality and workload balancing. The
statistical outlier filter functions are embedded into MapReduce
to directly process the data in each Map task. In the Reduce
part, the outputs from each Map task are collected and analyzed
to get the final results.

∗Corresponding author

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017 | © Authors 2017. CC BY 4.0 License.

121

3.1 Data Management

To help users to transfer such big data into HDFS, a data
fetching module is developed. The data published in other data
platforms can be directly downloaded into HDFS with
customized configuration parameters, such as destination path,
block size, and replication factor.

The traditional point cloud data processing algorithms focus on
the single file level. However, in Hadoop computing
architecture, the point cloud file may be larger than default
block size. For this situation, the large file might be split into
multiple blocks and stored in different data nodes. It would lead
to two problems:1) the partitions of the original files cannot be
recognized by the Lidar libraries without the splitting metadata;
2) regrouping of the data requires excessive disk and network
usage, which will impair the efficiency. Algorithms for reading
and regrouping point cloud binary data are also needed, which
will add the complexity of the system development and finally
affect the efficiency. To solve these problems, we set the block
size parameter in Hadoop as big as the images when fetching
data, which will keep each file from being divided.

3.2 Data Processing

3.2.1 Data Partition Period: To achieve parallel computation
of the input data, MapReduce divides the entire data set into
multiple logical partitions, and then allocates them to the
corresponding nodes to read and process the data in parallel.
How these input data are divided and allocated directly affects
the localization of data, which creates a significant difference in
system performance. Considering the data location and
workload balance, we design a data split strategy to split the
queried Lidar data by customizing the FileInputFormat class. In
the FileInputFormat class, each Lidar file will be treated as a
block and then identify the data nodes where this block is
physically stored at. Since each file have several copies in the
cluster, the queried Lidar data will be equally split into several
groups according to the number of involved data nodes.
Therefore, each compute/data node is assigned with a similar
volume of data to maintain the workload balancing between the
compute nodes.

3.2.2 Map Period: After each compute node receives the
allocated splits, it will start a Map task for each split. In the Map
task, we will first get the split information, such as the input file
path, the point cloud processing operations and the result file
path. And then call the corresponding function provided by PCL
to remove the outlier noise point for each file in each data node.
After statistical filter processing, the resulting point cloud data
are stored in local machines and then uploaded into HDFS
according to the file path predefined by the user. In addition, the
status report for each point cloud processing task is recorded
and transferred to the next reduce period.

3.2.3 Reduce Period: The Reduce task will collect all the status
reports from the Map period, then analyze which point cloud
filtering processing tasks succeed, and which fail. For the failed
tasks, the system will re-launch a new MapReduce job.

Figure 1. The architecture of the proposed framework

4. EXPERIMENT

4.1 Experiment data

In this study, the LiDAR data for the City of Baltimore acquired
on April 15, 2008 is used as the experimental data (approximately
90 square miles). The spatial resolution for LiDAR data is 1
meter and the total data size in laz format is about 800 MB. After
changing the datasets to be the PCD format, the data size
increases to 6.24GB.

Figure 2. Study Field in Baltimore

These data were acquired by Sanborn Aero Commander 500B
with flight height 1400 meter above ground level. Measure unit
is US survey feet for both the horizontal and vertical axises, with
0.185-meter vertical accuracy and 1.0-meter horizontal accuracy.
By using pcd format conversion tool, all the laz format data are
converted to the pcd data format (Figure 3 and Figure 4 show the
visualization of data sample in laz format and pcd format). This
conversion process contains two steps: first, the las2txt tool of
Lastools is utilized for coordinate transformation as the format
converted; second, automatically update header files information
by a customized script.

PCL provides many point cloud processing tools such as filtering,
registration, segmentation, recognition and visualization. In this
experiment, we utilize the PCL library to remove outliers using a
StatisticalOutlierRemoval filter.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017 | © Authors 2017. CC BY 4.0 License.

122

Figure 3. Original Laz. Data and Visualization in ArcScene

Figure 4. Converted pcd Format, Visualization in PCL Viewer

Table 4: Data Groups for Test
Group File Number Number of Point Cloud File Size
G1 1 336, 758 10 MB
G2 1 3, 382, 294 100 MB
G3 10 33, 822, 940 1 GB
G4 100 338, 229, 400 10 GB
G5 200 676, 458, 800 20 GB
G6 1000 3, 382, 294, 000 100 GB

4.2 Cluster Environment

A cluster with three high performance PCs has been setup for
the experiments. The cluster is equipped with Hadoop 2.7.0 and
consisted of a NameNode and three DataNodes. PCL 1.7.0 is
installed on each DataNode. Both NameNode and DataNode
use 8 CPU-cores (3.60GHz), 16 GB of RAM and 256 GB of
SSD storage. The NameNode and all DataNodes are connected
by 1 gigabit internet. Ubuntu 14.04, Hadoop 2.7 and Java
1.8.are installed on both NameNode and DataNodes. Table 2
show the PC and cluster hardware configuration, and Tables 3
shows the cluster software configurations.

Table 2. Cluster hardware configuration
Data Node 3
Network - 1 Gigabytes Switch
CPU 1 8 CPU-cores (3.60GHz)
RAM 24 GB
Storage 256 SSD disk

Table 3. Cluster Software Configuration
Name Version Details

Hadoop 2.7.0 Installed on each node
Ubuntu 14.04

Java SDK 1.8.0

PCL 1.7.0 Provides point cloud
processing tools

4.4 Experiment Results

To evaluate the efficiency of the proposed framework, we
design two groups of experiments: 1) the first group is to run
the referred cloud point processing algorithm on a single node;
2) the second group is to execute the referred algorithm on the
Hadoop cluster. In each group, 6 different data file sizes are
used for the performance testing. In order to reduce variability
and measurement errors, we performed three operations for
each group and took the average time values. The average run-
time for the two groups are shown in Figure 5.

The figure shows that when the size of dataset is 10 MB and
100MB, the run-time for the single node is less than that for the
Hadoop cluster. However, when the dataset’s size is larger than
100 MB, the run-time for the cluster is obviously less than that
for the single machine. This result is caused by the Hadoop
framework’s overhead. It requires to run several processes first,
such as launching Hadoop client and scheduling map tasks to
prepare for the Map and Reduce period, so the whole running
procedure would cost more time than single machine if the input
data size is small. However, the proposed framework has much
better performance when processing larger volume of data as
shown in Figure 5. The results illustrate that the proposed
Hadoop-based system can efficiently process the point cloud data
by using the point cloud library.

Figure 5. Average run-time for two groups

5. CONCLUSION

In this paper, a Hadoop-based distributed framework is
proposed to efficiently manage and process big point cloud data.
By integrating point cloud library processing tools into
MapReduce, this framework provides various parallel point
cloud processing operations. The experiment result shows that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017 | © Authors 2017. CC BY 4.0 License.

123

the proposed framework can reduce the run time when dealing
with big data volume.

For the future work, the proposed framework can be improved
from the following two aspects:
1) the data pipeline in the proposed framework can be

improved. As shown in Figure 1, each file needs to be
downloaded into local file system for the data processing
algorithm. If we could develop a HDFS middleware to
enable the Lidar libraries to directly read data from HDFS,
the runtime and disk consumption can be improved a lot.
Taken the above experiment as an example, the disk size can
be saved by 176.72 GB for each data note.

2) More data processing algorithms will be exemplified to
improve the design of the proposed framework, such as
point cloud data split and result merging strategy to improve
the parallelism of data processing.

ACKNOWLEDGEMENTS

The authors are grateful to their colleagues for their constructive
comments and suggestions in writing this article.

REFERENCES

Guan, H., Li, J., Zhong, L., Yongtao, Y., & Chapman, M. (2013).
Process virtualization of largescale lidar data in a cloud
computing environment.Computers & Geosciences, 60, 109-116.

Yonglin, S., Lixin, W., & Zhi, W. (2010). Identification of
inclined buildings from aerial LIDAR data for disaster
management. In 2010 18th International Conference on
Geoinformatics, 1-5, IEEE.

Youn, C., Nandigam, V., Phan, M., Tarboton, D., Wilkins-Diehr,
N., Baru, C., ... & Wang, S. (2014). Leveraging XSEDE HPC
resources to address computational challenges with high-
resolution topography data. InProceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery
Environment, 59, CM

Hanusniak, V., et al. (2015). Exploitation of Hadoop framework
for point cloud geographic data storage system. Digital
Information Processing and Communications (ICDIPC), 2015
Fifth International Conference on, IEEE.

Jian, X., et al. (2015). "A Hadoop-Based Algorithm of
Generating DEM Grid from Point Cloud Data." The International
Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences 40(7): 1209.

Li, Z., et al. (2017). "A general-purpose framework for parallel
processing of large-scale LiDAR data." International Journal of
Digital Earth: 1-22.

Liu, K., et al. (2016). Change detection of mobile Lidar data
using cloud computing. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences-ISPRS Archives.

Rizki, P. N. M., et al. (2017). "Spark-based in-memory DEM
creation from 3D LiDAR point clouds." Remote Sensing Letters
8(4): 360-369.

Rusu, R. B. and S. Cousins (2011). 3d is here: Point cloud library
(pcl). Robotics and Automation (ICRA), 2011 IEEE International
Conference on, IEEE.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017 | © Authors 2017. CC BY 4.0 License.

124

