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ABSTRACT:  

Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping，city 
management, forestry, object recognition, computer vision engineer and others. However, it is challenging to 
efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order 
to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently 
manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop’s storage 
and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image 
and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms 
provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently 
manage and process big LiDAR data. 

1. INTRODUCTION

Developed in the 1960s and incorporated on airborne platforms 
in the1980s, light detection and ranging (LiDAR) technologies 
such as airborne, mobile and terrestrial laser scanning have been 
able to efficiency obtain high-resolution surface data and cover 
data (e.g. canopy, buildings) over large spatial extents. LiDAR 
data have been applied on and are playing an increasingly 
important role in many fields, such as mapping, environments, 
natural disaster (Yonglin et al., 2010) and engineering 
applications (Youn et al., 2014, Svanberg et al., 2015). 

LiDAR data are acquired in the form of three-dimensional point 
cloud, and usually contain tens or hundreds of points per square 
meter (Guan et al., 2013). As a result, even for processing the 
Lidar data in a small area will still be quite computing- and data- 
intensive. However, the current LiDAR processing applications, 
such as LASTools, Terrosolid and Point Cloud Library(PCL), are 
based on a single computer, and at most, make use of the multi-
core CPU. In order to process big Lidar data in parallel, this paper 
proposes a Hadoop-based framework to efficiently manage and 
process data in a distributed and parallel manner, which takes 
advantage of Hadoop’s storage and computing ability. At the 
same time, the Point Cloud Library (PCL), an open-source 
project for 2D/3D image and point cloud processing, is integrated 
with HDFS and MapReduce to conduct the Lidar data analysis 
algorithms provided by PCL in a parallel fashion. 

2. RELATED WORKS

A bunch of LiDAR data processing tools, such as such as 
FugroViewer (http://www.fugroviewer.com/), ArcGIS LiDAR 
Analyst (Kersting and Kersting 2005), ENVI LiDAR (Lausten 
2007), GRASS GIS (Neteler et al. 2012), Point Cloud Library 
(Rusu and Cousins 2011) and FUSION/LDV (McGaughey 2009), 
have been developed to support Lidar data indexing, conversion, 
segmentation, object identification. However, most of these 

applications only work on a standalone machine. In order to 
process large volume of Lidar data, high performance computing 
and cloud computing have begun to be applied on big LiDAR 
data processing. For example, Hanusniak, V., et al (2015) have 
developed a Hadoop framework for point cloud data storage 
system. Li, Z., et al. (2017) developed a general-purpose scalable	
framework coupled with a sophisticated data decomposition and 
parallelization strategy to efficiently handle "big" LiDAR data by 
coupling existing LiDAR processing tools LASTools with 
Hadoop. The geoprocessing applications can also be expedited 
by processing LiDAR data processing in a highly scalable 
distributed computing environment. For example, Jian, X., et al. 
(2015) developed a Hadoop-based algorithm of generating DEM 
grid from point cloud data. Liu, K. used cloud computing for 
change detection of mobile Lidar data (Liu, Boehm et al. 2016). 
Rizki, P. N. M., et al. (2017) investigated the use of in-memory 
processing with Spark for creating a digital elevation model from 
massive light detection and ranging (LiDAR) point clouds, which 
can be considered an iterative process. In this paper, we integrate 
PCL, a sophisticated C++ library that provide functions for point 
could data indexing, filtering, registration, segmentation and 
object identification, with Hadoop distributed file system and 
Map-reduce process to take advantage of parallel storage and 
computing. 

3. METHODOLOGY

The proposed framework is composed of two parts: data 
management and data processing as shown in Figure 1. In the 
data management part, the Lidar data can be directly fetched 
from other data platforms, and then stored in HDFS in the 
original data formats. In the data processing part, the input point 
cloud data will be assigned with a reasonable number of Map 
tasks considering data locality and workload balancing. The 
statistical outlier filter functions are embedded into MapReduce 
to directly process the data in each Map task. In the Reduce 
part, the outputs from each Map task are collected and analyzed 
to get the final results. 
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3.1 Data Management 

To help users to transfer such big data into HDFS, a data 
fetching module is developed. The data published in other data 
platforms can be directly downloaded into HDFS with 
customized configuration parameters, such as destination path, 
block size, and replication factor. 

The traditional point cloud data processing algorithms focus on 
the single file level. However, in Hadoop computing 
architecture, the point cloud file may be larger than default 
block size. For this situation, the large file might be split into 
multiple blocks and stored in different data nodes. It would lead 
to two problems:1) the partitions of the original files cannot be 
recognized by the Lidar libraries without the splitting metadata; 
2) regrouping of the data requires excessive disk and network
usage, which will impair the efficiency. Algorithms for reading
and regrouping point cloud binary data are also needed, which
will add the complexity of the system development and finally
affect the efficiency. To solve these problems, we set the block
size parameter in Hadoop as big as the images when fetching
data, which will keep each file from being divided.

3.2 Data Processing 

3.2.1 Data Partition Period: To achieve parallel computation 
of the input data, MapReduce divides the entire data set into 
multiple logical partitions, and then allocates them to the 
corresponding nodes to read and process the data in parallel. 
How these input data are divided and allocated directly affects 
the localization of data, which creates a significant difference in 
system performance. Considering the data location and 
workload balance, we design a data split strategy to split the 
queried Lidar data by customizing the FileInputFormat class. In 
the FileInputFormat class, each Lidar file will be treated as a 
block and then identify the data nodes where this block is 
physically stored at. Since each file have several copies in the 
cluster, the queried Lidar data will be equally split into several 
groups according to the number of involved data nodes. 
Therefore, each compute/data node is assigned with a similar 
volume of data to maintain the workload balancing between the 
compute nodes. 

3.2.2 Map Period: After each compute node receives the 
allocated splits, it will start a Map task for each split. In the Map 
task, we will first get the split information, such as the input file 
path, the point cloud processing operations and the result file 
path. And then call the corresponding function provided by PCL 
to remove the outlier noise point for each file in each data node. 
After statistical filter processing, the resulting point cloud data 
are stored in local machines and then uploaded into HDFS 
according to the file path predefined by the user. In addition, the 
status report for each point cloud processing task is recorded 
and transferred to the next reduce period. 

3.2.3 Reduce Period: The Reduce task will collect all the status 
reports from the Map period, then analyze which point cloud 
filtering processing tasks succeed, and which fail. For the failed 
tasks, the system will re-launch a new MapReduce job. 

Figure 1. The architecture of the proposed framework 

4. EXPERIMENT

4.1 Experiment data 

In this study, the LiDAR data for the City of Baltimore acquired 
on April 15, 2008 is used as the experimental data (approximately 
90 square miles). The spatial resolution for LiDAR data is 1 
meter and the total data size in laz format is about 800 MB. After 
changing the datasets to be the PCD format, the data size 
increases to 6.24GB. 

Figure 2. Study Field in Baltimore 

These data were acquired by Sanborn Aero Commander 500B 
with flight height 1400 meter above ground level. Measure unit 
is US survey feet for both the horizontal and vertical axises, with 
0.185-meter vertical accuracy and 1.0-meter horizontal accuracy. 
By using pcd format conversion tool, all the laz format data are 
converted to the pcd data format (Figure 3 and Figure 4 show the 
visualization of data sample in laz format and pcd format). This 
conversion process contains two steps: first, the las2txt tool of 
Lastools is utilized for coordinate transformation as the format 
converted; second, automatically update header files information 
by a customized script. 

PCL provides many point cloud processing tools such as filtering, 
registration, segmentation, recognition and visualization. In this 
experiment, we utilize the PCL library to remove outliers using a 
StatisticalOutlierRemoval filter. 
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Figure 3. Original Laz. Data and Visualization in ArcScene 

Figure 4. Converted pcd Format, Visualization in PCL Viewer 

Table 4: Data Groups for Test 
Group File Number Number of Point Cloud File Size 
G1 1 336, 758 10 MB 
G2 1 3, 382, 294 100 MB 
G3 10 33, 822, 940 1 GB 
G4 100 338, 229, 400 10 GB 
G5 200 676, 458, 800 20 GB 
G6 1000 3, 382, 294, 000 100 GB 

4.2 Cluster Environment 

A cluster with three high performance PCs has been setup for 
the experiments. The cluster is equipped with Hadoop 2.7.0 and 
consisted of a NameNode and three DataNodes. PCL 1.7.0 is 
installed on each DataNode. Both NameNode and DataNode 
use 8 CPU-cores (3.60GHz), 16 GB of RAM and 256 GB of 
SSD storage. The NameNode and all DataNodes are connected 
by 1 gigabit internet. Ubuntu 14.04, Hadoop 2.7 and Java 
1.8.are installed on both NameNode and DataNodes. Table 2 
show the PC and cluster hardware configuration, and Tables 3 
shows the cluster software configurations. 

Table 2. Cluster hardware configuration 
Data Node 3 
Network - 1 Gigabytes Switch
CPU 1 8 CPU-cores (3.60GHz) 
RAM 24 GB 
Storage 256 SSD disk 

Table 3. Cluster Software Configuration 
Name Version Details 

Hadoop 2.7.0 Installed on each node 
Ubuntu 14.04 

Java SDK 1.8.0 

PCL 1.7.0 Provides point cloud 
processing tools 

4.4 Experiment Results 

To evaluate the efficiency of the proposed framework, we 
design two groups of experiments: 1) the first group is to run 
the referred cloud point processing algorithm on a single node; 
2) the second group is to execute the referred algorithm on the
Hadoop cluster. In each group, 6 different data file sizes are
used for the performance testing. In order to reduce variability
and measurement errors, we performed three operations for
each group and took the average time values. The average run-
time for the two groups are shown in Figure 5.

The figure shows that when the size of dataset is 10 MB and 
100MB, the run-time for the single node is less than that for the 
Hadoop cluster. However, when the dataset’s size is larger than 
100 MB, the run-time for the cluster is obviously less than that 
for the single machine. This result is caused by the Hadoop 
framework’s overhead. It requires to run several processes first, 
such as launching Hadoop client and scheduling map tasks to 
prepare for the Map and Reduce period, so the whole running 
procedure would cost more time than single machine if the input 
data size is small. However, the proposed framework has much 
better performance when processing larger volume of data as 
shown in Figure 5. The results illustrate that the proposed 
Hadoop-based system can efficiently process the point cloud data 
by using the point cloud library.  

Figure 5. Average run-time for two groups 

5. CONCLUSION

In this paper, a Hadoop-based distributed framework is 
proposed to efficiently manage and process big point cloud data. 
By integrating point cloud library processing tools into 
MapReduce, this framework provides various parallel point 
cloud processing operations. The experiment result shows that 
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the proposed framework can reduce the run time when dealing 
with big data volume.  
 
For the future work, the proposed framework can be improved 
from the following two aspects: 
1) the data pipeline in the proposed framework can be 

improved. As shown in Figure 1, each file needs to be 
downloaded into local file system for the data processing 
algorithm. If we could develop a HDFS middleware to 
enable the Lidar libraries to directly read data from HDFS, 
the runtime and disk consumption can be improved a lot. 
Taken the above experiment as an example, the disk size can 
be saved by 176.72 GB for each data note.  

2) More data processing algorithms will be exemplified to 
improve the design of the proposed framework, such as 
point cloud data split and result merging strategy to improve 
the parallelism of data processing. 
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