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ABSTRACT: 

In this paper, a novel Apache Spark-based framework for spatial data processing is proposed, which includes 4 layers: spatial data 

storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of 

spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be 

transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on 

spatial RDDs, such as range query, k nearest neighbour and spatial join. The spatial query language is a user-friendly interface which 

provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial 

frameworks based on Spark, it is highlighted that spatial indexes like grid, R-tree are used for data storage and query. Extensive 

experiments on real system prototype and real datasets show that better performance can be achieved. 

1. INTRODUCTION

Geographic information systems(GIS) process two kinds of data 

including spatial and attribute data. The performance depends on 

the representation of the data and the extent to which they can 

integrate it (Samet , 2015). The traditional database management 

systems are designed to deal with attribute data and hence must 

be extended to handle spatial data. The requirements for an 

extended DBMS to fulfil the following objectives. (1) The logical 

data representation must be extended to geometric data. (2) The 

query language must integrate new functions to capture the rich 

set of possible operations applicable to geometric objects. (3)  

There should exist an efficient physical representation of the 

spatial data. (4) Efficient data access is essential for spatial 

databases, so new data structures are proposed for spatial 

indexing. (5) Some new relational query processing algorithms 

are needed, such as spatial join, k nearest neighbour etc. Several 

spatial database systems are developed based on specified DBMS, 

such as PostGIS on PostgreSQL, Oracle Spatial on Oracle. 

But with rapid development of GIS and Internet information 

technology, organizations and enterprises in geoinformation field 

accumulate big datasets of spatial information. How to manage 

these data effectively and analysis them efficiently becomes 

highly tough problems. Distributed DBMS and NoSQL DBMS 

supplies GIS a new way to solve the big problems. Novel data 

storage structures and different choices of the trade-off of 

consistency, availability and partition tolerance (known as CAP) 

(Gilbert, Lynch, 2002). These masses of Not SQL DBMSs can 

also be extended to support spatial data. Spatial indexing 

structures such as grid, R-tree, R+-tree should be realized on 

them and spatial operations such as query and spatial analysis 

should also be supported for users. 

Apache Hadoop and Spark are well known as the most effective 

solution for big data, and well accepted by most of industries and 

communities. The Apache Hadoop software library is a 

framework that allows for the distributed processing of large data 

sets across clusters of computers using simple programming 

models (Apache Hadoop Organization). It is designed to scale up 

from single servers to thousands of machines, each offering local 

computation and storage. Rather than rely on hardware to deliver 

high-availability, the library itself is designed to detect and 

handle failures at the application layer, so delivering a highly-

available service on top of a cluster of computers, each of which 

may be prone to failures. Apache Spark is a fast and general 

engine for large-scale data processing (Apache Spark 

Organization). Spark provides a simple and expressive 

programming model that supports a wide range of applications, 

including ETL, machine learning, stream processing, and graph 

computation. Spark takes new design philosophy to generalize 

MapReduce process. It adds two novel peculiarities to Hadoop 

MapReduce to support more general systems such as iterative, 

interactive and streaming apps. One is general task directed 

acyclic graph (DAG) model to schedule the execute stages, and 

the other is sharing data in cluster memory to achieve higher IO 

access speed. Proved by some experiments (Zaharia, Chowdhury, 

Das, …, 2012), Spark RDDs can outperform Hadoop by 20× for 

iterative jobs and can be used interactively to search a 1 TB 

dataset with latencies of 5–7 seconds. 

In recent years, some computing framework for spatial data has 

been released. Hadoop-GIS is a scalable and high performance 

spatial query system over MapReduce, provides an efficient 

spatial query engine and an expressive SQL-like spatial query 

language to process spatial queries, data and space based 

partitioning, and query pipelines that parallelize queries 

implicitly on MapReduce (Ablimit, Xiling, Hoang, …, 2013). 

MD-HBase extends HBase, a Key-value store system, uses

linearization and related indexes to store multi-dimensional

spatial data in KV system (Nishimura, Das, Agrawal, 2011).

Parallel-Secondo extends Secondo using Hadoop as a parallel

distributed task scheduler (Lu, Guting, 2012). GeoTrellis

provides high performance raster input/output, geoprocessing

and web services using distributed processing to achieve quite

amazing throughput for large raster datasets. It uses the Hadoop

file system (HDFS) but replaces Hadoop's MapReduce with

Spark for distributed processing (Kini, Emanuele, 2014).

GeoMesa is a distributed spatio-temporal database built on top of

Hadoop and column-family databases such as Accumulo and

HBase, and it includes a suite of tools for indexing, managing and

analysing both vector and raster data (Hughes, Annex,

Eichelberger, …, 2015). SpatialHadoop is a full-fledged

MapReduce framework with native support for spatial data by

four layers of language, storage, MapReduce, and operations

(Eldawy, Mokbel, 2015). GeoSpark proposes spatial resilient

distributed datasets (SRDDs) and supplies geometrical

operations over Apache Spark platform (Yu, Wu, Sarwat, 2015).
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SpatialSpark implements only spatial data join query process 

migrating from CUDA/Thrust compute platform to Spark (You, 

Zhang, Gruenwald, 2015). 

In this paper, a novel Apache Spark based computing framework 

for spatial data is introduced. It leverages Spark as the under layer 

to achieve better computing performance than Hadoop. 4 layers 

architecture from low to high is proposed: spatial data storage, 

spatial RDDs, spatial operations and spatial query language. All 

managements of spatial data are mentioned around Apache 

Hadoop and Spark ecosystem. (1) The spatial data storage using 

HDFS to store large size of spatial data, vector or raster, in the 

distribute cluster. (2) The spatial RDDs are abstract logistical 

dataset of spatial data types and can be transferred to the spark 

cluster to do spark transformations and actions. (3) Spatial 

operations layer is a series of processing on spatial RDDs such as 

range query, k nearest neighbour and spatial join. (4) Spatial 

query language is a user-friendly interface which supplies people 

not major in computer a comfortable way to operation the spatial 

operation. 

Comparing to other spatial framework based on spark, it is 

highlighted that two-layers spatial indexing approach of global 

and local indexes are used, which is inspired by SpatialHadoop 

(Eldawy, Mokbel, 2015). The spatial indexes are migrated to 

Spark successfully initiatively, so orders of magnitude better 

performance than GeoSpark can be achieved. The differences to 

other Hadoop and Spark spatial compute frameworks are the 

close integration, both logical and physical, between Hadoop 

HDFS and Spark spatial RDDs. 

2. ARCHITECTURE

Figure 1. System Architecture 

Figure 1 gives the high-level architecture of our system. 4 parts 

of the system present clearly. Two types of users can use this 

system in different level: (1) The casual user who knows the 

business more than the IT technologies can access system by the 

Spark SQL Language interface. (2) The developer who has 

professional knowledge of Spark framework and programming 

language can reuse of some operations in the system and can also 

extend them to meet their own requests. 

2.1 Spatial Spark SQL Language 

Spatial Spark SQL language layer is the top interface between the 

system and endpoint casual users. It can load data from a variety 

of structured sources (e.g., JSON, Hive, and Parquet), lets you 

query the data using SQL and provides rich extension of existing 

data types and functions (Todd, 2016).  

Several spatial data types are implemented in system, such as 

point, rectangle and polygon. Some user-defined functions 

(UDFs) are implemented to help processing spatial operations, 

such as overlaps, distance, and boundary. Users can also extend 

and register themselves’ UDFs in Python, Java and Scala. 

The original work of introducing spatial data type and UDFs to 

Spark make the whole framework easy to use and integrate 

smoothly with existing non-spatial functions and operations such 

as Filter, Join and Group By, just like PostGIS to PostgreSQL. 

2.2 Storage Layer 

The storage layer supports persistent spatial data either on local 

disk or Hadoop file system (HDFS), but HDFS is recommended 

for using in cluster environment. Because raw spatial files in 

Hadoop do not support any indexes itself, we employ spatial 

index structures within HDFS as a means of efficient retrieval of 

spatial data. Indexing is the most important point in its superior 

performance over other Spark spatial computing framework. 

The index structure in SpatialHadoop (Eldawy, Mokbel, 2015) is 

referenced in this paper, it is smart and elegant for spatial 

indexing in HDFS. Two level indexing approach of global and 

local indexes are proposed. Global index in HDFS name node 

indicates the minimum boundary rectangle (MBR) of each 

partitions of the spatial file. Local index is in each partition file 

that can be processed in parallel in both MapReduce job and 

Spark spatial RDDs transformations and actions. 

Three phases process for indexing will be introduced. (1) 

Partitioning: big input file will be spatially split into n partitions, 

and n rectangles representing boundaries of the n partitions will 

be calculated. Each partition should fit in one HDFS block size, 

so an overhead ratio will be set for the overhead of replicating 

records overlapped and storing local indexes. (2) Local Indexing: 

requested index structure (e.g., Grid or R-tree) in each partition 

block will be built flowed by the spatial data. The index structure 

and spatial data is in the same partition block file. (3) Global 

Indexing: all local index files will be concatenated into one file 

that represents the final indexed file. It is constructed using bulk 

loading and is stored in the name node of the Hadoop clusters. 

The framework supplies an easy way to build index by running a 

command line as following, then the spatial data file will be bulk 

loaded and be split to a few block files by the giving index type 

and block size. 

shadoop index <input> <output> shape:<input format> 

sindex:<index> blocksize:<size> -overwrite 

2.2.1 Build index: Different types of indexes are built in 

significant difference. The most two regular indexes, grid and R-

tree will be introduced. 

(1) Grid. Grids are frequently the simplest index in use.  It

partitions the data by a uniform grid, and the spatial object

overlapping with the same grid will be in the same partition. In

this paper, after the number of partitions n is calculated, the
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partition boundaries are computed by a ⌈√𝑛⌉×⌈√𝑛⌉ size grid. The 

spatial object is replicated to every grid which is overlapped with 

it. Because the grid index is a one-level flat index, the spatial data 

in each grid cell are stored in no particular order. 

(2) R-tree. R-tree was proposed by Antonin Guttman in 1984. It

is a balanced search tree, organizes the data in pages, and is

designed for storage on disk. A Sort-Tile-Recursive (STR)

algorithm is used to build an R-tree (Leutenegger, Scott T., Mario

Lopez, …, 1997). The general process is similar to building a B-

tree from a collection of keys by creating the leaf level first and

then creating each successively higher level until the root node is

created. After the number of partitions are calculated, we can tile

the spatial data space using ⌈√𝑛⌉ vertical slices so that each slice

contains enough rectangles to pack roughly ⌈√𝑛⌉ nodes. Then

sort the spatial object by x-coordinate and partition them into

⌈√𝑛⌉ slices. If the spatial object is not point, the coordinates of

center points of MBR is used in sort process. And then sort the

spatial object of each slice by its y-coordinate and pack them into

nodes of length 
𝑟

𝑛
. In other words, the first 

𝑟

𝑛
 records into the first

node, the next 
𝑟

𝑛
 into the second node, and so on. 

What needs to highlight here is sample records of spatial data is 

used for partition process for efficiently reading very large input 

file. The size of random sample is set to a default ratio of 1% of 

the input file, with a maximum size of 100MB to ensure it fits in 

memory. 

And in local indexing phase, spatial objects in each partition are 

bulk loaded into an R-tree also using the STR algorithm. Each 

block is represented by the MBR of it records, and all the partition 

blocks are concatenated into a global R-tree index using their 

MBRs as the index key by bulk loading process. Spatial records 

overlapping with multiple partitions will not be replicated, and 

are assigned to the smallest area it overlaps. 

2.2.2 Index File Structure: The file structures of two indexes, 

grid and R-tree, are introduced for better understand the details 

of index files in HDFS. We take the comma-separated values 

(CSV) records of points as the example to see how organizes the 

index file. 

(1) Grid. A spatial grid index is stored in one HDFS folder

including one global index and partitioned blocks. Because the

grid index has not local index, so each partition is the row spatial

data format.

Figure 2. Global index structure 

Figure 2 shows the structure of a global index. Eight fields here 

describe the details of partition blocks. The first field is a natural 

number index. The second to fifth field is the MBR of each 

partition which is stored as left-bottom and right-top points 

coordinates. The MBR can be used for early pruning file blocks 

that do not contribute to required answer. The sixth field is the 

spatial object counts of each partition, and the seventh field is the 

size of each partition file in byte which can be used as the block 

reading offset of each partition. The eighth field is the partition 

name. The global structure is stored as one records each line with 

the End-Of-Line (EOL) as the mark character. 

(2) R-tree. The R-tree index folder has the same style and the

same global index structure as grid. Only differences are the local

index structure saved with the spatial data in monolithic one file.

Figure. 3 shows the R-tree local index file structure. Every block 

file can be dived into three parts. The first part is the local R-tree 

specification stored in binary format. The first 8 bytes is a file 

type marker for verifying the R-tree file type and version. Then 

following 4 integer values and each integer is stored in 4 bytes 

binary format. These are tree size, height, degree, and element 

count in order. The middle part is the R-tree nodes information. 

Every R-tree node is stored in 36 bytes binary format. The first 4 

bytes is the node sequence number saved in integer value, and the 

following 4 double type values are the MBR’s coordinates of the 

node every of which occurs 8byte.The last part is the real spatial 

data storage. It is stored as the plain text format and each line one 

record. 

Figure 3. R-tree Local Index Structure 

2.3 Spatial RDDs Layer 

This Layer abstracts the storage of a variety of spatial data, and 

support the uniform interface to top layers. The Spark Resilient 

Distributed Datasets (RDDs) are extended to Spatial RDDs for 

adapting the Spark data structure to spatial data. New spatial 

RDD data types are implemented including point, line, rectangle 

and polygon. They provide advanced traits which are difficultly 

achieved in distributed computing environment, including 

partitioned collection, fault-tolerant, and simple programming 

interface. 

Spatial RDDs are different with normal RDDs in two main 

aspects. First is the special customized partitioning method which 

can optimise the data distribution across the servers and 

accelerate the spatial options on them by using GeoHash 

encoding. Second is the spatial analysis functions support on 

spatial RDDs, which can be easily used for spatial operation. 

2.3.1 Partitioning. Users can control two important aspects 

of SRDDs: persistence and partitioning. Users can indicate which 

RDDs they will reuse and choose a storage strategy for them (e.g., 

in-memory storage). They can also ask that an RDD’s elements 

be partitioned across machines based on a key in each record. 

This is useful for placement optimizations on spatial data sets, 

such as ensuring that two datasets that will be joined together are 

geohash-partitioned in the same way. 
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2.3.2 Fault tolerant. SRDDs are a fault-tolerant distributed 

memory abstraction that avoids high costs replication within 

network (Zaharia, Chowdhury, Das, …, 2012). They recognize 

computing processes as a directed acyclic graph (DAG). Each 

SRDD remembers the graph of operations used to build it, 

similarly to batch computing models, and can efficiently 

recompute data lost on failure. As long as the operations that 

create RDDs are relatively coarse-grained, i.e., a single operation 

applies to many data elements, this technique is much more 

efficient than replicating the data over the network. RDDs work 

well for a wide range of today’s spatial data-parallel algorithms 

and programming models, all of which apply each 

2.3.3 Programming interface. A spatial RDD is represented 

as an object. Transformations and actions can be invoked using 

methods on these objects. Programmers start by defining one or 

more RDDs through transformations on data in stable storage 

(e.g., map and filter). They can then use these SRDDs in actions, 

which are operations that return a value to the application or 

export data to a storage system. Examples of actions include 

count (which returns the number of elements in the dataset), 

collect (which returns the elements themselves), and save (which 

outputs the dataset to a storage system). 

2.4 Spatial Operations Layer 

This layer implements spatial proximity analyses and geometry 

processing. Three common spatial operation algorithms are 

proposed using SRDDs: range query, KNN query, and spatial 

join. They leverage spatial locality of data access technology and 

spatial index to achieve better performance. 

Two aspects of SRDDs: persistence and partitioning can be 

controlled in spatial operations. We can indicate which RDDs 

they will reuse and choose a storage strategy for them (e.g., in-

memory storage). They can also ask that an RDD’s elements be 

partitioned across machines based on a key in each record. This 

is useful for placement optimizations, such as ensuring that two 

spatial datasets that will be joined together are hash-partitioned 

in the same way. 

Spatial operations can be divide into two types: plain operations 

and improvement ones. The first type processes query by full 

table scan, so it is bad in query efficiency. The second is 

improved by spatial index and can achieve better performance. 

We will reveal the differences in the following of this section 

with spark transformations and action. The pseudocodes are 

written by scala language in function programming style. 

Plain operations are proposed firstly. 

2.4.1 Range Query: A range query takes a set of points p and 

a query range r as input, and return the set of points in p that 

overlaps with r. Filter is a predefined function in Spark taking a 

predicate function as the parameter, in which contains operation 

is used. In consideration of lazy evaluation mechanism of Spark, 

the collect action is used to trigger the operation. 

def RangeQuery(Points p, Range r) {

p.filter(point=>r.contains(p)).collect() 

} 

2.4.2  K Nearest Neighbour: A kNN query takes a set of 

spatial points p, a query point q, and an integer k as input, and 

returns the k closest points in p to q. Map transformation is used 

to compute the distance between every point in p and the query 

point q, and then takeOrdered function of Spark action is used to 

get the top k elements of the RDD using either their natural order 

or a custom comparator. 

def KNN(Points p, Point q, Int k){ 

p.map(point=>(Distance(p,q),point)).

takeOrdered(k) 

} 

2.4.3 Spatial Join: A spatial join takes two sets of spatial 

records r and s and a spatial join predicate θ as input, and returns 

the set of all pairs (r,s) where r ∈ R, s ∈ S, and θ is true for all 

(r,s) tuple. The cartesian function of Spark is used to get all pairs 

of R × S, and then all pairs should be filtered by the spatial join 

predicate θ. 

def SpatialJoin(R r, S s, func predicate𝜃){ 

r.cartesian(s).filter((r,s)=>predicate𝜃(r,s))

} 

The improvement appears in two aspects. The first is GeoHash 

code can be used in user define partitioning. When using memory 

on a single machine, programmers worry about data layout 

mainly to optimize lookups and to maximizes colocation of 

information commonly accessed together. SRDDs give control 

over the same concerns for distributed memory, by letting users 

select a partitioning function and co-partition datasets, but they 

avoid asking having users specify exactly where each partition 

will be located. Thus, the runtime can efficiently place partitions 

based on the available resources, and the query performance is 

improved. 

A GeoHash partition function GeoHashPartitioner is used to 

process partitioning, which needs a partition number as the 

parameter. It is recommended that partition number is equal to 

the total number of CPU cores in cluster. PartitionBy() function 

provide by Spark framework is used as following. In 

consideration of different type of space-filling curves, Peano 

curve is recommended to get better performance. 

p.partitionBy(new GeoHashPartitioner(100)).persist()

The second is global and local indexes are used to reduce useless 

scan time. Generally global index is used to tailor points in the 

MBR which are certain not in the answer. For example, a range 

query job provides a filter function that prunes file blocks with 

MBRs completely outside the query range. Local index is used in 

refining phrases which will make it more efficient than scanning 

over all records. 

3. EXPERIMENTS

This section provides experimental study for the performance of 

the following variables: partition and index. No partition, spark 

hash partition and spatial GeoHash partition are used in the 

partition experiment, and no index, grid index and R-tree index 

are used in the index experiment. Then a comparison experiment 

of the new framework and GeoSpark is emerged to prove getting 

a better performance. 

Experimental Setup. Our cluster is running on Ali Cloud who is 

the biggest public cloud provider in China. The setting of worker 
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server is as follows: (1) 4 Intel Xeon E5-2680 v3（Haswell） 
CPU operating at 2.5GHz. (2) 8GB Memory. (3) Efficient cloud 

disk with 3000 max IOPS. The experiment computing cluster 

contains four workers. 

Datasets. We use the TIGER file in these experiments, which is 

a real dataset presenting spatial features in the US, such as 

streets and rivers. We choose Zcta510 1.5GB dataset, 

Areawater 6.5GB dataset and Edges 62GB dataset. 

4. IMPACT OF PARTITION AND DATA SIZE

Figure 4. Range query experiments with different partition and 

data size 

Different partitioners are used to do range query on the three-

different size of dataset. The query time are shown in Figure 4. 

As depicted in Figure 4, Spark HashPartitioner gets not 

observably better performance than no partition, because regular 

hash function on spatial data does not help for data aggregation 

and data local, only GeoHash can achieve better performance 

because of its spatial feature. Another thing to draw attention is 

when the data size is over total memory of the cluster, query 

performance will significantly decline, and the advantage of 

GeoHash partition are not obviously. This because if data size is 

outdistance the cluster memory, data persistent takes much more 

time than data query. So it is recommend to get plenty of memory 

in big data memory computing. 

5. PERFORMANCE OF DIFFERENT INDEX

Figure 5. kNN experiments with different index and data size 

As shown in Figure 5, kNN query using index can achieve better 

performance than no index on Spark framework, and the query 

time almost declines quickly with the increasing of data size. R-

tree appears better performance than Grid index no matter of 

dataset size. This because in large dataset, the spatial data are in 

order of MBR and most of the uncorrelated partitions will not be 

read and scanned, and only the index will be read into memory 

which size is much less than dataset size.  

6. PERFORMANCE COMPARISON

Figure 6. Spatial join experiments with different frameworks 

and data size 

Different frameworks with R-tree index are used to evaluate the 

performance. As depicted in Figure 6, new framework described 

in this paper and GeoSpark cost more run time on the large 

dataset than that on the small one. However, new framework 

achieves much better run time performance than GeoSpark in 

both three datasets. This superiority is more obvious on the large 

dataset. The reason is that the new framework can use two-level 

index structure and better optimization by GeoHash partitioner. 

That accelerates the processing speed. 

7. CONCLUSION

This paper introduced a new Apache Spark-based framework for 

spatial data processing is proposed, which includes 4 layers: 

spatial data storage, spatial RDDs, spatial operations, and spatial 

query language. The spatial data storage layer uses HDFS to store 

large size of spatial vector/raster data in the distribute cluster. The 

spatial RDDs are the abstract logical dataset of spatial data types, 

and can be transferred to the spark cluster to conduct spark 

transformations and actions. The spatial operations layer is a 

series of processing on spatial RDDs, such as range query, k 

nearest neighbour and spatial join. The spatial query language is 

a user-friendly interface which provide people not familiar with 

Spark with a comfortable way to operation the spatial operation. 

Compared with other spatial frameworks based on Spark, it is 

highlighted that spatial indexes like grid, R-tree are used for data 

storage and query. Extensive experiments on real system 

prototype and real datasets show that better performance can be 

achieved. 
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