
A SPARK BASED COMPUTING FRAMEWORK FOR SPATIAL DATA

Fei Xiao a,*

a Administrative Information Center, National Administration of Surveying, Mapping and Geoinformation of China, Engineer,

100830 Beijing, China - xiaof@sbsm.gov.cn

KEY WORDS: Spatial Data, Spark, Index, Spatial Operations

ABSTRACT:

In this paper, a novel Apache Spark-based framework for spatial data processing is proposed, which includes 4 layers: spatial data

storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of

spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be

transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on

spatial RDDs, such as range query, k nearest neighbour and spatial join. The spatial query language is a user-friendly interface which

provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial

frameworks based on Spark, it is highlighted that spatial indexes like grid, R-tree are used for data storage and query. Extensive

experiments on real system prototype and real datasets show that better performance can be achieved.

1. INTRODUCTION

Geographic information systems(GIS) process two kinds of data

including spatial and attribute data. The performance depends on

the representation of the data and the extent to which they can

integrate it (Samet , 2015). The traditional database management

systems are designed to deal with attribute data and hence must

be extended to handle spatial data. The requirements for an

extended DBMS to fulfil the following objectives. (1) The logical

data representation must be extended to geometric data. (2) The

query language must integrate new functions to capture the rich

set of possible operations applicable to geometric objects. (3)

There should exist an efficient physical representation of the

spatial data. (4) Efficient data access is essential for spatial

databases, so new data structures are proposed for spatial

indexing. (5) Some new relational query processing algorithms

are needed, such as spatial join, k nearest neighbour etc. Several

spatial database systems are developed based on specified DBMS,

such as PostGIS on PostgreSQL, Oracle Spatial on Oracle.

But with rapid development of GIS and Internet information

technology, organizations and enterprises in geoinformation field

accumulate big datasets of spatial information. How to manage

these data effectively and analysis them efficiently becomes

highly tough problems. Distributed DBMS and NoSQL DBMS

supplies GIS a new way to solve the big problems. Novel data

storage structures and different choices of the trade-off of

consistency, availability and partition tolerance (known as CAP)

(Gilbert, Lynch, 2002). These masses of Not SQL DBMSs can

also be extended to support spatial data. Spatial indexing

structures such as grid, R-tree, R+-tree should be realized on

them and spatial operations such as query and spatial analysis

should also be supported for users.

Apache Hadoop and Spark are well known as the most effective

solution for big data, and well accepted by most of industries and

communities. The Apache Hadoop software library is a

framework that allows for the distributed processing of large data

sets across clusters of computers using simple programming

models (Apache Hadoop Organization). It is designed to scale up

from single servers to thousands of machines, each offering local

computation and storage. Rather than rely on hardware to deliver

high-availability, the library itself is designed to detect and

handle failures at the application layer, so delivering a highly-

available service on top of a cluster of computers, each of which

may be prone to failures. Apache Spark is a fast and general

engine for large-scale data processing (Apache Spark

Organization). Spark provides a simple and expressive

programming model that supports a wide range of applications,

including ETL, machine learning, stream processing, and graph

computation. Spark takes new design philosophy to generalize

MapReduce process. It adds two novel peculiarities to Hadoop

MapReduce to support more general systems such as iterative,

interactive and streaming apps. One is general task directed

acyclic graph (DAG) model to schedule the execute stages, and

the other is sharing data in cluster memory to achieve higher IO

access speed. Proved by some experiments (Zaharia, Chowdhury,

Das, …, 2012), Spark RDDs can outperform Hadoop by 20× for

iterative jobs and can be used interactively to search a 1 TB

dataset with latencies of 5–7 seconds.

In recent years, some computing framework for spatial data has

been released. Hadoop-GIS is a scalable and high performance

spatial query system over MapReduce, provides an efficient

spatial query engine and an expressive SQL-like spatial query

language to process spatial queries, data and space based

partitioning, and query pipelines that parallelize queries

implicitly on MapReduce (Ablimit, Xiling, Hoang, …, 2013).

MD-HBase extends HBase, a Key-value store system, uses

linearization and related indexes to store multi-dimensional

spatial data in KV system (Nishimura, Das, Agrawal, 2011).

Parallel-Secondo extends Secondo using Hadoop as a parallel

distributed task scheduler (Lu, Guting, 2012). GeoTrellis

provides high performance raster input/output, geoprocessing

and web services using distributed processing to achieve quite

amazing throughput for large raster datasets. It uses the Hadoop

file system (HDFS) but replaces Hadoop's MapReduce with

Spark for distributed processing (Kini, Emanuele, 2014).

GeoMesa is a distributed spatio-temporal database built on top of

Hadoop and column-family databases such as Accumulo and

HBase, and it includes a suite of tools for indexing, managing and

analysing both vector and raster data (Hughes, Annex,

Eichelberger, …, 2015). SpatialHadoop is a full-fledged

MapReduce framework with native support for spatial data by

four layers of language, storage, MapReduce, and operations

(Eldawy, Mokbel, 2015). GeoSpark proposes spatial resilient

distributed datasets (SRDDs) and supplies geometrical

operations over Apache Spark platform (Yu, Wu, Sarwat, 2015).

∗Corresponding author

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

125

SpatialSpark implements only spatial data join query process

migrating from CUDA/Thrust compute platform to Spark (You,

Zhang, Gruenwald, 2015).

In this paper, a novel Apache Spark based computing framework

for spatial data is introduced. It leverages Spark as the under layer

to achieve better computing performance than Hadoop. 4 layers

architecture from low to high is proposed: spatial data storage,

spatial RDDs, spatial operations and spatial query language. All

managements of spatial data are mentioned around Apache

Hadoop and Spark ecosystem. (1) The spatial data storage using

HDFS to store large size of spatial data, vector or raster, in the

distribute cluster. (2) The spatial RDDs are abstract logistical

dataset of spatial data types and can be transferred to the spark

cluster to do spark transformations and actions. (3) Spatial

operations layer is a series of processing on spatial RDDs such as

range query, k nearest neighbour and spatial join. (4) Spatial

query language is a user-friendly interface which supplies people

not major in computer a comfortable way to operation the spatial

operation.

Comparing to other spatial framework based on spark, it is

highlighted that two-layers spatial indexing approach of global

and local indexes are used, which is inspired by SpatialHadoop

(Eldawy, Mokbel, 2015). The spatial indexes are migrated to

Spark successfully initiatively, so orders of magnitude better

performance than GeoSpark can be achieved. The differences to

other Hadoop and Spark spatial compute frameworks are the

close integration, both logical and physical, between Hadoop

HDFS and Spark spatial RDDs.

2. ARCHITECTURE

Figure 1. System Architecture

Figure 1 gives the high-level architecture of our system. 4 parts

of the system present clearly. Two types of users can use this

system in different level: (1) The casual user who knows the

business more than the IT technologies can access system by the

Spark SQL Language interface. (2) The developer who has

professional knowledge of Spark framework and programming

language can reuse of some operations in the system and can also

extend them to meet their own requests.

2.1 Spatial Spark SQL Language

Spatial Spark SQL language layer is the top interface between the

system and endpoint casual users. It can load data from a variety

of structured sources (e.g., JSON, Hive, and Parquet), lets you

query the data using SQL and provides rich extension of existing

data types and functions (Todd, 2016).

Several spatial data types are implemented in system, such as

point, rectangle and polygon. Some user-defined functions

(UDFs) are implemented to help processing spatial operations,

such as overlaps, distance, and boundary. Users can also extend

and register themselves’ UDFs in Python, Java and Scala.

The original work of introducing spatial data type and UDFs to

Spark make the whole framework easy to use and integrate

smoothly with existing non-spatial functions and operations such

as Filter, Join and Group By, just like PostGIS to PostgreSQL.

2.2 Storage Layer

The storage layer supports persistent spatial data either on local

disk or Hadoop file system (HDFS), but HDFS is recommended

for using in cluster environment. Because raw spatial files in

Hadoop do not support any indexes itself, we employ spatial

index structures within HDFS as a means of efficient retrieval of

spatial data. Indexing is the most important point in its superior

performance over other Spark spatial computing framework.

The index structure in SpatialHadoop (Eldawy, Mokbel, 2015) is

referenced in this paper, it is smart and elegant for spatial

indexing in HDFS. Two level indexing approach of global and

local indexes are proposed. Global index in HDFS name node

indicates the minimum boundary rectangle (MBR) of each

partitions of the spatial file. Local index is in each partition file

that can be processed in parallel in both MapReduce job and

Spark spatial RDDs transformations and actions.

Three phases process for indexing will be introduced. (1)

Partitioning: big input file will be spatially split into n partitions,

and n rectangles representing boundaries of the n partitions will

be calculated. Each partition should fit in one HDFS block size,

so an overhead ratio will be set for the overhead of replicating

records overlapped and storing local indexes. (2) Local Indexing:

requested index structure (e.g., Grid or R-tree) in each partition

block will be built flowed by the spatial data. The index structure

and spatial data is in the same partition block file. (3) Global

Indexing: all local index files will be concatenated into one file

that represents the final indexed file. It is constructed using bulk

loading and is stored in the name node of the Hadoop clusters.

The framework supplies an easy way to build index by running a

command line as following, then the spatial data file will be bulk

loaded and be split to a few block files by the giving index type

and block size.

shadoop index <input> <output> shape:<input format>

sindex:<index> blocksize:<size> -overwrite

2.2.1 Build index: Different types of indexes are built in

significant difference. The most two regular indexes, grid and R-

tree will be introduced.

(1) Grid. Grids are frequently the simplest index in use. It

partitions the data by a uniform grid, and the spatial object

overlapping with the same grid will be in the same partition. In

this paper, after the number of partitions n is calculated, the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

126

partition boundaries are computed by a ⌈√𝑛⌉×⌈√𝑛⌉ size grid. The

spatial object is replicated to every grid which is overlapped with

it. Because the grid index is a one-level flat index, the spatial data

in each grid cell are stored in no particular order.

(2) R-tree. R-tree was proposed by Antonin Guttman in 1984. It

is a balanced search tree, organizes the data in pages, and is

designed for storage on disk. A Sort-Tile-Recursive (STR)

algorithm is used to build an R-tree (Leutenegger, Scott T., Mario

Lopez, …, 1997). The general process is similar to building a B-

tree from a collection of keys by creating the leaf level first and

then creating each successively higher level until the root node is

created. After the number of partitions are calculated, we can tile

the spatial data space using ⌈√𝑛⌉ vertical slices so that each slice

contains enough rectangles to pack roughly ⌈√𝑛⌉ nodes. Then

sort the spatial object by x-coordinate and partition them into

⌈√𝑛⌉ slices. If the spatial object is not point, the coordinates of

center points of MBR is used in sort process. And then sort the

spatial object of each slice by its y-coordinate and pack them into

nodes of length
𝑟

𝑛
. In other words, the first

𝑟

𝑛
 records into the first

node, the next
𝑟

𝑛
 into the second node, and so on.

What needs to highlight here is sample records of spatial data is

used for partition process for efficiently reading very large input

file. The size of random sample is set to a default ratio of 1% of

the input file, with a maximum size of 100MB to ensure it fits in

memory.

And in local indexing phase, spatial objects in each partition are

bulk loaded into an R-tree also using the STR algorithm. Each

block is represented by the MBR of it records, and all the partition

blocks are concatenated into a global R-tree index using their

MBRs as the index key by bulk loading process. Spatial records

overlapping with multiple partitions will not be replicated, and

are assigned to the smallest area it overlaps.

2.2.2 Index File Structure: The file structures of two indexes,

grid and R-tree, are introduced for better understand the details

of index files in HDFS. We take the comma-separated values

(CSV) records of points as the example to see how organizes the

index file.

(1) Grid. A spatial grid index is stored in one HDFS folder

including one global index and partitioned blocks. Because the

grid index has not local index, so each partition is the row spatial

data format.

Figure 2. Global index structure

Figure 2 shows the structure of a global index. Eight fields here

describe the details of partition blocks. The first field is a natural

number index. The second to fifth field is the MBR of each

partition which is stored as left-bottom and right-top points

coordinates. The MBR can be used for early pruning file blocks

that do not contribute to required answer. The sixth field is the

spatial object counts of each partition, and the seventh field is the

size of each partition file in byte which can be used as the block

reading offset of each partition. The eighth field is the partition

name. The global structure is stored as one records each line with

the End-Of-Line (EOL) as the mark character.

(2) R-tree. The R-tree index folder has the same style and the

same global index structure as grid. Only differences are the local

index structure saved with the spatial data in monolithic one file.

Figure. 3 shows the R-tree local index file structure. Every block

file can be dived into three parts. The first part is the local R-tree

specification stored in binary format. The first 8 bytes is a file

type marker for verifying the R-tree file type and version. Then

following 4 integer values and each integer is stored in 4 bytes

binary format. These are tree size, height, degree, and element

count in order. The middle part is the R-tree nodes information.

Every R-tree node is stored in 36 bytes binary format. The first 4

bytes is the node sequence number saved in integer value, and the

following 4 double type values are the MBR’s coordinates of the

node every of which occurs 8byte.The last part is the real spatial

data storage. It is stored as the plain text format and each line one

record.

Figure 3. R-tree Local Index Structure

2.3 Spatial RDDs Layer

This Layer abstracts the storage of a variety of spatial data, and

support the uniform interface to top layers. The Spark Resilient

Distributed Datasets (RDDs) are extended to Spatial RDDs for

adapting the Spark data structure to spatial data. New spatial

RDD data types are implemented including point, line, rectangle

and polygon. They provide advanced traits which are difficultly

achieved in distributed computing environment, including

partitioned collection, fault-tolerant, and simple programming

interface.

Spatial RDDs are different with normal RDDs in two main

aspects. First is the special customized partitioning method which

can optimise the data distribution across the servers and

accelerate the spatial options on them by using GeoHash

encoding. Second is the spatial analysis functions support on

spatial RDDs, which can be easily used for spatial operation.

2.3.1 Partitioning. Users can control two important aspects

of SRDDs: persistence and partitioning. Users can indicate which

RDDs they will reuse and choose a storage strategy for them (e.g.,

in-memory storage). They can also ask that an RDD’s elements

be partitioned across machines based on a key in each record.

This is useful for placement optimizations on spatial data sets,

such as ensuring that two datasets that will be joined together are

geohash-partitioned in the same way.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

127

2.3.2 Fault tolerant. SRDDs are a fault-tolerant distributed

memory abstraction that avoids high costs replication within

network (Zaharia, Chowdhury, Das, …, 2012). They recognize

computing processes as a directed acyclic graph (DAG). Each

SRDD remembers the graph of operations used to build it,

similarly to batch computing models, and can efficiently

recompute data lost on failure. As long as the operations that

create RDDs are relatively coarse-grained, i.e., a single operation

applies to many data elements, this technique is much more

efficient than replicating the data over the network. RDDs work

well for a wide range of today’s spatial data-parallel algorithms

and programming models, all of which apply each

2.3.3 Programming interface. A spatial RDD is represented

as an object. Transformations and actions can be invoked using

methods on these objects. Programmers start by defining one or

more RDDs through transformations on data in stable storage

(e.g., map and filter). They can then use these SRDDs in actions,

which are operations that return a value to the application or

export data to a storage system. Examples of actions include

count (which returns the number of elements in the dataset),

collect (which returns the elements themselves), and save (which

outputs the dataset to a storage system).

2.4 Spatial Operations Layer

This layer implements spatial proximity analyses and geometry

processing. Three common spatial operation algorithms are

proposed using SRDDs: range query, KNN query, and spatial

join. They leverage spatial locality of data access technology and

spatial index to achieve better performance.

Two aspects of SRDDs: persistence and partitioning can be

controlled in spatial operations. We can indicate which RDDs

they will reuse and choose a storage strategy for them (e.g., in-

memory storage). They can also ask that an RDD’s elements be

partitioned across machines based on a key in each record. This

is useful for placement optimizations, such as ensuring that two

spatial datasets that will be joined together are hash-partitioned

in the same way.

Spatial operations can be divide into two types: plain operations

and improvement ones. The first type processes query by full

table scan, so it is bad in query efficiency. The second is

improved by spatial index and can achieve better performance.

We will reveal the differences in the following of this section

with spark transformations and action. The pseudocodes are

written by scala language in function programming style.

Plain operations are proposed firstly.

2.4.1 Range Query: A range query takes a set of points p and

a query range r as input, and return the set of points in p that

overlaps with r. Filter is a predefined function in Spark taking a

predicate function as the parameter, in which contains operation

is used. In consideration of lazy evaluation mechanism of Spark,

the collect action is used to trigger the operation.

def RangeQuery(Points p, Range r) {

p.filter(point=>r.contains(p)).collect()

}

2.4.2 K Nearest Neighbour: A kNN query takes a set of

spatial points p, a query point q, and an integer k as input, and

returns the k closest points in p to q. Map transformation is used

to compute the distance between every point in p and the query

point q, and then takeOrdered function of Spark action is used to

get the top k elements of the RDD using either their natural order

or a custom comparator.

def KNN(Points p, Point q, Int k){

p.map(point=>(Distance(p,q),point)).

takeOrdered(k)

}

2.4.3 Spatial Join: A spatial join takes two sets of spatial

records r and s and a spatial join predicate θ as input, and returns

the set of all pairs (r,s) where r ∈ R, s ∈ S, and θ is true for all

(r,s) tuple. The cartesian function of Spark is used to get all pairs

of R × S, and then all pairs should be filtered by the spatial join

predicate θ.

def SpatialJoin(R r, S s, func predicate𝜃){

r.cartesian(s).filter((r,s)=>predicate𝜃(r,s))

}

The improvement appears in two aspects. The first is GeoHash

code can be used in user define partitioning. When using memory

on a single machine, programmers worry about data layout

mainly to optimize lookups and to maximizes colocation of

information commonly accessed together. SRDDs give control

over the same concerns for distributed memory, by letting users

select a partitioning function and co-partition datasets, but they

avoid asking having users specify exactly where each partition

will be located. Thus, the runtime can efficiently place partitions

based on the available resources, and the query performance is

improved.

A GeoHash partition function GeoHashPartitioner is used to

process partitioning, which needs a partition number as the

parameter. It is recommended that partition number is equal to

the total number of CPU cores in cluster. PartitionBy() function

provide by Spark framework is used as following. In

consideration of different type of space-filling curves, Peano

curve is recommended to get better performance.

p.partitionBy(new GeoHashPartitioner(100)).persist()

The second is global and local indexes are used to reduce useless

scan time. Generally global index is used to tailor points in the

MBR which are certain not in the answer. For example, a range

query job provides a filter function that prunes file blocks with

MBRs completely outside the query range. Local index is used in

refining phrases which will make it more efficient than scanning

over all records.

3. EXPERIMENTS

This section provides experimental study for the performance of

the following variables: partition and index. No partition, spark

hash partition and spatial GeoHash partition are used in the

partition experiment, and no index, grid index and R-tree index

are used in the index experiment. Then a comparison experiment

of the new framework and GeoSpark is emerged to prove getting

a better performance.

Experimental Setup. Our cluster is running on Ali Cloud who is

the biggest public cloud provider in China. The setting of worker

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

128

server is as follows: (1) 4 Intel Xeon E5-2680 v3（Haswell）
CPU operating at 2.5GHz. (2) 8GB Memory. (3) Efficient cloud

disk with 3000 max IOPS. The experiment computing cluster

contains four workers.

Datasets. We use the TIGER file in these experiments, which is

a real dataset presenting spatial features in the US, such as

streets and rivers. We choose Zcta510 1.5GB dataset,

Areawater 6.5GB dataset and Edges 62GB dataset.

4. IMPACT OF PARTITION AND DATA SIZE

Figure 4. Range query experiments with different partition and

data size

Different partitioners are used to do range query on the three-

different size of dataset. The query time are shown in Figure 4.

As depicted in Figure 4, Spark HashPartitioner gets not

observably better performance than no partition, because regular

hash function on spatial data does not help for data aggregation

and data local, only GeoHash can achieve better performance

because of its spatial feature. Another thing to draw attention is

when the data size is over total memory of the cluster, query

performance will significantly decline, and the advantage of

GeoHash partition are not obviously. This because if data size is

outdistance the cluster memory, data persistent takes much more

time than data query. So it is recommend to get plenty of memory

in big data memory computing.

5. PERFORMANCE OF DIFFERENT INDEX

Figure 5. kNN experiments with different index and data size

As shown in Figure 5, kNN query using index can achieve better

performance than no index on Spark framework, and the query

time almost declines quickly with the increasing of data size. R-

tree appears better performance than Grid index no matter of

dataset size. This because in large dataset, the spatial data are in

order of MBR and most of the uncorrelated partitions will not be

read and scanned, and only the index will be read into memory

which size is much less than dataset size.

6. PERFORMANCE COMPARISON

Figure 6. Spatial join experiments with different frameworks

and data size

Different frameworks with R-tree index are used to evaluate the

performance. As depicted in Figure 6, new framework described

in this paper and GeoSpark cost more run time on the large

dataset than that on the small one. However, new framework

achieves much better run time performance than GeoSpark in

both three datasets. This superiority is more obvious on the large

dataset. The reason is that the new framework can use two-level

index structure and better optimization by GeoHash partitioner.

That accelerates the processing speed.

7. CONCLUSION

This paper introduced a new Apache Spark-based framework for

spatial data processing is proposed, which includes 4 layers:

spatial data storage, spatial RDDs, spatial operations, and spatial

query language. The spatial data storage layer uses HDFS to store

large size of spatial vector/raster data in the distribute cluster. The

spatial RDDs are the abstract logical dataset of spatial data types,

and can be transferred to the spark cluster to conduct spark

transformations and actions. The spatial operations layer is a

series of processing on spatial RDDs, such as range query, k

nearest neighbour and spatial join. The spatial query language is

a user-friendly interface which provide people not familiar with

Spark with a comfortable way to operation the spatial operation.

Compared with other spatial frameworks based on Spark, it is

highlighted that spatial indexes like grid, R-tree are used for data

storage and query. Extensive experiments on real system

prototype and real datasets show that better performance can be

achieved.

ACKNOWLEDGEMENTS

I give my thanks to NASG China and UN-GGIM who fund the

project of Geospatial Information Management Capacity

Development in China and Other Developing Countries and send

me to GMU for studying. I would like to extend my sincere

thanks to everyone in GMU CISC, who have helped me make

this thesis possible and better. Thanks to Doctor Chaowei Yang,

who gave me the vital direction of spatial big data and cloud

computing, and I also would like to the PhDs, Min Sun, Han Qin,

Fei Hu, Manzhu Yu, etc, I would miss the days working and

studying together. Sincere thanks to my wife and my mom who

0

500

1000

1500

2000

2500

Ti
m

e
(S

ec
o

n
d

)

Zcta510 1.5GB Areawater 6.5GB Edges 62GB

0

2000

4000

6000

8000

10000

No Index Grid Index R-tree Index

Ti
m

e
(S

ec
o

n
d

)

Zcta510 1.5GB Areawater 6.5GB Edges 62GB

0

100

200

300

400

500

600

new framework GeoSpark

Ti
m

e
(S

ec
o

n
d

)

Zcta510 1.5GB Areawater 6.5GB Edges 62GB

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

129

gave me great support to do the research, and thanks to my new

born daughter NianNian, hope you grow healthily and happy.

REFERENCES

Samet, H., 2015. Sorting Spatial Data. The International

Encyclopedia of Geography.

Gilbert, S. and Lynch, N., 2002. Brewer's conjecture and the

feasibility of consistent, available, partition-tolerant web services.

Acm Sigact News, 33(2), pp.51-59.

Apache Hadoop Orgnization. http://hadoop.apache.org

Apache Spark Orgnization. http://spark.apache.org/

Aji, A., Sun, X., Vo, H., Liu, Q., Lee, R., Zhang, X., Saltz, J. and

Wang, F., 2013, November. Demonstration of Hadoop-GIS: a

spatial data warehousing system over MapReduce. In

Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems (pp.

528-531). ACM.

Nishimura, S., Das, S., Agrawal, D. and El Abbadi, A., 2011,

June. Md-hbase: A scalable multi-dimensional data infrastructure

for location aware services. In Mobile Data Management (MDM),

2011 12th IEEE International Conference on (Vol. 1, pp. 7-16).

IEEE.

Lu, J. and Guting, R.H., 2012, December. Parallel secondo:

boosting database engines with hadoop. In Parallel and

Distributed Systems (ICPADS), 2012 IEEE 18th International

Conference on (pp. 738-743). IEEE.

Kini, A., and R. Emanuele. Geotrellis: Adding geospatial

capabilities to spark. In Spark Summit (2014).

Hughes, J.N., Annex, A., Eichelberger, C.N., Fox, A., Hulbert, A.

and Ronquest, M., 2015, May. Geomesa: a distributed

architecture for spatio-temporal fusion. In SPIE Defense+

Security (pp. 94730F-94730F). International Society for Optics

and Photonics.

Eldawy, A. and Mokbel, M.F., 2015, April. SpatialHadoop: A

MapReduce framework for spatial data. In Data Engineering

(ICDE), 2015 IEEE 31st International Conference on (pp. 1352-

1363). IEEE.

Yu, J., Wu, J. and Sarwat, M., 2015, November. Geospark: A

cluster computing framework for processing large-scale spatial

data. In Proceedings of the 23rd SIGSPATIAL International

Conference on Advances in Geographic Information Systems (p.

70). ACM.

You, S., Zhang, J. and Gruenwald, L., 2015, April. Large-scale

spatial join query processing in cloud. In Data Engineering

Workshops (ICDEW), 2015 31st IEEE International Conference

on (pp. 34-41). IEEE.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M.J., Shenker, S. and Stoica, I., 2012,

April. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation (pp. 2-2). USENIX Association.

Todd McGrath, 2016. “What Is Spark SQL?”,

https://dzone.com/articles/what-is-spark-sql

Guttman, A., 2015. R-Trees: A Dynamic Index Structure for

Spatial Searching. In Proceedings of the 1984 ACM SIGMOD

international conference on Management of data – SIGMOD '84 .

p. 47.

Leutenegger, Scott T., Mario Lopez, and Jeffrey Edgington, 1997.

STR: A simple and efficient algorithm for R-tree packing. In

Proceedings. 13th International Conference on. IEEE.

U.S. Census Bureau, http://www.census.gov/geo/www/tiger/.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-125-2017 | © Authors 2017. CC BY 4.0 License.

130

