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ABSTRACT: 

Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing 

over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high 

access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based 

on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial 

index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be 

processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing 

images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries 

executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region 

query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support 

a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems. 

* Corresponding author

1. INTRODUCTION

Spatial data are generated via specialized sensors with GPS 

devices recording geographical coordinates. They are usually 

divided into two types: raster data (Remote Sensing images) and 

vector data (points, lines, polygons). By linking attributes data 

with spatial extents, spatial data are of extreme value in many 

fields (Giuliani, Ray, & Lehmann, 2011), such as mining land-

use patterns, studying the impacts of the environment (e.g., 

weather, climate, biological diversity), and traffic management, 

and so on(Shekhar, Evans, Gunturi, & Yang, 2012). With the 

great development of Remote Sensing techniques and wide 

spread of mobile devices equipped with GPS, spatial data are no 

longer generated only by official land surveying offices and 

commercial companies, but also by citizens. Nearly continuous 

streams of all kinds of spatial data are generated every day(Ma, 

Wang, Liu, & Ranjan, 2015). NASA generates about 5 TB of 

data per day, and Google generates 25PB of data per day, of 

which spatial data account for a significant portion (Vatsavai et 

al., 2012). Plus the Web 2.0 technology enabling citizens to 

geo-tag all information and disseminate them, a big spatial data 

era has already come.  

Big spatial data provide us with more detailed information in 

terms of high spatial and temporal resolution(Shekhar et al., 

2012), and open up many new applications, such as fine-grained 

classification, damage assessments, and near real-time 

environment monitoring. However, the explosive growth in 

volume, velocity and variety of spatial data make it hard to 

manage and process with reasonable effort. In order to explore 

the data effectively, efficient spatial query is necessary (Yu, 

Jinxuan, & Mohamed, 2015). 

1.1 Spatial Region Query 

Spatial query is one of the fundamental operations in spatial 

data applications. There are three types of traditional spatial 

queries. The first is point query, which finds all objects that 

contain a given point. The second type is a geometric join query. 

The third type is region query, which finds out objects that 

intersect or covered by a given region (Samet, 1990). The 

common way of region query is to firstly define a polygon in 

the coordinate space, and then inquiries about certain spatial 

objects that are contained in, or overlap the query polygon (e.g., 

Return all lakes in Qinghai-Tibetan Plateau) (Larson & 

Frontiera, 2004). In order to handle such spatial queries, the 

records of all spatial element need to be checked by geometric 

computations. As each spatial polygon contains hundreds of 

points, common computational geometry algorithms used for 

verifying intersection of polygon pairs are polynomial 

complexity (Aji & Wang, 2012). Moreover, the increase in the 

amount of spatial polygons increases the region query 

processing time. Therefore, spatial region queries are compute-

intensive and time consuming, especially with large datasets. 

And optimization of region query becomes an important issue 

(Lupa & Pi, 2014). 

1.2 Spatial Index for Polygons 

The speed of spatial region queries is closely correlated with the 

data structure to organize the polygon data. As the exact 

boundaries of spatial polygons bring heavy geometric 

computations, they are only accessed when there is a need for 

precise calculation. In region query filed, the general processing 

method is a filter-and-refine approach. It reduces unnecessary 

computation and I/O cost by employing approximations of the 

polygons, such as the minimum boundary rectangles (MBRs). 

The general processing steps are as follows. First, spatial 

objects are filtered with MBR to eliminate those whose MBRs 
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are not intersect with the query polygon or not covered by it. 

Next, remaining candidate polygons from the filtering step are 

further refined with accurate geometry computation. Finally, 

objects which satisfy the query conditions are selected out for 

further processing such as calculating areas and perimeters. In 

addition, spatial index is a key component for enabling efficient 

range queries and rapid response for users.  Many common 

spatial indexes have been adopted, such as such as grid file, 

KD-Tree (Bentley, 1975), R-Tree (Guttman, 1984), Quad-Tree 

(Samet, 1984), and their variants (Procopiuc, Agarwal, Arge, & 

Vitter, 2003). The basic idea is to partition data in all kinds of 

ways. For example, in quadtree, the two-dimensional space is 

recursively divided into four quadrants; In R-Tree, nearby 

spatial objects are grouped together and are put in different 

levels of the tree. 

 

However, as the volume of available spatial data increases 

tremendously, combined with the complexity of spatial queries, 

there are great challenges on effective region queries. Firstly, 

the distribution of the whole dataset is difficult to obtain. With 

various kinds of distribution of spatial polygons, one index 

method is not suitable. Secondly, with huge datasets, depth of 

the index tree will be large, or the index file can be large. 

Moreover, calculating all intersected spatial polygons in a 

spatial region query is not only time-consuming, but also 

useless. In this paper, based on k-d tree, we introduce a 

distributed KD-Tree (DKD-Tree) which is suitbable for polygon 

data, and a two-step query algorithm. The spatial index 

construction is recursive and iterative, and the query is an in 

memory process. Both the index and query methods can be 

processed in parallel. At last, they are implemented based on 

HDFS, Spark parallel computing framework and Redis memory 

cache. 

 

The rest of this paper is organized as follows. After a 

description of related work in Section 2, we give a detailed 

illustration of our method including the construction and 

parallelization implementation of the proposed index data 

structure, and the two-step query algorithm in Section 3. Then 

in the following section, we present our experiments and give 

an analysis and a discussion of our experiment results. In 

Section 5, we conclude our work and provide an outlook of the 

future work. 

 

2. RELATED WORK  

2.1 Parallel and Distributed Spatial Data Indexing 

Spatial oriented queries involve heavy geometric computations 

for spatial filtering and measurements, and require high 

performance computations to support fast response of queries 

(Aji et al., 2012). Query parallelism is a significant issue of 

query processing. Parallel R-tree (Kamel & Faloutsos, 1992) is 

designed for shared-disk environments. However, the spatial 

indexes only improve data retrieval efficiency, and they are 

regardless of I/O throughput and spatial computation capability. 

Thus, they cannot achieve efficient spatial query processing that 

involves massive spatial data and concurrent users. There are 

also some approaches that have been designed for parallel 

databases and cluster systems. Apostolos studied the index 

parallel batch loading algorithm in parallel spatial database 

(Papadopoulos & Manolopoulos, 2003). The Paradise project of 

Wisconsin University runs on a parallel database (Akdogan, 

Demiryurek, Banaei-Kashani, & Shahabi, 2010). Guo Jing 

proposed H2R-tree, which was built on spatial grid and Hilbert 

curve (Jing, Guangjun, Xurong, & Lei, 2006). However, these 

are only suitable to the systems which have limited parallel 

processing capability. 

 

Hadoop is a series of technology for distributed storage and 

processing of big data. The core of Hadoop consists of two parts, 

a storage part Hadoop Distributed File System (HDFS) and a 

processing part MapReduce (Dean & Ghemawat, 2004). HDFS 

enhances the I/O performance of data storage and ensures that 

the distributed storage system is scalable, fault tolerant. 

MapReduce is a programming model and an associated 

implementation for processing massive amount of data sets. 

Hadoop has achieved an unprecedented success in 

implementing many real-world distributed tasks. There are some 

researches focus on spatial data storage and query under 

Hadoop framework, such as SpatialHadoop (Eldawy & Mokbel, 

2015), Hadoop-GIS (Aji et al., 2013), SciHive (Geng, Huang, 

Zhu, Ruan, & Yang, 2013), GeoMesa (Fox, Eichelberger, 

Hughes, & Lyon, 2013), Terry Fly (Cary, Yesha, Adjouadi, & 

Rishe, 2010), and GeoBase (Li, Hu, Schnase, & Duffy, 2016), 

and so on. However, the coupling among MapReduce model 

and HDFS is high. And it often needs a large number of reads 

and writes from HDFS. Thus, it is not suitable for applications 

with iterative computation, and it is hard to achieve real-time 

query response. 

 

Spark is an in memory based computing framework, which can 

effectively avoid high frequency of read and write operations 

from HDFS. It does not need to save the intermediate results to 

HDFS. Meanwhile it retains the excellent properties of 

MapReduce. A Resilient Distributed Dataset (RDD) (Zaharia, 

Chowdhury, Das, & Dave, 2012) is a basic abstraction in Spark. 

It is a logical collection of data partitioned across machines and 

can be rebuilt if a partition is lost. An RDD can be explicitly 

cached in memory across machines and reused for later 

MapReduce-like parallel operations. For the algorithms with 

iterative computation, the intermediate RDD data sets do not 

need to read and to write from the hard disk at each iterative 

manner. This is one of the major reasons why Spark works 

faster. Besides, Spark has an advanced DAG execution engine 

that supports in memory computing. So Spark is a fast and 

general engine for large scale data processing which is suited 

for iterative computation. Considering the above advantages of 

Spark, we combine Spark in our method and employ Spark for 

implementation in the paper. 

 

2.2 Tree Index for Spatial Region Query 

Quadtree is one of the earliest structure used to index spatial 

polygons. Because quadtree nodes that intersect the query 

polygon may contain many polygons which do not intersect 

with the query polygon, a lot of intersection computation are 

needed on each polygon. As a result, the efficiency of quadtree 

is not high. The most common improvement method is using a 

more compact representation of each polygon. So a number 

variants of quedtree for polygon index appears, among which 

the most popular one is the R-Tree. In R-Tree data structure, 

each node in the tree represents the smallest rectangle that 

encloses its son nodes. As there are no definite node splitting 

method, when applying R-Tree index, the polygon data has to 

be understood first.  

 

Another spatial index is the k-d tree (or multidimensional 

binary search tree) where k is the dimensionality of the search 

space. It was firstly described in 1975 by Bentley in a 

theoretical paper (Bentley, 1975). It is a data structure to store 

data points to be retrieved by associative searches. A significant 
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advantage of this structure is that a single data structure can 

handle many types of queries very efficiently. If data are 

represented as a k-d tree, then each record is stored as a node in 

the tree, and each node is associated with a discriminator. For k 

keys, there are k discriminators, which are defined as DISC[0], 

DISC[1], … , DISC[K-1] respectively. All nodes on any given 

level of the tree have the same discriminator. The root node has 

discriminator DISC[0], its two sons have discriminator DISC[1], 

and so on to the kth level on which the discriminator is DISC[k-

1]; the (k+1)th level has discriminator DISC[0], and the cycle 

repeats. 

 

The construction of k-d tree is as follows: Start with a large 

rectangular region that contains all the data points to be put into 

the tree. This large rectangle represents the root of the k-d tree 

(Rosenberg, 1985). Then by comparing with discriminators, the 

multi-dimensional space is split recursively into subspaces. All 

these subspaces are organized in a systematic manner as a 

search tree. And it is terminated at the maximum depth or when 

the data associated with each node is sufficiently small.  

 

K-d tree is a superior serial data structure. However, it is 

unsuitable for indexing non-zero size objects such as lines and 

polygons. Moreover, k-d tree is hard to be implemented in 

parallel (Samet, 1990). So in this paper, the DKD-tree which 

not only provides efficient retrieval of polygons but also runs in 

distributed environment are presented. 

 

3. METHODOLOGIES 

3.1  DKD-Tree Index 

3.1.1 DKD-Tree construction principle: DKD 

tree is substantially a two-dimensional search tree. Branching 

on odd levels is done with respect to the first key, and 

branching on even levels is done with respect to the second 

key. The root is arbitrarily chosen to be an odd level. Spatial 

polygon data has two dimensions which are longitude and 

latitude. Here we use X and Y to represent longitude and 

latitude coordinates. And X and Y are the two keys to split the 

DKD tree. 

 

The principle of constructing DKD Tree is as follows: 

1) Construct the root node.  

The root node corresponds to the MBR containing all 

polygons  

2) Chose the first key to split the root node. 

Calculate the minimum longitude (minX), minimum 

latitude (minY), maximum longitude (maxX) and 

maximum latitude (maxY) for each polygon, and the total 

number N of all polygons. Then, calculate variance for 

maxX and maxY (VarmaxX, VarmaxY) according to 

Equations 1 to Equation 4. The dimension with larger 

variance values is chosen as the first key to split the root 

node, and the other dimension is the second key. In this 

paper, we assume that X is the dimension with larger 

variance value of MaxX.  
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3) Split the tree into three sub trees by the split point. 

In order to build a balanced tree, compute the medium 

value of selected dimension as the split point. Use the 

medium value to divide the node to three sub-nodes. 

Suppose the selected dimension is X. The three sub-nodes 

are calculated as following:  

Left sub-node consist of polygons whose maxX are 

less than the calculated medium.  

Right sub-node consist of polygons whose minX is 

greater than the calculated medium.  

Medium sub-node consist of polygons that are neither 

contained in the Left sub-node and the Right sub-node. 

4) Split the tree recursively by cycling through the two 

keys at each level. 

In this case, Y is used as the split key for the next 

level of the tree, and then X again. 

5) Stop splitting the tree until the number of polygons 

contained in the current node is less than a given threshold 

or the depth of the tree is larger than a given threshold. At 

this time the current node is a leaf node. 

 

The partitioning process is described in Figure1 and Figure 2 is 

the corresponding tree structure. 
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Figure 1. Spatial polygons partition process 
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Figure 2. the DKD Tree and the records it represents 

As it is shown in figure 1, rectangles marked from r1 to r18 with 

grey background color are MBRs of 18 spatial polygons. MBR 

is an expression of the maximum extents of a 2-dimensional 

spatial object, and is frequently used as an indication of the 

general position of spatial object (Zhong et al., 2012). The 
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biggest rectangle is the MBR of the root node. Here we are 

assuming that the latitude (X axis) has greater variance. So the 

split point is the medium of the longitude of these 18 MBRs. 

Therefore, the splitting plane is determined by the solid line 

which passes through the right margin of r9 and 

perpendicular to X axis. The splitting plane divides the root to 

three sub-node. Node1 consists of polygons which are allocated 

at the left of the splitting plane, including r1, r2, r3, r4, r5 and 

r12. Node3 consists of polygons on the right of the splitting 

plane, which are r7, r14, r15, r16, r17, r18. Node2 consists of 

the polygons which intersect with the splitting plane. They are 

r6, r8, r9, r10, r11, r13. The partition process for node1, node2, 

node3 is the same with the root node, except that the splitting 

plane is the medium of the latitude and it is perpendicular to Y 

axis. The final data structure for the 18 polygons is shown in 

figure 2. If the search reaches a node with coordinate values (e, 

f) and DKD_COMPARE(query polygon, (e, f))=”RIGHT”, then 

there is no need to examine any nodes in the left subtree of (e, f). 

By avoiding examining many nodes, the DKD-Tree data 

structure serves as a pruning device on the amount of search 

required. 

 

3.1.2 Building DKD Tree with Spark: The detailed DKD-

Tree construction is as following: 

 

1) Construct root node of DKD-Tree. The features of the 

root node include the number of all polygons N, MBR of 

each polygon, VarmaxX and VarmaxY.  

2) Save the root node to a queue named as rootQueue. 

Then pop a node from the top of rootQueue as 

currentRootNode.  

3) Save currentRootNode to a queue named as 

treeQueue and construct a subtree for currentRootNode. 

4) Pop a node from the top of treeQueue as currentNode.  

There are three cases for the processing of the node： 

a) If the number of polygons of the current node is 

less than the pre-defined minimum threshold, 

stop to divide the node.  

b) If the depth of the current tree is greater than the 

pre-defined maximum threshold, stop to divide 

the node. Serialize the current tree to HDFS. And 

add the node into rootQueue. 

c) Otherwise, split the node into three sub-nodes 

according to the method described in section 3.1. 

And add these sub-nodes into treeQueue. 

5) Save the data of all the leaf nodes to HDFS as a 

document and allocate a unique regionID as the name of 

the document. HDFS creates one block for each file, and 

file blocks are distributed across cluster nodes for load 

balancing (Zhong et al., 2012).  

6) Repeat step 4 and 5 until the treeQueue is empty.  

 

The pseudo-code for the parallel construction of DKD-Tree on 

Spark is given in algorithm1. 

 

 

Algorithm 1  the Parallel Construction of DKD-Tree on 

Spark 

 
Input： (sc:SparkContext, inPath:String, outputParts:String, 

outputTree:String,   maxCount:Long, maxDepth:Int) 

Output：(dkdtree,partitions) 

// build of the dkdtree 

1：function buildDKDTree (sc, inPath, outputParts, 

outputTree, maxCount, maxDepth) 

2： linesRDD= sc.textFile(inPath) // read all the files from 

hdfs  

3： .map({ 

4：  parseLine() // parse each row of data 

5： }).cache // cache data to memory 

6： rootNode = buildNode(linesRDD) 

7:        Initialize the queue rootQueue 

8：     rootQueue.enqueue(rootNode) 

9： while rootQueue.size != 0 do 

10： rootNode = rootQueue.dequeue() 

11： buildSubTree (rootNode, rootQueue, maxCount, 

maxDepth) 

12： savePartitions(outputParts) // save partitions data 

into HDFS 

13： saveSubTree(outputTree) // save sub-tree data into 

HDFS 

14：    end while 

15： end function 

 

// build of the sub-tree 

1：function buildSubTree(rootNode, rootQueue, maxCount, 

maxDepth) 

2：    Initialize the queue currentTreeQueue 

3：    currentTreeQueue.enqueue(rootNode) 

4：    while currentTreeQueue.size != 0 do 

5： node = currentTreeQueue.dequeue() 

6： if node.count > maxCount then 

7: The current node is split into three children 

nodes, save to the set 

8: for childrenNode in set do 

9: if childrenNode.depth == maxDepth then 

10:      rootQueue.enqueue(childrenNode) 

11:  else  

12: currentTreeQueue.enqueue(childrenNode) 

13:  end if 

14: end for 

15： end if 

16：    end while 

17： end function 

 
   

3.2 Region Query Method with DKD-Tree 

The region query algorithm based on DKD tree we propose 

consists of two phases. The first phase is named as Counting 

Query, during which the number of all the polygons intersecting 

with the given region and the distribution of the results are 

computed. In the second phase, only several polygons are 

returned first. The polygons returned are determined by the 

whole results set and the number of pages displaying query 

results. This phase is called Paging Query. 

 

3.2.1 Counting Query: In this subsection, we will give a 

detailed process of Counting Query. 

 

1) Read all the subtrees using the strategy of inorder 

traversal from HDFS and deserialize them to all the cluster 

nodes. 

2) Perform the query in parallel on different nodes. 

a) If the given polygon for the query is completely 

covered by the MBR of a tree node, it will not 
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need to perform intersect calculations. For a leaf 

node, the (regionID, count) of the node is 

returned. And for a none-leaf node, (regionID, 

count) pairs of all leaf nodes belonging to the 

current none-leaf node are returned. 

b) If the given query polygon is partly intersect with

the MBR of a tree node, perform intersect

calculation. For a leaf node, read the data files

with corresponding name regionID from HDFS

and calculate the number of polygons intersecting

the query polygon. For a none-leaf node perform

intersect estimation recursively for all its sub-

nodes.

3) Collect the results obtained in (2), and sort the results

by regionID. Save the results as a resultList:

[(regionID1,count1),(regionID2,count2),……]. Then 

cache the results to Redis in the form of (query polygon, 

resultList). 
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Figure 3. Illustration of the Counting Query process 

Figure 3 is an illustration of the Counting Query process. In Fig. 

3, the polygon of black solid line is the given query polygon. 

Polygons r1 to Polygon r18 are to be retrieved. First, execute 

query operation on all subtrees and find out polygons 

intersecting the query region. MBRs of node12, node22 and 

node23 are completely covered by the query polygon. Therefore, 

there is no need to perform intersect calculation for these three 

nodes. MBRs of Node11 and node32 intersect with the query 

polygon. So the intersect calculation should be performed for 

these two nodes. Say the naming rules of regionID for each 

node is “id_”+nodename, in this case the results cached to 

Redis is (query polygon, [(id_node12,2), 

(id_node22,2),(id_node23,2),(id_node32,2)]. 

3.2.2 Paging Query: When the volume of data to be 

retrieved is huge, the general method to display the results is 

via paging. Thus, after the total number of intersected 

polygons and the regionIDs of leaf nodes containing 

intersected polygons are calculated, the Paging Query process 

is performed. 

1) Read the cached results (query polygon, resultList)

from Redis.

2) Calculate the total number of retrieved polygons by

formula 6.

1
to ta lN u m  =  

N

i
c o u n t i

 (6) 

Where N is the length of the resultList. 

3) Give the pageNum (a page number) and pageSize (the

number of records that can be displayed in one page). The

pageNum should be smaller that [totalNum/pageSize]+1.

4) Compute the range of regionIDs of leaf nodes where

the data to be displayed in the pageNum-th page are stored

in. The formulas are as follows:

1 2
re g io n ID ( ) ,   1

P

M in

c o u n t c o u n t c o u n t
m im P P s a tis fy p a g e N u m

p a g e S iz e

  
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 (7) 

1 2

reg io n ID ( ),   
Q

M a x

co u n t co u n t co u n t
m im Q Q sa tis fy p a g eN u m

p a g eS ize

  
 

 (8) 

Where 1 1(P , P + , ,Q ,Q ), P Q    are the regionIDs 

of the leaf nodes where data to be displayed in the current pager 

are stored in. 

5) Calculate polygons intersecting query polygon in leaf

nodes of 1 1(P , P + , ,Q ,Q )  in parallel.

6) Sort all polygons intersecting query polygon in leaf

nodes of 1 1(P , P + , ,Q ,Q )  .

7) For nodes P and Q at both ends of the regionIDs

range, only some of polygons that intersect the query

polygon are returned. For leaf node P, return the last Pr

retrieved polygons. And for leaf node Q, return the first Qt

retrieved polygons. Formulas to calculate Pr and Qt are as

follows:

1 2
( )

( 1)

P
P r c o u n t c o u n t c o u n t

p a g e S iz e p a g e N u m
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 
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1

2 2 1

(

)
Q Q

Q t p a g e S iz e p a g e N u m c o u n t

c o u n t c o u n t c o u n t
 

   

  

(10) 

8) All retrieved polygons in leaf nodes of 

… ,(P + 1 , P + 2 , Q 2 ,Q 1 )   are displayed in 

pageNum-th page directly. 

4. PERFORMANCE EVALUATION

4.1 Experiment Design 

4.1.1 Experiment data: Experiments are executed on 

metadata of Remote Sensing images provided by Geospatial 

Data Cloud (GSCloud, http://www.gscloud.cn), an open cloud 

platform which provides diverse and huge volume of 

geospatial data for the public. In GSCloud, each metadata is a 

polygon, representing the spatial extent of corresponding 

satellite image. Users can search Remote Sensing images 

covering certain geographic regions by drawing polygons on 

the map. The interface of data retrieval of GSCloud is shown 

in figure 4. By building index on the metadata, the efficiency 

of retrieving satellite images can be greatly improved. The 

volume of the metadata used in our experiments is 8.65 

million records.  
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Figure 4. Illustration of experiment data 

4.1.2 Software Platform: The experiments were conducted 

on a Spark cluster (version 1.5.2) consisting of three physical 

machines. Each machine was configured with Intel(R) Xeon(R) 

E5504 @ 2.00GHz 8-processor CPU, 32GB of RAM and 

150GB of hard disk. The operating system is Fedora release 22 

x86_64, and the Hadoop version is 2.6.0. All programs were 

implemented by Java1.8 and Scala2.10.4. Spatial database 

PostgreSQL was used as a comparison. The configuration of 

the database server is the same to that of a single machine in 

the Spark cluster. All the configurations of PostgreSQL are 

default. 

4.1.3 Strategies:In order to achieve real-time performance, 

some optimization measures are taken first which are as 

follows: 

1) In order to avoid the time cost for starting and

stopping Spark tasks, we use RPC (Remote Procedure Call)

to make Spark tasks resident in memory.

2) We deserialize and distribute all the subtrees to all the

cluster nodes to achieve parallel query processing.

3) We cache all the data in memory to avoid reading data

from HDFS. If the cluster do not have enough memory

space to cache all the data, Spark will allocate 60% of the

memory space to cache data and 40% of the memory space

to perform calculations.

4) In the Counting Query, we use Redis to cache the

results. The results are stored in the form of regionID-

count pairs.

4.2 Results and Discussion 

To evaluate the efficiency and scalability of the method, four 

experiments were carried out. The first two experiments 

evaluated the efficiency of Counting Query and Paging Query 

under the condition of different sizes of the query polygon 

respectively. Four cases were evaluated, which were 

PostgreSQL without GIST index, PostgreSQL with GIST index, 

Spark cluster without DKD-Tree index, and Spark cluster with 

DKD-Tree index. The third experiment evaluated the scalability 

of the method by comparing query time under Spark and DKD-

Tree Spark. The last experiment evaluated the improvement of 

our method by avoiding a large number of polygon intersection 

calculation operations. 

4.2.1 Evaluation of Counting Query: In this experiment, 

we evaluated the performance of our index in terms of 

Counting Query response time under the condition that the 

size of the query polygon varies. The area ratio of the query 

polygon to the MBR of the total experiment data set ranges 

from 0.05 to 1. The results are shown in Figure 5. 

Figure 5. Counting Query in Different Sizes of the Query 

Polygon 

The result in Figure 5 shows that the performance of Spark 

cluster with DKD-Tree is the best. The query response time of 

Spark cluster without DKD-Tree index is 6 times longer than 

our method, and the other two methods are about 5-60 times 

longer. This is because that polygon intersection operation is 

CPU-intensive. As Spark cluster is based on distributed parallel 

computation framework, it can use the CPU resources 

efficiently. While the computation of PostgreSQL is executed 

on a single core, so it is much slower. Besides, we can also see 

that the query time of PostgreSQL without GIST index is 

shorter than that of PostgreSQL with GIST index. That is 

because in case of large dataset, the depth of GIST index tree is 

deep, and the number of nodes is large, which results in a large 

index file. As a result, the query response time will be longer. 

In addition, we can see that with the size of the query polygon 

increasing, the query response time of Spark cluster with DKD-

Tree shows downward trend in the overall. The reason is that as 

the size of the query polygon increases, the MBR of the query 

polygon can fully cover more MBRs. When a MBR is fully 

covered by the MBR of the query polygon, it do not need to 

perform intersection calculation. Only a determination of 

whether the polygon is fully covered by the query polygon is 

enough. So the query response time is short. 

4.2.2 Evaluation of Paging Query: In this experiment, we 

evaluated the performance of our index in terms of Paging 

Query response time under the condition that the size of the 

query polygon varies. For a given page number, we return 10 

polygons that interest with the query polygon for display. The 

polygons are displayed in ID order. The results of this 

experiment is shown in Figure 6. 

As shown in Figure 6, the query speed of Spark cluster with 

DKD-Tree is the fastest. That is because as the distribution of 

query results are obtained by Counting query phase, polygon 

intersection calculations are performed only on polygons that 

will be displayed in the specified current page. While for the 

other three cases, intersection calculations for all the polygons 

are needed. Also, the Paging Query must use ORDER BY SQL 

statement to get a global order when we use the SQL statement 

of LIMIT and OFFSET in database. And global ordering will 

take a long time. However, in with Spark cluster with DKD-

Tree index, the number of polygons that need to be ordered is 

small, only polygons that will be displayed in the specified page. 

So the time spent in ordering will be greatly reduced. Moreover, 

as the sort process is stand-alone, it does not consume the 

resources of the cluster. However, in the case of PostgreSQL 
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without GIST index, and PostgreSQL with GIST index, larger 

area contains more number of polygons and thus leads to longer 

processing time. 

Figure 6. Paging Query in Different Sizes of the Query Polygon

4.2.3 Counting Query in Different Number of CPU: In 

this experiment, the scalability of our method is evaluated by 

comparing Counting Query response time under different 

number of CPUs are evaluated. The area ratio of query 

polygon to the MBR of the total experiment dataset is set to 

0.5. Only two cases are tested in this experiment which are 

Spark cluster with DKD-Tree and Spark cluster without index. 

The results are shown in Figure 7. 

Figure 7.  Counting Query with Different Number of Cores 

As shown in Figure 7, the query time decreases with the number 

of cores increasing for both Spark cluster with DKD-Tree index 

and Spark cluster without DKD-Tree index. In Spark cluster 

node, the greater the number of cores, the more tasks can be 

executed in parallel. As the Spark cluster has good 

expandability, when the data volume grows, we can improve the 

query performance by adding the number of cluster cores.  

4.2.4 Evaluation of the Advantage of Avoiding 

Intersection Calculation for Fully Covered Regions: The 

Spark with DKD-tree index can avoid intersection calculation 

when the query polygon fully cover the MBR of all polygons 

in a DKD-tree leaf node. In this experiment, we study the 

impact of varying the area of query polygon on average 

response time of our proposed DKD-Tree querying processing 

technique. 

Twenty different query polygons are selected, the area ratio of 

which to the MBR of the total experiment data set ranges from 

0.05 to 1. In the top half of Figure 8, the red columns stand for 

the number of DKD-tree nodes (partitions) intersect with the 

query polygon. The blue columns mean the number of DKD-

tree nodes (partitions) that are fully covered by the query 

polygon. As illustrated in Figure 8, the number of fully covered 

partitions increases when the area of query polygon is larger. 

When the query polygon fully covers the MBR of the total 

experiment dataset, the number of partitions that intersects with 

the query polygon is 0. At this time, no polygon intersection 

calculation is needed. 

Figure 8. The advantage of Avoiding Intersection Calculation 

for Fully Covered Regions 

In the bottom half of Figure 8, the blue curve shows the query 

time in the case of avoiding polygon intersection calculation for 

the polygons in partitions that are fully covered by query 

polygon. And the red curve shows the corresponding query time 

by performing polygon intersection calculation on all polygons. 

It clearly illustrates that our approach is very efficient by 

avoiding a large number of polygon intersection calculations. 

5. CONCLUSIONS

In this paper we investigated the problem of efficient region 

querying of massive spatial data in parallel. To this end, we 

have presented a DKD-tree index to facilitate the processing of 

region queries concerning spatial polygons. And we implement 

the parallel construction of DKD-Tree based on Spark. Besides, 

we provide a two-step region query algorithm to achieve real-

time query. In the first step which is called Counting Query, we 

return the distribution of number and regionIDs of the query 

result. In the second step, which is Paging Query, the polygons 

to be displayed on the specified page are returned. The parallel 

query based on DKD-tree can avoid polygon intersection 

calculation for those that are fully covered by the query polygon. 

Meanwhile, it does not need to collect data from all nodes in the 

cluster. Several experiments on the proposed method are 

performed using a real polygon dataset which are metadata of 

satellite images. The experimental results show that our method 

can significantly speed up the region query processing. 

Moreover, our method has good scalability with more cores can 

be added. So it has a great advantage in the case of increased 

data volume. 

The goal of this paper is to address the challenges for efficient 

and scalable region query. The next step of our research will 

mainly focus on improving our method to support other types of 

query. 
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