
A NOVEL APPROACH OF INDEXING AND RETRIEVING SPATIAL POLYGONS FOR

EFFICIENT SPATIAL REGION QUERIES

J.H. Zhao a,b, X.Z. Wang a, *, F.Y. Wang a,b, Z.H. Shen a, Y.C. Zhou a , Y.L. Wang c

a Computer Network Information Center, Chinese Academy of Sciences, Beijing, China 100190 - (zjh, wxz, wfy, bluejoe

zyc)@cnic.cn
b University of Chinese Academy of Sciences, Beijing 100049

c Lawrence University, Appleton, Wisconsin, United States 54911 - wangyo@lawrence.edu

KEY WORDS: Spatial Region Query, DKD-Tree, Spatial Polygon Indexing, Spark, Retrieval Efficiency

ABSTRACT:

Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing

over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high

access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based

on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial

index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be

processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing

images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries

executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region

query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support

a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

* Corresponding author

1. INTRODUCTION

Spatial data are generated via specialized sensors with GPS

devices recording geographical coordinates. They are usually

divided into two types: raster data (Remote Sensing images) and

vector data (points, lines, polygons). By linking attributes data

with spatial extents, spatial data are of extreme value in many

fields (Giuliani, Ray, & Lehmann, 2011), such as mining land-

use patterns, studying the impacts of the environment (e.g.,

weather, climate, biological diversity), and traffic management,

and so on(Shekhar, Evans, Gunturi, & Yang, 2012). With the

great development of Remote Sensing techniques and wide

spread of mobile devices equipped with GPS, spatial data are no

longer generated only by official land surveying offices and

commercial companies, but also by citizens. Nearly continuous

streams of all kinds of spatial data are generated every day(Ma,

Wang, Liu, & Ranjan, 2015). NASA generates about 5 TB of

data per day, and Google generates 25PB of data per day, of

which spatial data account for a significant portion (Vatsavai et

al., 2012). Plus the Web 2.0 technology enabling citizens to

geo-tag all information and disseminate them, a big spatial data

era has already come.

Big spatial data provide us with more detailed information in

terms of high spatial and temporal resolution(Shekhar et al.,

2012), and open up many new applications, such as fine-grained

classification, damage assessments, and near real-time

environment monitoring. However, the explosive growth in

volume, velocity and variety of spatial data make it hard to

manage and process with reasonable effort. In order to explore

the data effectively, efficient spatial query is necessary (Yu,

Jinxuan, & Mohamed, 2015).

1.1 Spatial Region Query

Spatial query is one of the fundamental operations in spatial

data applications. There are three types of traditional spatial

queries. The first is point query, which finds all objects that

contain a given point. The second type is a geometric join query.

The third type is region query, which finds out objects that

intersect or covered by a given region (Samet, 1990). The

common way of region query is to firstly define a polygon in

the coordinate space, and then inquiries about certain spatial

objects that are contained in, or overlap the query polygon (e.g.,

Return all lakes in Qinghai-Tibetan Plateau) (Larson &

Frontiera, 2004). In order to handle such spatial queries, the

records of all spatial element need to be checked by geometric

computations. As each spatial polygon contains hundreds of

points, common computational geometry algorithms used for

verifying intersection of polygon pairs are polynomial

complexity (Aji & Wang, 2012). Moreover, the increase in the

amount of spatial polygons increases the region query

processing time. Therefore, spatial region queries are compute-

intensive and time consuming, especially with large datasets.

And optimization of region query becomes an important issue

(Lupa & Pi, 2014).

1.2 Spatial Index for Polygons

The speed of spatial region queries is closely correlated with the

data structure to organize the polygon data. As the exact

boundaries of spatial polygons bring heavy geometric

computations, they are only accessed when there is a need for

precise calculation. In region query filed, the general processing

method is a filter-and-refine approach. It reduces unnecessary

computation and I/O cost by employing approximations of the

polygons, such as the minimum boundary rectangles (MBRs).

The general processing steps are as follows. First, spatial

objects are filtered with MBR to eliminate those whose MBRs

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

131

are not intersect with the query polygon or not covered by it.

Next, remaining candidate polygons from the filtering step are

further refined with accurate geometry computation. Finally,

objects which satisfy the query conditions are selected out for

further processing such as calculating areas and perimeters. In

addition, spatial index is a key component for enabling efficient

range queries and rapid response for users. Many common

spatial indexes have been adopted, such as such as grid file,

KD-Tree (Bentley, 1975), R-Tree (Guttman, 1984), Quad-Tree

(Samet, 1984), and their variants (Procopiuc, Agarwal, Arge, &

Vitter, 2003). The basic idea is to partition data in all kinds of

ways. For example, in quadtree, the two-dimensional space is

recursively divided into four quadrants; In R-Tree, nearby

spatial objects are grouped together and are put in different

levels of the tree.

However, as the volume of available spatial data increases

tremendously, combined with the complexity of spatial queries,

there are great challenges on effective region queries. Firstly,

the distribution of the whole dataset is difficult to obtain. With

various kinds of distribution of spatial polygons, one index

method is not suitable. Secondly, with huge datasets, depth of

the index tree will be large, or the index file can be large.

Moreover, calculating all intersected spatial polygons in a

spatial region query is not only time-consuming, but also

useless. In this paper, based on k-d tree, we introduce a

distributed KD-Tree (DKD-Tree) which is suitbable for polygon

data, and a two-step query algorithm. The spatial index

construction is recursive and iterative, and the query is an in

memory process. Both the index and query methods can be

processed in parallel. At last, they are implemented based on

HDFS, Spark parallel computing framework and Redis memory

cache.

The rest of this paper is organized as follows. After a

description of related work in Section 2, we give a detailed

illustration of our method including the construction and

parallelization implementation of the proposed index data

structure, and the two-step query algorithm in Section 3. Then

in the following section, we present our experiments and give

an analysis and a discussion of our experiment results. In

Section 5, we conclude our work and provide an outlook of the

future work.

2. RELATED WORK

2.1 Parallel and Distributed Spatial Data Indexing

Spatial oriented queries involve heavy geometric computations

for spatial filtering and measurements, and require high

performance computations to support fast response of queries

(Aji et al., 2012). Query parallelism is a significant issue of

query processing. Parallel R-tree (Kamel & Faloutsos, 1992) is

designed for shared-disk environments. However, the spatial

indexes only improve data retrieval efficiency, and they are

regardless of I/O throughput and spatial computation capability.

Thus, they cannot achieve efficient spatial query processing that

involves massive spatial data and concurrent users. There are

also some approaches that have been designed for parallel

databases and cluster systems. Apostolos studied the index

parallel batch loading algorithm in parallel spatial database

(Papadopoulos & Manolopoulos, 2003). The Paradise project of

Wisconsin University runs on a parallel database (Akdogan,

Demiryurek, Banaei-Kashani, & Shahabi, 2010). Guo Jing

proposed H2R-tree, which was built on spatial grid and Hilbert

curve (Jing, Guangjun, Xurong, & Lei, 2006). However, these

are only suitable to the systems which have limited parallel

processing capability.

Hadoop is a series of technology for distributed storage and

processing of big data. The core of Hadoop consists of two parts,

a storage part Hadoop Distributed File System (HDFS) and a

processing part MapReduce (Dean & Ghemawat, 2004). HDFS

enhances the I/O performance of data storage and ensures that

the distributed storage system is scalable, fault tolerant.

MapReduce is a programming model and an associated

implementation for processing massive amount of data sets.

Hadoop has achieved an unprecedented success in

implementing many real-world distributed tasks. There are some

researches focus on spatial data storage and query under

Hadoop framework, such as SpatialHadoop (Eldawy & Mokbel,

2015), Hadoop-GIS (Aji et al., 2013), SciHive (Geng, Huang,

Zhu, Ruan, & Yang, 2013), GeoMesa (Fox, Eichelberger,

Hughes, & Lyon, 2013), Terry Fly (Cary, Yesha, Adjouadi, &

Rishe, 2010), and GeoBase (Li, Hu, Schnase, & Duffy, 2016),

and so on. However, the coupling among MapReduce model

and HDFS is high. And it often needs a large number of reads

and writes from HDFS. Thus, it is not suitable for applications

with iterative computation, and it is hard to achieve real-time

query response.

Spark is an in memory based computing framework, which can

effectively avoid high frequency of read and write operations

from HDFS. It does not need to save the intermediate results to

HDFS. Meanwhile it retains the excellent properties of

MapReduce. A Resilient Distributed Dataset (RDD) (Zaharia,

Chowdhury, Das, & Dave, 2012) is a basic abstraction in Spark.

It is a logical collection of data partitioned across machines and

can be rebuilt if a partition is lost. An RDD can be explicitly

cached in memory across machines and reused for later

MapReduce-like parallel operations. For the algorithms with

iterative computation, the intermediate RDD data sets do not

need to read and to write from the hard disk at each iterative

manner. This is one of the major reasons why Spark works

faster. Besides, Spark has an advanced DAG execution engine

that supports in memory computing. So Spark is a fast and

general engine for large scale data processing which is suited

for iterative computation. Considering the above advantages of

Spark, we combine Spark in our method and employ Spark for

implementation in the paper.

2.2 Tree Index for Spatial Region Query

Quadtree is one of the earliest structure used to index spatial

polygons. Because quadtree nodes that intersect the query

polygon may contain many polygons which do not intersect

with the query polygon, a lot of intersection computation are

needed on each polygon. As a result, the efficiency of quadtree

is not high. The most common improvement method is using a

more compact representation of each polygon. So a number

variants of quedtree for polygon index appears, among which

the most popular one is the R-Tree. In R-Tree data structure,

each node in the tree represents the smallest rectangle that

encloses its son nodes. As there are no definite node splitting

method, when applying R-Tree index, the polygon data has to

be understood first.

Another spatial index is the k-d tree (or multidimensional

binary search tree) where k is the dimensionality of the search

space. It was firstly described in 1975 by Bentley in a

theoretical paper (Bentley, 1975). It is a data structure to store

data points to be retrieved by associative searches. A significant

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

132

advantage of this structure is that a single data structure can

handle many types of queries very efficiently. If data are

represented as a k-d tree, then each record is stored as a node in

the tree, and each node is associated with a discriminator. For k

keys, there are k discriminators, which are defined as DISC[0],

DISC[1], … , DISC[K-1] respectively. All nodes on any given

level of the tree have the same discriminator. The root node has

discriminator DISC[0], its two sons have discriminator DISC[1],

and so on to the kth level on which the discriminator is DISC[k-

1]; the (k+1)th level has discriminator DISC[0], and the cycle

repeats.

The construction of k-d tree is as follows: Start with a large

rectangular region that contains all the data points to be put into

the tree. This large rectangle represents the root of the k-d tree

(Rosenberg, 1985). Then by comparing with discriminators, the

multi-dimensional space is split recursively into subspaces. All

these subspaces are organized in a systematic manner as a

search tree. And it is terminated at the maximum depth or when

the data associated with each node is sufficiently small.

K-d tree is a superior serial data structure. However, it is

unsuitable for indexing non-zero size objects such as lines and

polygons. Moreover, k-d tree is hard to be implemented in

parallel (Samet, 1990). So in this paper, the DKD-tree which

not only provides efficient retrieval of polygons but also runs in

distributed environment are presented.

3. METHODOLOGIES

3.1 DKD-Tree Index

3.1.1 DKD-Tree construction principle: DKD

tree is substantially a two-dimensional search tree. Branching

on odd levels is done with respect to the first key, and

branching on even levels is done with respect to the second

key. The root is arbitrarily chosen to be an odd level. Spatial

polygon data has two dimensions which are longitude and

latitude. Here we use X and Y to represent longitude and

latitude coordinates. And X and Y are the two keys to split the

DKD tree.

The principle of constructing DKD Tree is as follows:

1) Construct the root node.

The root node corresponds to the MBR containing all

polygons

2) Chose the first key to split the root node.

Calculate the minimum longitude (minX), minimum

latitude (minY), maximum longitude (maxX) and

maximum latitude (maxY) for each polygon, and the total

number N of all polygons. Then, calculate variance for

maxX and maxY (VarmaxX, VarmaxY) according to

Equations 1 to Equation 4. The dimension with larger

variance values is chosen as the first key to split the root

node, and the other dimension is the second key. In this

paper, we assume that X is the dimension with larger

variance value of MaxX.

N

maxY

N

i

max


Mean Y

 (1)

N

maxX

N

i

max


Mean X

 (2)

N

max
V

N

i

2

max

)-(maxX


Mean X
ar

X
(3)

N

maxY
V

N

i

2

max

)-(maxY


Mean
Y

ar (4)

)，max(
maxmaxdim YX

VarVarMax  (5)

3) Split the tree into three sub trees by the split point.

In order to build a balanced tree, compute the medium

value of selected dimension as the split point. Use the

medium value to divide the node to three sub-nodes.

Suppose the selected dimension is X. The three sub-nodes

are calculated as following:

Left sub-node consist of polygons whose maxX are

less than the calculated medium.

Right sub-node consist of polygons whose minX is

greater than the calculated medium.

Medium sub-node consist of polygons that are neither

contained in the Left sub-node and the Right sub-node.

4) Split the tree recursively by cycling through the two

keys at each level.

In this case, Y is used as the split key for the next

level of the tree, and then X again.

5) Stop splitting the tree until the number of polygons

contained in the current node is less than a given threshold

or the depth of the tree is larger than a given threshold. At

this time the current node is a leaf node.

The partitioning process is described in Figure1 and Figure 2 is

the corresponding tree structure.

r1

r2

r3

 r9

r7

r16

r11

r6

r5

r17

r14

r15

r18

r8

r10

r13

r4
r12

node13

node12

node11

node21

node22

node23

node33

node32

node31

X

Y

node1

node2

node3

Figure 1. Spatial polygons partition process

root

node1 node2 node3

node11

r3 r5

node12

r4 r12

node13

r1 r2

node21

r11 r13

node22

r9 r10

node23

r6 r8

node31

r14 r15

node32

r16 r17

node33

r7 r18

Figure 2. the DKD Tree and the records it represents

As it is shown in figure 1, rectangles marked from r1 to r18 with

grey background color are MBRs of 18 spatial polygons. MBR

is an expression of the maximum extents of a 2-dimensional

spatial object, and is frequently used as an indication of the

general position of spatial object (Zhong et al., 2012). The

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

133

biggest rectangle is the MBR of the root node. Here we are

assuming that the latitude (X axis) has greater variance. So the

split point is the medium of the longitude of these 18 MBRs.

Therefore, the splitting plane is determined by the solid line

which passes through the right margin of r9 and

perpendicular to X axis. The splitting plane divides the root to

three sub-node. Node1 consists of polygons which are allocated

at the left of the splitting plane, including r1, r2, r3, r4, r5 and

r12. Node3 consists of polygons on the right of the splitting

plane, which are r7, r14, r15, r16, r17, r18. Node2 consists of

the polygons which intersect with the splitting plane. They are

r6, r8, r9, r10, r11, r13. The partition process for node1, node2,

node3 is the same with the root node, except that the splitting

plane is the medium of the latitude and it is perpendicular to Y

axis. The final data structure for the 18 polygons is shown in

figure 2. If the search reaches a node with coordinate values (e,

f) and DKD_COMPARE(query polygon, (e, f))=”RIGHT”, then

there is no need to examine any nodes in the left subtree of (e, f).

By avoiding examining many nodes, the DKD-Tree data

structure serves as a pruning device on the amount of search

required.

3.1.2 Building DKD Tree with Spark: The detailed DKD-

Tree construction is as following:

1) Construct root node of DKD-Tree. The features of the

root node include the number of all polygons N, MBR of

each polygon, VarmaxX and VarmaxY.

2) Save the root node to a queue named as rootQueue.

Then pop a node from the top of rootQueue as

currentRootNode.

3) Save currentRootNode to a queue named as

treeQueue and construct a subtree for currentRootNode.

4) Pop a node from the top of treeQueue as currentNode.

There are three cases for the processing of the node：

a) If the number of polygons of the current node is

less than the pre-defined minimum threshold,

stop to divide the node.

b) If the depth of the current tree is greater than the

pre-defined maximum threshold, stop to divide

the node. Serialize the current tree to HDFS. And

add the node into rootQueue.

c) Otherwise, split the node into three sub-nodes

according to the method described in section 3.1.

And add these sub-nodes into treeQueue.

5) Save the data of all the leaf nodes to HDFS as a

document and allocate a unique regionID as the name of

the document. HDFS creates one block for each file, and

file blocks are distributed across cluster nodes for load

balancing (Zhong et al., 2012).

6) Repeat step 4 and 5 until the treeQueue is empty.

The pseudo-code for the parallel construction of DKD-Tree on

Spark is given in algorithm1.

Algorithm 1 the Parallel Construction of DKD-Tree on

Spark

Input： (sc:SparkContext, inPath:String, outputParts:String,

outputTree:String, maxCount:Long, maxDepth:Int)

Output：(dkdtree,partitions)

// build of the dkdtree

1：function buildDKDTree (sc, inPath, outputParts,

outputTree, maxCount, maxDepth)

2： linesRDD= sc.textFile(inPath) // read all the files from

hdfs

3： .map({

4： parseLine() // parse each row of data

5： }).cache // cache data to memory

6： rootNode = buildNode(linesRDD)

7: Initialize the queue rootQueue

8： rootQueue.enqueue(rootNode)

9： while rootQueue.size != 0 do

10： rootNode = rootQueue.dequeue()

11： buildSubTree (rootNode, rootQueue, maxCount,

maxDepth)

12： savePartitions(outputParts) // save partitions data

into HDFS

13： saveSubTree(outputTree) // save sub-tree data into

HDFS

14： end while

15： end function

// build of the sub-tree

1：function buildSubTree(rootNode, rootQueue, maxCount,

maxDepth)

2： Initialize the queue currentTreeQueue

3： currentTreeQueue.enqueue(rootNode)

4： while currentTreeQueue.size != 0 do

5： node = currentTreeQueue.dequeue()

6： if node.count > maxCount then

7: The current node is split into three children

nodes, save to the set

8: for childrenNode in set do

9: if childrenNode.depth == maxDepth then

10: rootQueue.enqueue(childrenNode)

11: else

12: currentTreeQueue.enqueue(childrenNode)

13: end if

14: end for

15： end if

16： end while

17： end function

3.2 Region Query Method with DKD-Tree

The region query algorithm based on DKD tree we propose

consists of two phases. The first phase is named as Counting

Query, during which the number of all the polygons intersecting

with the given region and the distribution of the results are

computed. In the second phase, only several polygons are

returned first. The polygons returned are determined by the

whole results set and the number of pages displaying query

results. This phase is called Paging Query.

3.2.1 Counting Query: In this subsection, we will give a

detailed process of Counting Query.

1) Read all the subtrees using the strategy of inorder

traversal from HDFS and deserialize them to all the cluster

nodes.

2) Perform the query in parallel on different nodes.

a) If the given polygon for the query is completely

covered by the MBR of a tree node, it will not

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

134

need to perform intersect calculations. For a leaf

node, the (regionID, count) of the node is

returned. And for a none-leaf node, (regionID,

count) pairs of all leaf nodes belonging to the

current none-leaf node are returned.

b) If the given query polygon is partly intersect with

the MBR of a tree node, perform intersect

calculation. For a leaf node, read the data files

with corresponding name regionID from HDFS

and calculate the number of polygons intersecting

the query polygon. For a none-leaf node perform

intersect estimation recursively for all its sub-

nodes.

3) Collect the results obtained in (2), and sort the results

by regionID. Save the results as a resultList:

[(regionID1,count1),(regionID2,count2),……]. Then

cache the results to Redis in the form of (query polygon,

resultList).

r1

r2

r3

 r9

r7

r16

r11

r6

r5

r17

r14

r15

r18

r8

r10

r13

r4
r12

node13

node11

node12

node23

node22

node21
node31

node32

node33

Figure 3. Illustration of the Counting Query process

Figure 3 is an illustration of the Counting Query process. In Fig.

3, the polygon of black solid line is the given query polygon.

Polygons r1 to Polygon r18 are to be retrieved. First, execute

query operation on all subtrees and find out polygons

intersecting the query region. MBRs of node12, node22 and

node23 are completely covered by the query polygon. Therefore,

there is no need to perform intersect calculation for these three

nodes. MBRs of Node11 and node32 intersect with the query

polygon. So the intersect calculation should be performed for

these two nodes. Say the naming rules of regionID for each

node is “id_”+nodename, in this case the results cached to

Redis is (query polygon, [(id_node12,2),

(id_node22,2),(id_node23,2),(id_node32,2)].

3.2.2 Paging Query: When the volume of data to be

retrieved is huge, the general method to display the results is

via paging. Thus, after the total number of intersected

polygons and the regionIDs of leaf nodes containing

intersected polygons are calculated, the Paging Query process

is performed.

1) Read the cached results (query polygon, resultList)

from Redis.

2) Calculate the total number of retrieved polygons by

formula 6.

1
to ta lN u m =

N

i
c o u n t i

 (6)

Where N is the length of the resultList.

3) Give the pageNum (a page number) and pageSize (the

number of records that can be displayed in one page). The

pageNum should be smaller that [totalNum/pageSize]+1.

4) Compute the range of regionIDs of leaf nodes where

the data to be displayed in the pageNum-th page are stored

in. The formulas are as follows:

1 2
re g io n ID () , 1

P

M in

c o u n t c o u n t c o u n t
m im P P s a tis fy p a g e N u m

p a g e S iz e

  
  

 (7)

1 2

reg io n ID (),
Q

M a x

co u n t co u n t co u n t
m im Q Q sa tis fy p a g eN u m

p a g eS ize

  
 

 (8)

Where 1 1(P , P + , ,Q ,Q), P Q   are the regionIDs

of the leaf nodes where data to be displayed in the current pager

are stored in.

5) Calculate polygons intersecting query polygon in leaf

nodes of 1 1(P , P + , ,Q ,Q)  in parallel.

6) Sort all polygons intersecting query polygon in leaf

nodes of 1 1(P , P + , ,Q ,Q)  .

7) For nodes P and Q at both ends of the regionIDs

range, only some of polygons that intersect the query

polygon are returned. For leaf node P, return the last Pr

retrieved polygons. And for leaf node Q, return the first Qt

retrieved polygons. Formulas to calculate Pr and Qt are as

follows:

1 2
()

(1)

P
P r c o u n t c o u n t c o u n t

p a g e S iz e p a g e N u m

    

 
 (9)

1

2 2 1

(

)
Q Q

Q t p a g e S iz e p a g e N u m c o u n t

c o u n t c o u n t c o u n t
 

   

  

(10)

8) All retrieved polygons in leaf nodes of

… ,(P + 1 , P + 2 , Q 2 ,Q 1)  are displayed in

pageNum-th page directly.

4. PERFORMANCE EVALUATION

4.1 Experiment Design

4.1.1 Experiment data: Experiments are executed on

metadata of Remote Sensing images provided by Geospatial

Data Cloud (GSCloud, http://www.gscloud.cn), an open cloud

platform which provides diverse and huge volume of

geospatial data for the public. In GSCloud, each metadata is a

polygon, representing the spatial extent of corresponding

satellite image. Users can search Remote Sensing images

covering certain geographic regions by drawing polygons on

the map. The interface of data retrieval of GSCloud is shown

in figure 4. By building index on the metadata, the efficiency

of retrieving satellite images can be greatly improved. The

volume of the metadata used in our experiments is 8.65

million records.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

135

Figure 4. Illustration of experiment data

4.1.2 Software Platform: The experiments were conducted

on a Spark cluster (version 1.5.2) consisting of three physical

machines. Each machine was configured with Intel(R) Xeon(R)

E5504 @ 2.00GHz 8-processor CPU, 32GB of RAM and

150GB of hard disk. The operating system is Fedora release 22

x86_64, and the Hadoop version is 2.6.0. All programs were

implemented by Java1.8 and Scala2.10.4. Spatial database

PostgreSQL was used as a comparison. The configuration of

the database server is the same to that of a single machine in

the Spark cluster. All the configurations of PostgreSQL are

default.

4.1.3 Strategies:In order to achieve real-time performance,

some optimization measures are taken first which are as

follows:

1) In order to avoid the time cost for starting and

stopping Spark tasks, we use RPC (Remote Procedure Call)

to make Spark tasks resident in memory.

2) We deserialize and distribute all the subtrees to all the

cluster nodes to achieve parallel query processing.

3) We cache all the data in memory to avoid reading data

from HDFS. If the cluster do not have enough memory

space to cache all the data, Spark will allocate 60% of the

memory space to cache data and 40% of the memory space

to perform calculations.

4) In the Counting Query, we use Redis to cache the

results. The results are stored in the form of regionID-

count pairs.

4.2 Results and Discussion

To evaluate the efficiency and scalability of the method, four

experiments were carried out. The first two experiments

evaluated the efficiency of Counting Query and Paging Query

under the condition of different sizes of the query polygon

respectively. Four cases were evaluated, which were

PostgreSQL without GIST index, PostgreSQL with GIST index,

Spark cluster without DKD-Tree index, and Spark cluster with

DKD-Tree index. The third experiment evaluated the scalability

of the method by comparing query time under Spark and DKD-

Tree Spark. The last experiment evaluated the improvement of

our method by avoiding a large number of polygon intersection

calculation operations.

4.2.1 Evaluation of Counting Query: In this experiment,

we evaluated the performance of our index in terms of

Counting Query response time under the condition that the

size of the query polygon varies. The area ratio of the query

polygon to the MBR of the total experiment data set ranges

from 0.05 to 1. The results are shown in Figure 5.

Figure 5. Counting Query in Different Sizes of the Query

Polygon

The result in Figure 5 shows that the performance of Spark

cluster with DKD-Tree is the best. The query response time of

Spark cluster without DKD-Tree index is 6 times longer than

our method, and the other two methods are about 5-60 times

longer. This is because that polygon intersection operation is

CPU-intensive. As Spark cluster is based on distributed parallel

computation framework, it can use the CPU resources

efficiently. While the computation of PostgreSQL is executed

on a single core, so it is much slower. Besides, we can also see

that the query time of PostgreSQL without GIST index is

shorter than that of PostgreSQL with GIST index. That is

because in case of large dataset, the depth of GIST index tree is

deep, and the number of nodes is large, which results in a large

index file. As a result, the query response time will be longer.

In addition, we can see that with the size of the query polygon

increasing, the query response time of Spark cluster with DKD-

Tree shows downward trend in the overall. The reason is that as

the size of the query polygon increases, the MBR of the query

polygon can fully cover more MBRs. When a MBR is fully

covered by the MBR of the query polygon, it do not need to

perform intersection calculation. Only a determination of

whether the polygon is fully covered by the query polygon is

enough. So the query response time is short.

4.2.2 Evaluation of Paging Query: In this experiment, we

evaluated the performance of our index in terms of Paging

Query response time under the condition that the size of the

query polygon varies. For a given page number, we return 10

polygons that interest with the query polygon for display. The

polygons are displayed in ID order. The results of this

experiment is shown in Figure 6.

As shown in Figure 6, the query speed of Spark cluster with

DKD-Tree is the fastest. That is because as the distribution of

query results are obtained by Counting query phase, polygon

intersection calculations are performed only on polygons that

will be displayed in the specified current page. While for the

other three cases, intersection calculations for all the polygons

are needed. Also, the Paging Query must use ORDER BY SQL

statement to get a global order when we use the SQL statement

of LIMIT and OFFSET in database. And global ordering will

take a long time. However, in with Spark cluster with DKD-

Tree index, the number of polygons that need to be ordered is

small, only polygons that will be displayed in the specified page.

So the time spent in ordering will be greatly reduced. Moreover,

as the sort process is stand-alone, it does not consume the

resources of the cluster. However, in the case of PostgreSQL

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

136

without GIST index, and PostgreSQL with GIST index, larger

area contains more number of polygons and thus leads to longer

processing time.

Figure 6. Paging Query in Different Sizes of the Query Polygon

4.2.3 Counting Query in Different Number of CPU: In

this experiment, the scalability of our method is evaluated by

comparing Counting Query response time under different

number of CPUs are evaluated. The area ratio of query

polygon to the MBR of the total experiment dataset is set to

0.5. Only two cases are tested in this experiment which are

Spark cluster with DKD-Tree and Spark cluster without index.

The results are shown in Figure 7.

Figure 7. Counting Query with Different Number of Cores

As shown in Figure 7, the query time decreases with the number

of cores increasing for both Spark cluster with DKD-Tree index

and Spark cluster without DKD-Tree index. In Spark cluster

node, the greater the number of cores, the more tasks can be

executed in parallel. As the Spark cluster has good

expandability, when the data volume grows, we can improve the

query performance by adding the number of cluster cores.

4.2.4 Evaluation of the Advantage of Avoiding

Intersection Calculation for Fully Covered Regions: The

Spark with DKD-tree index can avoid intersection calculation

when the query polygon fully cover the MBR of all polygons

in a DKD-tree leaf node. In this experiment, we study the

impact of varying the area of query polygon on average

response time of our proposed DKD-Tree querying processing

technique.

Twenty different query polygons are selected, the area ratio of

which to the MBR of the total experiment data set ranges from

0.05 to 1. In the top half of Figure 8, the red columns stand for

the number of DKD-tree nodes (partitions) intersect with the

query polygon. The blue columns mean the number of DKD-

tree nodes (partitions) that are fully covered by the query

polygon. As illustrated in Figure 8, the number of fully covered

partitions increases when the area of query polygon is larger.

When the query polygon fully covers the MBR of the total

experiment dataset, the number of partitions that intersects with

the query polygon is 0. At this time, no polygon intersection

calculation is needed.

Figure 8. The advantage of Avoiding Intersection Calculation

for Fully Covered Regions

In the bottom half of Figure 8, the blue curve shows the query

time in the case of avoiding polygon intersection calculation for

the polygons in partitions that are fully covered by query

polygon. And the red curve shows the corresponding query time

by performing polygon intersection calculation on all polygons.

It clearly illustrates that our approach is very efficient by

avoiding a large number of polygon intersection calculations.

5. CONCLUSIONS

In this paper we investigated the problem of efficient region

querying of massive spatial data in parallel. To this end, we

have presented a DKD-tree index to facilitate the processing of

region queries concerning spatial polygons. And we implement

the parallel construction of DKD-Tree based on Spark. Besides,

we provide a two-step region query algorithm to achieve real-

time query. In the first step which is called Counting Query, we

return the distribution of number and regionIDs of the query

result. In the second step, which is Paging Query, the polygons

to be displayed on the specified page are returned. The parallel

query based on DKD-tree can avoid polygon intersection

calculation for those that are fully covered by the query polygon.

Meanwhile, it does not need to collect data from all nodes in the

cluster. Several experiments on the proposed method are

performed using a real polygon dataset which are metadata of

satellite images. The experimental results show that our method

can significantly speed up the region query processing.

Moreover, our method has good scalability with more cores can

be added. So it has a great advantage in the case of increased

data volume.

The goal of this paper is to address the challenges for efficient

and scalable region query. The next step of our research will

mainly focus on improving our method to support other types of

query.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

137

REFERENCES

Aji, A., & Wang, F. (2012). High performance spatial query

processing for large scale scientific data. Proceedings of the on

SIGMOD/PODS 2012 PhD Symposium - PhD ’12, 9.

Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., & Saltz,

J. (2013). Hadoop-GIS: A High Performance Spatial Data

Warehousing System over MapReduce. Proceedings of the

VLDB Endowment, 6(11), 1009.

Akdogan, A., Demiryurek, U., Banaei-Kashani, F., & Shahabi,

C. (2010). Voronoi-based geospatial query processing with

MapReduce. Proceedings - 2nd IEEE International Conference

on Cloud Computing Technology and Science, CloudCom 2010,

9–16.

Bentley, J. L. (1975). Multidimensional binary search trees used

for associative searching. Communications of the ACM, 18(9),

509–517.

Cary, A., Yesha, Y., Adjouadi, M., & Rishe, N. (2010).

Leveraging cloud computing in geodatabase management.

Proceedings - 2010 IEEE International Conference on Granular

Computing, GrC 2010, 73–78.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplied Data

Processing on Large Clusters. Proceedings of 6th Symposium

on Operating Systems Design and Implementation, 137–149.

Eldawy, A., & Mokbel, M. F. (2015). SpatialHadoop: A

MapReduce framework for spatial data. In Proceedings -

International Conference on Data Engineering (Vol. 2015-May,

pp. 1352–1363).

Fox, A., Eichelberger, C., Hughes, J., & Lyon, S. (2013).

Spatio-temporal Indexing in Non-relational Distributed

Databases, 291–299.

Geng, Y., Huang, X., Zhu, M., Ruan, H., & Yang, G. (2013).

SciHive: Array-based query processing with HiveQL.

Proceedings - 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications,

TrustCom 2013, 887–894.

Giuliani, G., Ray, N., & Lehmann, A. (2011). Grid-enabled

Spatial Data Infrastructure for environmental sciences:

Challenges and opportunities. Future Generation Computer

Systems, 27(3), 292–303.

Guttman, A. (1984). R-trees: a dynamic index structure for

spatial searching. Proceedings of the 1984 ACM SIGMOD

international conference on Management of data - SIGMOD ’84.

Jing, G., Guangjun, L., Xurong, D., & Lei, G. (2006). 2-level r-

tree index based on spatial grids and Hilbert R-tree. Geo-Spatial

Information Science, 9(2), 135–141.

Kamel, I., & Faloutsos, C. (1992). Parallel R-trees (Vol. 21, No.

2, pp. 195-204). ACM.

Larson, R. R., & Frontiera, P. (2004). Geographic information

retrieval (GIR). In Proceedings of the 27th annual international

conference on Research and development in information

retrieval - SIGIR ’04 (p. 600).

Li, Z., Hu, F., Schnase, J., & Duffy, D. (2016). A

spatiotemporal indexing approach for efficient processing of big

array-based climate data with MapReduce. International

Journal …, 8816(February), 17–35.

Lupa, M., & Pi, A. (2014). Spatial Query Optimization Based

on Transformation of Constraints Spatial Query Optimization

Based on, 242(JANUARY), 0–9.

Ma, Y., Wang, L., Liu, P., & Ranjan, R. (2015). Towards

building a data-intensive index for big data computing - A case

study of Remote Sensing data processing. Information Sciences,

319, 171–188.

Papadopoulos, A., & Manolopoulos, Y. (2003). Parallel bulk-

loading of spatial data. Parallel Computing, 29(10), 1419–1444.

http://doi.org/10.1016/j.parco.2003.05.003

Procopiuc, O., Agarwal, P. K., Arge, L., & Vitter, J. S. (2003).

Bkd-tree: A Dynamic Scalable kd-tree. Sstd, 2750(July 2003),

46–65.

Rosenberg, J. B. (1985). Geographical Data Structures

Compared: A Study of Data Structures Supporting Region

Queries. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 4(1), 53–67.

Samet, H. (1984). The Quadtree and Related Hierarchical Data

Structures. ACM Computing Surveys, 16(2), 187–260.

Samet, H. (1990). The design and analysis of spatial data

structures. MA: Addison-Wesley (Vol. 199).

Shekhar, S., Evans, M. R., Gunturi, V., & Yang, K. (2012).

Spatial big-data challenges intersecting mobility and cloud

computing. MobiDE 2012 - Proceedings of the 11th ACM

International Workshop on Data Engineering for Wireless and

Mobile Access - In Conjunction with ACM SIGMOD / PODS

2012, 1, 1–6.

Vatsavai, R. R., Ganguly, A., Chandola, V., Stefanidis, A.,

Klasky, S., & Shekhar, S. (2012). Spatiotemporal data mining

in the era of big spatial data. Proceedings of the 1st ACM

SIGSPATIAL International Workshop on Analytics for Big

Geospatial Data - BigSpatial ’12, 1–10.

Yu, J., Jinxuan, W., & Mohamed, S. (2015). GeoSpark: A

Cluster Computing Framework for Processing Large-Scale

Spatial Data. In 23th International Conference on Advances in

Geographic Information Systems (pp. 4–7).

Zaharia, M., Chowdhury, M., Das, T., & Dave, A. (2012).

Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In Nsdi (pp. 2–2).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-131-2017 | © Authors 2017. CC BY 4.0 License.

138

