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ABSTRACT: 

With social media becoming increasingly location-based, there has been a greater push from researchers across various domains 

including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these 

sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on 

demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of 

population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have 

developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data 

to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal 

social media response analysis on four major extreme events in the United States including the “North American storm complex” in 

December 2015, the “snowstorm Jonas” in January 2016, the “West Virginia floods” in June 2016, and the “Hurricane Matthew” in 

October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database 

provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex 

social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results 

suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is 

quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to 

mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the 

population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on 

spatio-temporal social media responses during extreme events. 

1. INTRODUCTION

Recent advances in location-based technologies have enabled 

social media services to collect large volumes of spatio-

temporal footprints produced by users from all over the world. 

Social networking services such as Twitter, YouTube, Flickr, 

and Facebook, when used along with GPS enabled handheld 

devices such as mobile phones and tablets, and desktops with 

(Katz-Bassett et al., 2006), provides near real-time contextual 

information about events in various spatio-temporal scales, 

which could be vital for researchers and policy makers (Kaplan 

and Haenlein, 2010). The potential of social media to provide 

near real-time spatial information has been of particular interest 

to researchers from the domain of disaster management (Hughes 

and Palen, 2009). Studies have shown that the public often 

utilizes social media to fill the information gap that occurs when 

emergency responders follow a traditional model for public 

information release (Jin et al., 2014). Among different social 

media platforms, Twitter, a microblogging tool, is widely used 

to analyze public response during extreme events such as 

natural disasters. The short length of tweets (140 characters) 

made them a social medium well suited for communicating real-

time information during disasters (Hughes and Palen, 2009). In 

emergencies, tweets could provide information about first-

person observations or bring relevant knowledge from external 

sources (Kongthon et al., 2012). Twitter has been identified as a 

mechanism for resource mobilization and collaboration as well 

as platform for sharing life safety information (Sutton et al., 

2014). Disaster-specific Twitter research include descriptive 
studies that focus on Twitter adoption and use in mass 

convergence events (Hughes and Palen, 2009), mechanisms of 

information production, distribution and organization (Starbird, 

and Palen, 2010; Vieweg, Hughes, Starbird, and Palen 2010; 

Chew and Eysenbach, 2010), and public participation and 

citizen reporting across a variety of hazard types (Sutton, 2010). 

Studies based on demographics and other socio-economic 

factors (Mislove et al., 2011; Malik et al., 2015) suggests that 

social media based studies could be highly skewed based on the 

variations of demographics and population density with respect 

to place. In-order to tackle this issue, normalization strategies 

should be developed to account for the variations in population 

density. In this study we look at the enhancements that were 

incorporated to the Socio Environmental Data Explorer (SEDE) 

(Shook and Turner, 2016), which was developed to collect, 

organize, and explore social media data as well as 

environmental data. The normalization strategies that we 

develop and incorporate to SEDE will be useful for researchers 

and decision makers to identify, visualize, and analyze spatio-

temporal social media responses to extreme events with 

reduced population bias. The second section of this paper 

discusses related work, while the third section will have 

technical and design details about SEDE. The fourth section 

will have details about the experimental setup, including the 

four extreme events, the fifth section will include the results, 

followed by relevant discussions, and the last section will have 

the concluding remarks. ∗Corresponding author
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2. BACKGROUND

2.1   Social media and extreme events 

The spatio-temporal distribution of disaster-related messages 

helps with real-time monitoring and assessment of extreme 

events. Thomson et al. (2012), in their work categorizes tweets 

and measures tweet proximities comparing different sources of 

information and assessing reliability of Twitter for the 

Fukushima nuclear power plant incident. In their analysis of 

tweets posted during a wildfire event in France, Longueville et 

al. (2009) posited that the temporal dimensions revealed from 

the time-stamped tweets were accurate and well synchronized 

with the actual invents. Their analysis also revealed that apart 

from the geographical information in the form of explicit 

coordinates, geo- tagged tweets also consisted of spatial terms, 

direct place names, coded place names, and location paring. 

Spatio-temporal information from tweets were also used for 

developing event-based systems. Sakaki et al. (2010) introduced 

an earthquake detection based on geo-located tweets. Earle et al. 

(2012) used semantic and temporal tweet frequency analysis to 

monitor earthquakes in China, Japan and Indonesia. Stefanidis 

et al. (2013) analysed geo-tagged tweets to extract ambient 

geospatial information for crisis event detection in Egypt. 

Geo-tagged tweets have also been used to analyse “situational 

update” information, which is communicated by people during 

mass emergency situations. Vieweg et al. (2010) compared two 

different natural disasters including Grassfires of April 2009 

that happened in Oklahoma and Red River Floods of April 2009 

in Minnesota, and identified that Twitter communication during 

various extreme events can have subtle and prominent 

differences. They detailed about how the spatio-temporal 

information from Twitter has the potential to provide on the 

ground information during mass emergency situation. Research 

work by Sutton et al. (2008) on the 2007 Southern California 

Wildfires shows how Twitter can be an important source for 

peer to peer informal communication, which is common during 

extreme events that they have termed as “backchannel 

communications”. Olteanu et al. (2015) did a comprehensive 

study on Twitter communication during 26 different natural 

hazards. Their study, classified tweets based on crisis 

dimension, and content dimension. 

2.2   Geovisual Analytic Systems 

Geovisual Analytic Systems can be of great value to emergency 

responders for searching and interpreting important messages 

during extreme events. Apart from providing spatio-temporal 

information, such systems can provide aggregated overviews 

that summarize information about a situation and support the 

interactive exploration of the data. Discovering, capturing and 

displaying events from social media data source can be a major 

challenge (MacEachren et al., 2011), which requires 

sophisticated algorithms and high data storage and efficient 

computing capabilities. Croitoru et al. (2013) developed a 

framework “Geosoical gauge” for harvesting, processing, 

modelling, and integrating social media feeds. MacEachren et 

al. (2011) developed a geo-twitter analytics application 

SensePlace2 that supports overview and detail maps of tweets, 

place-time-attribute filtering of tweets and analysis of spatio-

temporal events. Tsou et al. (2015) developed a social media 

analytics and research testbed (SMART) dashboard for 

monitoring Twitter messages and tracking information diffusion 

in different cities. SMART could be used to filter tweets from 

cities, remove redundant tweets, and analyse social media data 

from a spatio-temporal perspective. Even though there had been 

a wide array of web-based systems developed to analyse and 

visualize social media data, the problem of visualizing highly 

biased social media data is still an open challenge. These 

visualization issues are not exclusive for social media data and 

previous studies based on conventional data sources such as 

census have suggested visualizations techniques such as 

Cartograms (Gastner and Newman, 2004) to alleviate the 

population density bias. 

2.3   Bias in Social media data 

Even though being a rich source of spatio-temporal data, social 

media data sources such as Twitter are biased towards urban 

perspectives at the expense of rural ones (Hecht and Stephens, 

2014). Mislove et al. (2011) found a direct association between 

county population in U.S. and Twitter adoption rates. 

Demographic statistics of Twitter users’ geographic census 

blocks were computed by O’Connor et al. (2010) and Eisenstein 

et al. (2011), while Malik et al. (2015) used census 

demographics in spatial error model. These papers draw similar 

conclusions, showing that the distribution of geotagged tweets 

over the US population is not random, and that higher usage is 

correlated with urban areas, high income, more ethnic 

minorities, and more young people. In their work on mapping 

geo-tweets that were posted during Hurricane Sandy (Shelton et 

al., 2014), the authors caution about potential bias towards 

places that are large content producers, and the uneven spatial 

distribution of tweets. They used aggregations based on 

hexagonal cells to overcome the bias. By analyzing and 

mapping 1.5 billion geo tweets Leetaru et al. (2013) found 

Twitter data are highly skewed towards places with high 

population density. A detailed demographic based study on geo-

tagged tweets from London by Longley, Adnan and Lansley 

(2015), revealed bias in Twitter usage in terms of gender, age, 

and ethnicity. Malik et al. (2015) used statistical analysis to 

assess the population bias in geotagged tweets. Their study 

revealed the non-random distribution users who send geotagged 

tweets compared across the entire population. They were also 

able to demonstrate the coastal effects, where being located on 

the east or west coast of the US predicts more geotag users. 

Allen et al. (2016) in their work on using Twitter data for 

surveillance of influenza used census data to normalize tweet 

count for individual cities. Li et al. (2013) used socio-economic 

and demographic data from American Community Survey 

(ACS) to compare Twitter and Flickr usage patterns across 

contiguous United States. Their study revealed that tweet 

density is highly dependent on the percentage of well-educated 

people with an advanced degree and a good salary who work in 

the areas of management, business, science, and arts. 

3. SOCIO-ENVIRONMENTAL DATA EXPLORER

(SEDE) 

The Socio-Environmental Data Explorer (SEDE) (Shook and 

Turner, 2016) was developed to collect and integrate social 

media, news and environmental data to support exploration and 

assessment of social response to real and potential risk events. 

Apart from the capabilities of a Geovisual analytic system, 

SEDE provides structured access to various environmental 

datasets such as weather warnings from National Oceanic and 

Atmospheric Administration (NOAA) and extreme event 

warnings from Federal Emergency Management Agency 

(FEMA), which is quintessential for triangulating the inferences 

obtained from social media data. This integration of social 

media and environmental data helps scientists, and stakeholders 

to explore the opportunities and challenges of using social 
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media datasets along with traditional data sources such as the 

extreme weather data. 

 

The SEDE system is modularly designed to collect spatio-

temporal information from social media and environmental data 

sources. Separate modules are seamlessly integrated into SEDE 

to handle data collection, pre-filtering and pre-processing of 

social media data, database storage, and filtering, mining and 

visualizations (Shook and Turner, 2016). The data collector 

module is designed to collect social media data from sources 

such as Twitter and environmental data sources such as NOAA 

and FEMA. The filters developed as a part of the unsupervised 

pre-filtering stage, extract spatial, temporal and other attribute 

related information from diverse data sources and upload the 

extracted data to the spatio-temporal database, which is the core 

component of SEDE. The web-based data explorer tools help 

end users to analyse and visualize social media data based on 

spatio-temporal and textual queries. 

 

Even though SEDE has the capability to extract, and visualize 

social media and environmental data, it requires further 

enhancements for normalizing the data for visualization and 

spatial analysis, in-order to prevent erroneous and spurious 

results due to variations in tweet densities across space. These 

variations are driven by multiple factors including population 

density, economic status, rural and urban divide, and other 

factors such as age and ethnicity (Li et al., 2013; Eisenstein et 

al., 2011). It is critical to address the bias related issues in 

SEDE, as erroneous results could lead to larger discrepancies, 

when validations and comparisons of social media data are 

conducted in SEDE with traditional data sources. 

 

Environmental data in the form of warnings and notifications 

that are collected in SEDE could also be used to triangulate the 

results obtained from social media data, which could improve 

the robustness of the system. Traditional environmental data 

sources such as weather warnings and notifications include 

spatial data in the form of geographical coordinates or regions, 

which could be used along with geolocated tweets to improve 

the contextual information as well as to provide validations. The 

temporal information associated with the weather warnings 

including tornado touchdowns, or flash flooding, could be used 

with timestamped tweets to conduct longitudinal analysis. Time 

based comparisons could also be made to assess the lag or lead 

between the weather notifications and the Twitter response. 

 

3.1   Enhancements in SEDE  

SEDE was developed to seamlessly integrate large volumes of 

social media, and environmental data. Currently the central 

database for SEDE holds around 2.5 billion geo-tagged tweets 

from all over the world starting from 08-Sep-2015. Tweets are 

collected continuously using the Twitter streaming API and 

around 4 million tweets are collected every day. Location and 

textual based filters are developed to extract out English tweets 

from United States, which are constantly aggregated to a 

separate data table. SEDE is highly modularized according to 

Model View Control (MVC) architecture and separate modules 

are maintained for visualization, textual processing, and spatial 

analysis. Continuous streaming of social media data sources 

such as Twitter and environmental data sources such as NCEI 

and NOAA warnings are abstracted out from the web interface 

and run as background tasks. Apart from the data streaming 

background tasks, separate background task is maintained to 

continuously label and process incoming English tweets from 

United States, based on the state, county, and city of origin. 

This is done based on spatial lookups from census data, which 

is already loaded in SEDE. For improving response time on 

spatio-temporal queries, a spatio-temporal index based on the 

state, city, and county along with time is maintained. In order to 

address the issue of variations in tweet density due to 

population, and to triangulate the results based on 

environmental data we have developed two new modules. 

 

3.1.1   Normalization Module: The Normalization module in 

SEDE is developed to provide standardized social media data 

for visualization, based on tweet counts, Twitter users, and 

traditional sources such as census population. Background tasks 

that assigns state, city, and county information for tweets, also 

updates the total tweets and total unique users for each spatial 

aggregation on a daily basis. Thus, along with traditional data 

sources such as census, SEDE is able to provide tweet based 

population statistics such as total tweets and total users for 

different spatial and temporal scales. The Standardized Tweet 

Ratio (STRregion) for a region is calculated using the observed 

tweets for each region (OTregion), and the expected tweets for 

each region (ETregion) as in equation (1). The expected tweets 

for region is calculated using the total tweets from the region 

(TTregion), the total tweets for all the region∑ TTi i and total 

observed tweets for all regions∑ OTi i. Similarly, Standardized 

User Ratio (SURregion) for a region could be calculated using the 

observed users for a region (OUregion), and the expected users 

from a region (EUregion), which could be calculated using the 

total users from a region (TUregion), total users from all regions 

(∑ TUi i) and total observed users from all regions (∑ OUi i). For 

calculating total users from a region, either census population 

(TUcensus) (equation 2), or total aggregated Twitter users from 

the region (TUtwitter) could be used (equation 3). User based 

normalizations have the advantage of reducing the bias created 

due to highly tweeting users such as celebrities or automatic 

bots. 

  𝑆𝑇𝑅𝑟𝑒𝑔𝑖𝑜𝑛 =
𝑂𝑇𝒓𝒆𝒈𝒊𝒐𝒏

𝐸𝑇𝒓𝒆𝒈𝒊𝒐𝒏
=                                       (1) 

                          𝑂𝑇𝑟𝑒𝑔𝑖𝑜𝑛/(
𝑇𝑇𝑟𝑒𝑔𝑖𝑜𝑛

∑ 𝑇𝑇𝑖𝑖
∗ ∑ 𝑂𝑇𝑖𝑖 )            

            

                         𝑆𝑈𝑅𝑟𝑒𝑔𝑖𝑜𝑛𝑐𝑒𝑛𝑠𝑢𝑠 =
𝑂𝑈𝑟𝑒𝑔𝑖𝑜𝑛

𝐸𝑈𝑟𝑒𝑔𝑖𝑜𝑛
=                          (2) 

                         𝑂𝑈𝑟𝑒𝑔𝑖𝑜𝑛/(
𝑇𝑈𝑐𝑒𝑛𝑠𝑢𝑠

∑ 𝑇𝑈𝑖𝑖
∗ ∑ 𝑂𝑈𝑖𝑖 )   

 

 𝑆𝑈𝑅𝑟𝑒𝑔𝑖𝑜𝑛𝑡𝑤𝑖𝑡𝑡𝑒𝑟 =
𝑂𝑈𝑟𝑒𝑔𝑖𝑜𝑛

𝐸𝑈𝑟𝑒𝑔𝑖𝑜𝑛
=                          (3) 

                         𝑂𝑈𝑟𝑒𝑔𝑖𝑜𝑛/(
𝑇𝑈𝑡𝑤𝑖𝑡𝑡𝑒𝑟

∑ 𝑇𝑈𝑖𝑖
∗ ∑ 𝑂𝑈𝑖𝑖 )   

 

3.1.2   Socio-Environmental Validation module: Apart from 

providing structural access to social media data, SEDE also 

captures environmental data from sources such as NCEI and 

NOAA. The background tasks running on SEDE extracts 

spatio-temporal data, along with information about type of 

event, primary source of information and damages due to event 

from environmental data sources such as NCEI and stores them 

to SEDE data tables. The Socio-Environmental Validation 

module, using spatio-temporal queries, extracts event based 

information from the data tables and help to ascertain the 

validity of the social media data. With the inherent noise 

associated with social media data, keyword based queries to 

extract extreme events based tweets could result in unexpected 

patterns in geolocated tweets, which could be further 

investigated using the ground truth information obtained 

through the Socio-Environmental Validation module. Apart 

from validation, the module could be used to assess the lag or 

lead between the public response times in social media to 
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extreme events and the weather notifications from traditional 

sources such as NCEI and NOAA. This feature could be useful 

to assess the efficacy of social media data during extreme 

events. In order to understand the effects of normalization on 

social media data, and to assess the efficiency of the new 

modules that were developed in SEDE to support normalization, 

we have selected four extreme events for our study. 

4.   EXPERIMENTAL SETUP 

Twitter data collected across multiple natural hazard events 

such as tornadoes, blizzards, and storms provide opportunities 

for comparing and contrasting different events. The case study 

events for analysis are shown in Table 1. The December 2015 

North American Strom Complex started as a weak disturbance 

on 25-Dec-2016 and later produced tornado outbreaks, winter 

storm, and blizzard in areas of southwestern United States. 

There were 59 fatalities and an estimated damage of 1.2 million 

dollars due to the event. Winter Storm Jonas or January 2016 

United States blizzard was a historic blizzard that produced up 

to 3ft of snow in Mid-Atlantic and Northeast United States. 

There were 55 fatalities, with Virginia, Pennsylvania, New 

Jersey, New York, North Carolina, South Carolina, and 

Washington D.C getting affected the most. The West Virginia 

flood of 2016 occurred between June 23, and 24, which resulted 

in 23 deaths across West Virginia and nearby parts of Virginia. 

The flooding was a result of 8 to 10 inches of rain falling over a 

period of 12 hours. Hurricane Matthew was a powerful and 

devastating tropical cyclone that wrought widespread 

destruction across West Atlantic including countries such Haiti, 

Cuba, Dominican Republic, and the southeastern United States. 

In United States, the storm killed around 47 people with major 

impact in North Carolina, Florida, Georgia, and South Carolina. 

 

The four events were selected based on their varying spatial 

extents, and nature of impact for a broader study. Temporal 

ranges for each of these events where obtained from the FEMA 

disaster declaration website. For this analysis, we have utilized 

the query features in SEDE to extract event related tweets from 

a set of around 1 billion English tweets from the 48 contiguous 

states in United States stored in the SEDE database. A keyword 

based filtering is used to extract out tweets relevant to the four 

events. Even though there are robust methods to extract relevant 

keywords from large corpus of textual data including Bayesian 

filters, for this study, we use basic keywords such as Tornado, 

Blizzard, Storm, Snow, Flood and Hurricane. Keyword based 

extractions have been used in previous works (Hannon et al., 

2010). For this study, we have selected states as the spatial scale 

for applying the normalization techniques. For the three 

normalization strategies total tweets and users for each states 

were collected and aggregated using SEDE. 

 

Name of 

event 

Type Spatial 

extent 

Temporal 

extent 

Ex. Key 

words 

 North 

American 

storm 

complex 

Tornado/W

inter 

Storm/Bliz

zard 

Southwest, 

Central 

US, & 

New 

England  

12-25-15 

to  

12-30-15 

Tornado, 

Blizzard, 

Storm 

Winter 

Storm 

Jonas 

Snow 

Storm/Bliz

zard 

South 

Central & 

Eastern US 

01-21-16 

to  

01-29-16 

Snow, 

Storm, 

Blizzard 

2016 West 

Virginia 

flood 

Flood West 

Virginia & 

Virginia 

06-23-16 

to  

06-24-16 

Flood 

Hurricane 

Matthew 

Hurricane US East 

Coast 

09-28-16 

to  

10-10-16 

Hurricane 

 

Table 1. Four extreme events with type, spatio-temporal extent 

and keyword details  

 

5.   RESULTS 

In order to assess the rate of Twitter usage during the events we 

have generated time plots of the tweet count for each events 

using SEDE (Figure 1).To understand the tweeting activity with 

respect to locations, we have used the mapping functionalities 

of SEDE. For map-based illustrations, we have selected 26-Dec-

2015 for North American storm complex, 23-Jan-2016 for Jonas 

snowstorm, 24-Jun-2016 for West Virginia floods, and 6-Oct-

2016 for Hurricane Matthew as these were the days when the 

Twitter activity peaked for each events. A set of unnormalized 

choropleth maps based on tweet count, and normalized 

choropleth maps based on total tweet count, total Twitter user 

Figure 1. Time plot of event related tweets for (a) Juno storm (b) Hurricane Matthew (c) North American Storm Complex 

(d) West Virginia Floods 
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population, and census population for the four events were 

created using SEDE. 

 

5.1   North American Storm Complex    

The time plot for the event (Figure 1(c)) suggests there had been 

multiple days during which there was a surge in event related 

tweets. Since the event started from 25-Dec-2016, we could 

discard the initial peak in tweet counts that happened on 23-Jan-

2016 due to tornadoes in Mississippi and Tennessee. Within the 

event timeframe, the event related tweets peaked during 26-

Dec-2016, when there were massive tornado outbreaks in 

Oklahoma and Texas. At this time New Mexico, southeastern 

Colorado, western Oklahoma and West Texas also had storms 

and blizzards. From the unnormalized map for the event on 26-

Dec-2016 (Figure 2), it could be seen that apart from Texas and 

Oklahoma, other relevant states, which had tornadoes and storm 

such as Arkansas, and states that had blizzards such as New 

Mexico and Colorado was underrepresented. It could also be 

seen that states such as California and Illinois, which did not 

have any tornadoes, or storm got overrepresented because of the 

population bias. The normalized maps for the event (Figure 

7(a)-(c)) clearly shows a reduction in population bias. For the 

tweet normalized map (Figure 7(a)), Texas, New Mexico and 

Oklahoma are clearly shown to have high intensity in event 

related tweeting with respect to the total tweets produced from 

these states. Some of the states such as Maine, and Wyoming, 

which did not have tornadoes or storm, also got represented in 

the map, which might be due to the highly unstable variances 

created, when calculating ratios for less common events. This 

issue is generally referred to as the “small number problem” 

(Diehr, 1984). The small number problem is reduced in the 

population-based maps (Figure 7(b)-(c)). These population-

based maps have the advantage of reducing bias created due to 

highly tweeting users. We could see that states such as Maine 

and Wyoming that was prominent in tweet based normalization, 

was removed in user-based normalizations. 

 
 

Figure 2. Unnormalized map for Storm Complex Event that 

happened on 26-Dec-2015 

 

5.2   Winter Storm Jonas 

From the time plot for Jonas storm tweets (Figure 1(a)) it could 

be seen that, event related tweeting was higher between 20-Jan-

2016 and 25-Jan-2016, with 23-Jan-2016 having the highest 

peak. As the storm affected densely populated areas in East 

Coast including New York, New Jersey, Maryland, and 

Pennsylvania, it could be seen that the tweet count is 

substantially higher when compared to the other three events. 

The unnormalized map (Figure 3), even though represents New 

York and Pennsylvania to be having high aggregation of event 

related tweets, states such as California and Florida which did 

not had any snow storms or blizzards are over represented in the 

map. The normalization strategies (Figure 7(d)-(f)), reduced the 

population bias, and states that were highly affected including 

New Jersey, Delaware, Virginia, West Virginia, and 

Massachusetts became prominently represented in the map. 

  
 

Figure 3. Unnormalized map for winter storm Jonas that 

happened on 23-Jan-2016  

 

5.3   West Virginia Floods 

The time plot (Figure 1(d)) of West Virginia floods reveals the 

consistent and localized nature of floods. This could be 

attributed to the low number of event related tweets compared 

to other events. From the time plot (Figure 1(d)) it could be seen 

that the highest peaks of tweeting activity were during 23-Jun-

2016 and 24-Jun-2016 when West Virginia and parts of 

Virginia was struck by floods. Highly populated states such as 

California, Texas, and Florida got overrepresented in the 

unnormalized map (Figure 4) due to the inherent population 

bias. The normalized maps (Figure 7(g)-(i)) shows some 

interesting variations. From the tweet normalized map (Figure 

7(g)) it could be seen that along with West Virginia, three more 

states including Montana, Wyoming, and Iowa are also 

prominent in the map. While Iowa had floods during that 

period, Montana and Wyoming did not have any floods and 

were only having two and one flood related tweets respectively. 

This again indicates the problem of “small numbers” when the 

normalization variables are highly unstable. Tweet map 

normalized by Twitter users (Figure 7(h)), reduces this effect. 

Normalization by census data (Figure 7(i)) completely reduces 

the problem of “small numbers” and represents the relevant 

states West Virginia and Virginia, which had floods during that 

day. 

 
 

Figure 4. Unnormalized map for West Virginia floods that 

happened on 24-Jun-2016 

 

5.4   Hurricane Matthew 

Time plot for hurricane Matthew (Figure 1(b)) suggests that the 

event related tweets gradually build up from 03-Oct-2016, had a 

peak in 06-Oct-2016, and waned down after 07-Oct-2016. The 

gradual buildup of event related tweets might be due to pre-

warnings about the hurricane as it approached the United States 

through Haiti. Major events such as Disney World shutdown, 

and “state of emergency” declaration in multiple states 

including Florida, North Carolina and Georgia could be 

attributed to the high tweeting rates during the event. The 

unnormalized map (Figure 5) for the event shows the 
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prominence of event related tweets from Florida where the 

hurricane had its most devastating impacts. However, along 

with impacted states such as Florida, North Carolina, and 

Georgia, other highly populated states such as Texas, 

California, and New York are also prominently represented due 

to the high population bias. The tweet normalized map (Figure 

7(j)), even though reduces the population bias, does not handle 

the “small number” problem, as states such as Montana and 

Vermont with twelve and eleven tweets respectively are 

dominantly represented in the map. The user-normalized maps 

(Figure 7(k)-(l)) reduces this problem effectively. 

 
 

Figure 5. Unnormalized map for Hurricane Matthew that 

happened on 06-Oct-2016 

 

6.   DISCUSSIONS 

The results from our study reveals that different normalization 

strategies are required to reduce the inherent bias associated 

with social media data (Mislove et al., 2011; Malik et al., 2015). 

Any count based or unnormalized representation of Twitter data 

could result in population density based maps as suggested by 

the close correlation of Twitter users to state population (r2=.95) 

(Figure 6). This became evident from the unnormalized maps 

for the four events. Each of the normalization strategies that we 

have applied had variations with respect to the nature of events. 

Even though tweet based normalizations, reduces population 

bias, it compounds “small number” problem. This could be 

assessed by the dominant representation of states such as 

Montana and Wyoming, which had minimal number of tweets 

when compared to other states. Apart from population bias, 

users who frequently tweet such as celebrities and bots could 

also induce biasness to results, which tweet-based normalization 

does not handle. Normalizations based on Twitter users, and 

census provided the best results for our event based 

experiments. For local events such as flooding, census based 

normalization tend to be the best option. This was evident from 

the census-based normalization for West Virginia (Figure 7(i)), 

which perfectly represented West Virginia and Virginia having 

the larger impact of the floods. Both census based and Twitter 

user-based normalizations were effective in reducing “small 

number” problems. This became evident from the normalized 

maps for West Virginia floods and hurricane Matthew, when the 

over representation of states with minimal tweets were reduced. 

From the entire experiment we could deduce that, population 

based normalization strategies tend to perform well when 

compared to tweet based normalizations. Census based 

normalizations tend to perform slightly better than Twitter user 

based normalizations in dealing with high variations in tweeting 

density. 

 
Figure 6. A Twitter user to population data comparison. The 

coefficient of determination (r2) was .95 indicating high 

correlation between the data. 

 

In order to compare and contrast between the three 

normalization strategies quantitatively, we calculated the 

variance for the standardized ratio across all the 48 states for the 

four events (Table 2). From the variance data, it could be 

identified that all the normalization-based strategies tend to 

perform similarly for storm complex, Jonas snowstorm and 

hurricane event. For the West Virginia flood, a larger variance 

in the standardized ratio could be due to the local nature of the 

event and paucity of tweets. The problem of “small numbers” 

could be a key issue, which can cause unstable variances as 

suggested by previous studies (Diehr, 1984; Jones and Kirby, 

1980). 

 

Normalization 

Strategy 

Storm 

Complex  

Jonas 

snowstorm  

WV 

Floods  

Hurricane 

Matthew  

Tweet based 1.26 1.52 62.49 1.53 

Twitter user 

based 

1.88 1.06 46.63 0.96 

Census 

population 

based 

1.33 1.36 43.57 1.33 

 

Table 2. Variance of standardized ratio across 48 states when the 

three normalization strategies are used 

 

7.   CONCLUSION 

The aim of this study was to identify and examine various 

normalization strategies for highly biased social media data. We 

identified three normalizations strategies including 

normalization based on total tweets, total Twitter users and 

census population, and utilized the Socio-Environmental Data 

Explorer (SEDE) to assess our strategies. The three 

normalization strategies were tested across for different extreme 

events with varying spatio-temporal extent and different social 

media attention. Our studies revealed that due to the high 

correlation with the number of Twitter users and census 

population, normalization strategies are quintessential to 

identify and remove population bias. Our experiments also 

revealed that along with normalization, issues such as the 

problem of “small numbers” could get compounded, which 

might produce erroneous and spurious patterns. Based on the 

four event based experiments we found that user based 

normalization strategies such as normalization by Twitter users 

and census population tend to produce better results and help to 

alleviate “small number” problem to a greater extent. As a part 

of future works, we will try to tackle the problem of “small 

numbers” quantitatively by including probability mapping 

(Choynowski, 1959), chi-square mapping (Jones and Kirby, 
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1980), and Bayesian smoothing (Clayton and Kaldor, 1987) in 

SEDE. In addition, we intend to extend our strategies to finer 

spatial scales such as counties and cities, which would be more 

appropriate for local-scale events such as flooding. 
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