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ABSTRACT:

Most traditional methods for rice mapping with remote sensing data are effective when they are applied to the initial growing stage of
rice, as the practice of flooding during this period makes the spectral characteristics of rice fields more distinguishable. In this study, we
propose a sequential classifier training approach for rice mapping that can be used over the whole growing period of rice for monitoring
various growth stages. Rice fields are firstly identified during the initial flooding period. The identified rice fields are used as training
data to train a classifier that separates rice and non-rice pixels. The classifier is then used as a priori knowledge to assist the training of
classifiers for later rice growing stages. This approach can be applied progressively to sequential image data, with only a small amount
of training samples being required from each image. In order to demonstrate the effectiveness of the proposed approach, experiments
were conducted at one of the major rice-growing areas in Australia. The proposed approach was applied to a set of multitemporal
remote sensing images acquired by the Sentinel-2A satellite. Experimental results show that, compared with traditional spectral-index-
based algorithms, the proposed method is able to achieve more stable and consistent rice mapping accuracies and it reaches higher than

80% during the whole rice growing period.

1. INTRODUCTION

Continued mapping of rice fields with remote sensing data pro-
vides critical information for irrigation water budgeting and yield
prediction (Kuenzer and Knauer, 2013, Mosleh et al., 2015). Pe-
riodically repeated observations of the same geographical area,
known as multitemporal remote sensing, has enabled frequent
monitoring of rice growth, and greatly facilitated studies on phe-
nology and temporal transition of rice fields at a broad spatial
scale.

Previous studies have shown that rice fields can be identified by
detecting their unique optical features during the initial flooding
period (Xiao et al., 2005). These spectral-index-based methods
have been developed and applied for mapping rice distributions
(Li et al., 2016, Zhang et al., 2015, Qin et al., 2015, Jin et al.,
2016, Zhou et al., 2016, Dong et al., 2016). The Land Surface
Water Index (LSWI), which is sensitive to leaf water and soil
moisture, has mostly been utilized to enhance the spectral fea-
tures of rice during the initial flooding period. Then discrimi-
nant rules have been set for the relationships between LSWI and
biomass-related indices, such as Normalized Difference Vegeta-
tion Index (NDVI) and Enhanced Vegetation Index (EVI), to dis-
tinguish rice fields from other crops. However, these methods are
only applicable to the initial flooding period of rice. Rice map-
ping during later rice growing stages is relatively harder, as the
decreased water level and increased plant height make the spec-
tral characteristics of rice less distinguishable from those of other
Crops.

In this study, we propose a sequential classifier training approach
for rice mapping that can be applied to the whole growing period
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of rice. Rice fields are firstly identified during the initial flooding
period. The identified rice fields are used as training data to train
a classifier that separates rice and non-rice pixels. The classifier
is then used as a priori knowledge to assist the training of classi-
fiers for later rice growing stages. This approach can be applied
progressively to sequential image data, with only a small amount
of training samples being required from each image. In order to
demonstrate its effectiveness, the proposed approach was applied
to a set of multitemporal remote sensing images over one of the
major rice-growing areas in Australia.

2. METHOD
2.1 Proposed Procedure

The proposed procedure for sequential classifier training is shown
in Fig. 1. According to the sequence of sensing date, images dur-
ing the flooding period are indexedt —1,t—2, ---,t— N, where
N is the total number of images during this period, and images
during later rice growing stages are indexed ¢, t 4+ 1, - - - . Firstly,
rice fields are identified with spectral indices during the initial
flooding period. The identified rice fields are used as training data
to train a classifier that separates rice and non-rice pixels. The
classifier is then used as an assistant classifier to assist the clas-
sifier training of Image ¢. A domain adaptation algorithm named
Temporal-Adaptive Support Vector Machine (TASVM) (Guo et
al., 2017) is adopted to train a classifier for Image ¢ by synthe-
sizing the knowledge provided by the assistant classifier and the
training samples. Then, the classifier for Image ¢ can be used as
the updated assistant classifier to assist the training of the next
image (Image ¢ 4+ 1). By repeating this procedure, the proposed
approach can be applied progressively to sequential image data.
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Figure 1. The proposed sequential classifier training procedure for rice mapping. SI: Spectral Index; TASVM: Temporal-Adaptive
Support Vector Machine.

Detailed descriptions of the proposed approach are provided in
the following two subsections.

2.2 Rice Field Identification

A well-established method for rice field mapping using optical re-
mote sensing data is the spectral-index-based algorithms (Xiao et
al., 2005, Xiao et al., 2006). These algorithms utilize the unique
spectral features of rice fields during their initial flooding period,
when rice plants are partially or entirely submerged under wa-
ter. During this period, water surface contributes a significant
amount of reflected solar radiance to the sensor. This leads to an
increase in Land Surface Water Index (LSWI) and decreases in
Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI). These indices are defined as:

LSWI = My (1)
Pnir + Pswir
NDVI = Pnir — Pred , (2)
Pnir + Pred
EVI = 2.5 x Priv  Pred 3)

Pnir + 6 x Pred — 7.5 X Pblue + 1’

where pulues Pred, Pnir, and pswir are reflectance values in the
blue, red, near-infrared, and short-wave-infrared bands, respec-
tively. In this study, Band 2 (490 nm), Band 4 (665 nm), Band
8 (842 nm), and Band 11 (1610 nm) of the Sentinel-2A data
are associated with the blue, red, near-infrared, and short-wave-
infrared bands, respectively.

The rationale behind the spectral-index-based algorithms for rice
field identification is further explained in Fig. 2. Due to the
spectral characteristics of crop canopy, non-flooded crops such
as maize (Fig. 2a) usually have a low reflectance value in the
red band, a high reflectance value in the near-infrared band, and
a medium reflectance value in the short-wave-infrared band. For
the flooded rice field (Fig. 2b), its spectral characteristics are
heavily affected by the presence of water. It can be observed that
reflectance in the red and near-infrared bands decease, mainly
due to the submersion of crop leaves. The reflectance in the short-
wave-infrared band deceases as well because of the water absorp-
tion effect in this band.

Based on this rationale, the following spectral-index-based rule
can be applied to identity rice fields (Dong et al., 2015):

LSWI > min {NDVI, EVI}, @)

Incident Wave

Incident Wave

Reflected Wave

N

\\'\

Figure 2. Reflectance characteristics in the red, near-infrared
(nir), and short-wave-infrared (swir) bands for (a) non-flooded
cropland (maize field) and (b) flooded rice field.

The water-sensitive index LSWI is compared with the biomass-
sensitive indices NDVI and EVI to distinguish flooded rice fields
from other crops.

2.3 Sequential Classifier Training

The rice and non-rice fields identified with the spectral-index-
based rule in Eq. (4) are used to train a linear classifier fs (x)
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that has the following form:
fo(x) = wix + b, 3)

Tm )T is the feature vector with m spectral
we,m)" is the weight vector and

wherex = (z1 @2 -
features; ws = (ws,1 ws,2 * -
bs is the bias factor for fi(x).

We use fs (x) to assist the training of a classifier for Image ¢ that
has the following form:

fo(x) = wix + b, (6)

T . .
where w¢ = (we,1 We,2 -+ We,m) 1s the weight vector and b

is the bias factor for fi(x).

In addition to the assistant classifier fs (x), the training samples
of Image ¢, {x:, i }.,, are also utilized in the training of f; (x),
where x; is the feature vector of the ith training sample and y; is
its corresponding label. The TASVM (Guo et al., 2017) is used to
train f; (x) by solving the following constrained quadratic pro-
gramming problem:

— Hj S wyj —wsj < pjoand py >0, Vj,
(N

where m and n are the numbers of spectral features and training
samples, respectively; pn = {p;}jL; and & = {&},_, are two
sets of non-negative slack variables.

The knowledge provided by f; (x) and {x;,y:};_, are synthe-
sized in Eq. (7) with two constraints. The first constraint restricts
fe (x) from departing too far away from the assistant classifier
fs (x). The second constraint measures the classification error of
ft (x) on the training samples {x;,y;:};,. With the help of the
assistant classifier fs (x), only a small number of training sam-
ples are required for training f (x).

There are three terms in the objective function of Eq. (7). The
first term accounts for the margin space of f; (x). The second
and third terms aim to minimize the degree of violation of the
constraints. The regularisation parameters C' and F' control the
weights of the second and third terms relative to the first term.

The problem in Eq. (7) can be solved with standard quadratic
programming algorithms (Nocedal and Wright, 2006). After de-
termining f; (x), it can be used as the updated assistant classifier
to assist the training an classifier for the next image (Image ¢+ 1).

3. EXPERIMENT AND RESULTS

3.1 Study Area and Data Sets

3.1.1 Description of the study area The study focused on
one of the major rice-growing areas in the Riverina region, the
Coleambally Irrigation Area, which is located in the southwestern
part of New South Wales, Australia, as shown in Fig. 3. The area
has a semiarid climate, with distinct seasonal changes in tempera-
ture. The hottest month is January with an average min/max tem-
perature of 18.8/34.1 °C, while the coldest month is July with an

average min/max temperature of 4.9/14.4 °C. The annual rainfall
is about 400 mm, distributed evenly throughout the year. During
summer, rice is the major crop in this area. A typical rice calendar
is shown in Fig. 4. The whole growing period of rice lasts for 5-
6 months, which can be divided into three major growth phases:
the vegetative phase, the reproductive phrase, and the ripening
phrase. The sowing date for rice seeds is during mid-late Octo-
ber, followed by several flush floodings and quick drains. Harvest
of rice is during March to May of the second year. Different rice
varieties are planted in the area, including Reizig, Sherpa, Koshi-
hikari, Opus, Illabong, Langi, Doongara, Kyeema, and Topaz.
The other summer crops in this area are mainly maize, sorghum,
and soybean, while winter wheat and citrus trees are the main
winter crop and the main permanent crop, respectively. Due to
the semi-arid climate and the high water consumption of the rice
industry, water supplement in this area largely depends on irri-
gation from the Murrumbidgee River. Therefore, timely and ac-
curate mapping of the spatial distribution of crop plantations is
critical for the local Irrigation Company to make appropriate de-
cisions on water budgeting and allocation.

Figure 3. Location and color composite map (R: Band 4; G:
Band 3; B: Band 2) of the study area.

3.1.2 Remote sensing images Optical remote sensing images
provided by the recently launched Sentinel-2A satellite were used
in this study. The images were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).
A total of eight cloud-free images were available during the
2015-2016 rice growing season, as show in Fig. 4. Among
them, the first four images covered the flooding period, while the
later four images were captured during later rice growing stages.
Each image consisted of 13 spectral bands covering the visible,
near-infrared, and shortwave-infrared spectral regions. The im-
ages were provided in top of atmosphere (TOA) reflectance val-
ues with radiometric and geometric corrections applied (Level-
1C data). The TOA reflectances were then converted into atmo-
spherically corrected bottom of atmosphere (BOA) reflectances
(Level-2A data) with the Sentinel-2 Toolbox on the Sentinel Ap-
plication Platform (SNAP). Terrain and cirrus corrections were
also applied during the conversion process. After the conversion,
the Cirrus band (Band 10) was omitted because no ground sur-
face information was contained in this band. The bands with 20
m (Bands 5, 6, 7, 8a, 11, and 12) or 60 m (Bands 1 and 9) spa-
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Figure 5. Temporal variations of Land Surface Water Index (LSWI), Normalized Difference Vegetation Index (NDVI), and Enhanced
Vegetation Index (EVI) for (a) rice and (b) non-rice (citrus) crops.

tial resolutions were resampled into 10 m resolutions in order to
make them consistent with the other bands that had 10 m resolu-
tions (Bands 2, 3, 4, and 8).

3.1.3 Ground reference data The rice distribution map of
the study area was provided by the local Coleambally Irrigation
Company. The rice fields were identified via visual interpretation
of a high spatial resolution image and several field visits during
December 2015. In this study, these data were used as ground
reference data to assess the accuracy of the proposed method.

3.2 Results and Discussions

3.2.1 Temporal variations of rice and non-rice crops The
temporal variations of LSWI, NDVI, and EVI for a rice field and
a non-rice field (citrus trees) are shown in Figs. 5a and 5b, re-
spectively. It was found that, during the initial flooding period
(the first two images), the LSWI of rice was higher than NDVI
and EVI, which was different from that of the non-rice field. By
using traditional spectral-index-based rules, rice fields could be
distinguished from non-rice fields during this period. However,
during the later growing stages, the LSWI of rice became lower
than NDVI and EVI, which is similar to that of the non-rice field.

This made rice fields less distinguishable from non-rice fields.
Therefore, traditional spectral-index-based rules are suitable for
the initial flooding periods of rice.

3.2.2 Rice mapping accuracy Rice mapping accuracies ob-
tained by the proposed method were compared with those by di-
rectly applying the traditional spectral-index-based rule to each
image. The results are shown in Fig. 6. It was found that during
the initial flooding period, the traditional method achieved rea-
sonable rice mapping accuracies. However, decreased accuracies
were observed for the traditional method during later rice grow-
ing periods. Compared with the traditional method, the proposed
method achieved more stable and consistent rice mapping accu-
racies that were greater than 80% during the whole rice growing
period. The results show the advantage of the proposed method
in rice mapping during late rice growing period.

4. CONCLUSIONS

A sequential classifier training approach has been proposed for
rice mapping that can be applied to the whole growing period of
rice. The proposed method makes use of the effective identifi-
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Figure 6. Rice mapping accuracies obtained by the traditional
and proposed methods.

cation results at the initial flooding period using spectral-index-
based algorithms. Training data for later images can then be
collected with less intensive workload. The sequential training
can be conducted with limited new training samples to reflect
the current variations. Experimental results showed that, com-
pared with the traditional spectral-index-based algorithms, the
proposed method was able to achieve more stable and consistent
rice mapping accuracies that were than 80% during the whole rice
growing period.

As demonstrated in the experiment, the proposed rice mapping
approach can be applied progressively to sequential image data
over the whole growing period of rice. For classifier training of
each incoming image, the classifier of the previous image is used
as an assistant classifier, which reduces the required number of
training samples. The assistant classifier can be more reliable if
two images are sensed within a shorter temporal interval. When
compared with other approaches that require the availability of
raw data (pixels values or/and their corresponding labels) from
the previous image, this approach is more flexible and computa-
tionally efficient as only the parameters of the assistant classifier
are required and used for computation. A limitation of the current
approach is that the land cover classes need to remain unchanged
over time within the imaged area. So future studies need to be
focused on solving this problem.
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