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ABSTRACT: 

Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion 
is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to 
year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest 
spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western 
Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or 
rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease 
dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.

1. PROBLEM STATEMENT

The concept for this project originates from a news report that 
aired on National Public Radio on 25 January 2014, entitled, 
How Vaccine Fears Fueled the Resurgence of Preventable 
Diseases (NPR, 2014). Specifically, the Global Health Program 
at the Council on Foreign Relations tracked news reports on 
global outbreaks of five vaccine-preventable diseases, including 
measles, mumps, polio, rubella, and whooping cough (NPR, 
2014); all which are spread through the air or by direct contact 
(CDC, 2014). The story suggested that vaccination rates were 
falling enough in the United States that the community 
immunity threshold requirement was no longer being met, 
resulting resurgence of vaccine-preventable diseases; this fact is 
well documented throughout medical literature (Cherry, 2012; 
Hinman, 2011; Meissner, 2004). When a critical portion of a 
community is immunized against a contagious disease, most 
members of the community are protected against the disease 
because there is little opportunity for an outbreak and even those 
who are not eligible for certain vaccines—such as infants or 
immunocompromised individuals—get some protection 
because the spread of contagious disease is contained (CDC, 
2012). This is known as "community immunity." In the case of 
measles, for example, a minimum threshold of 83% must be 
maintained (CDC, 2014). 

Research has been dedicated to the patterns of directional 
movement (Samphutthanon, 2013) and determining statistically 
significant hot spots of diseases (Hinman, 2006; Jeefo, 2010; 
Samphutthanon, 2013). However, implementing GIS to analyze 
disease diffusion arising from spatially non-stationary 
processes, such as ordinary least squares (OLS) and 
geographically weighted regression (GWR) is limited (Goto, 
2013; Hu, 2012).  

The objectives of this project are to: 1) Identify spatial 
characteristics of vaccine-preventable diseases by measuring 
central tendency, dispersion, and directional trend (Hinman, 
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2006; Samphutthanon, 2013); 2) Highlight one of the vaccine- 
preventable diseases to determine statistically significant hot spots 
(Hinman, 2006; Jeefo, 2010; Samphutthanon, 2013); and 3) 
Explore variables that explain the spread of the highlighted 
disease (Goto, 2013). 

2.  DATA

Data are listed in table 1. Global disease case data were retrieved 
from the Council on Foreign Relations in a CSV file containing 
coordinates for all sample points, which were then geocoded in 
ArcGIS. Data were collected globally between January 2008 and 
December 2013 based on news reports with the number of disease 
cases recorded at a single geographical location. Since no 
metadata accompanied the dataset, it is assumed that the 
coordinate locations represent hospitals or clinics. The data points 
were then cleaned to remove erroneous values and the final global 
dataset consisted of 884 geographical points, including 1,215,603 
cases. The number of disease cases serves as the dependent 
variable and cases were normalized by the total population of each 
country. 

Independent variables for focused analysis of measles in Africa 
include the Gini index (Filmer, 1999; Meheus, 2008), 
immunization rate (Cherry, 2012; Filmer, 1999; Hinman, 2011; 
Meissner, 2004), and health expenditure (Filmer, 1999; Gupta, 
1999; Herrera, 2005; Lavy, 1996). Data were retrieved as an Excel 
sheet and spatially joined in ArcGIS to their corresponding 
country polygon. The Gini index is a measure of statistical 
dispersion intended to represent income distribution within a 
nation. A Gini coefficient of zero expresses perfect equality and a 
coefficient of one expresses maximal inequality (World Bank, 
2014). Immunization rate is the measure of persons vaccinated 
against measles as a ratio of the total population. Studies that 
measured the efficacy of public spending recognized the positive 
association between health spending and GDP per capita; thus 
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health expenditure as a ratio of total population was used as a 
proxy to access to health care (Filmer, 1999; Herrera, 2005). 

Data Layer Format Source Description 
Disease 
incidence 

Vector 
point 

Council on 
Foreign 
Relations 

Each point 
represents the 
number of cases 
for each disease, 
by year 
 

Gini index Vector 
polygon 

World 
Bank Data 
Indicators 
 

Each value 
represents 
income 
distribution 
 

Health 
expenditure 

Vector 
polygon 

World 
Bank Data 
Indicators 
 

Each value 
represents health 
expenditure as a 
ratio of total 
population 
 

Immunization 
rates 

Vector 
polygon 

World 
Health 
Organizatio
n Vaccine-
Preventable 
Disease 
Monitoring 
System 

Each value 
represents the 
percentage of 
coverage via 
vaccination 
adherence for 
each disease 
 

Country 
boundaries 

Vector 
polygon 

Class File 
Share 

Each polygon 
represents a 
country with a 
unique country 
code 

Table 1. Data source and description 
 
 
 

3. METHODS 
 

3.1 Spatio Temporal Analysis 
 
Spatio temporal analysis was performed to determine where the 
diseases appear to be originating and trending globally. Each 
disease was classified by year and by number of cases and the 
temporal spatial pattern was ranked by number of cases for each 
year from 2008-2014. Cases were standardized across all 
diseases for consistency. 
 
 
3.2 Standard Deviational Ellipse 
 
Spatial characteristics of disease were identified by measuring 
central tendency, dispersion, and directional trend. Analysis was 
applied to the raw point disease data layer to create annual 
ellipses for each disease. This analysis consisted of two primary 
steps, locating the mean center and the directional trend.  
 
The first step included locating the mean center for each disease 
across all years as well as for each disease by each year. The 
mean center parameter was weighted by cases. Furthermore, the 
mean center was also considered for all diseases by year (also 
weighted by cases), which resulted in an overall undeviating 
mean center in Africa.  
 
The second step included determining directional trend for each 

disease across all years as well as for each disease by each year in 
the time series. The ellipse parameter was weighted by cases. 
There were insufficient records to calculate ellipses for mumps in 
2008; polio in 2008 and 2009; and whooping cough in 2008 and 
2009. The shape and extent of the ellipses influenced the 
remainder of the analyses and led to the exclusion of mumps and 
rubella altogether and limiting polio and whooping cough. 2014 
was excluded from the final analysis because it is the current 
reporting year, which is not a complete year and is thus invalid. 
Only measles, still presented with suitable spatial characteristics. 
However, further spatial statistics analysis dictated which disease 
to further investigate. 
 
 
3.3 Spatial Autocorrelation Analysis (Moran’s I) 
 
To determine whether the diseases were spatially clustered, 
randomly distributed or dispersed, spatial autocorrelation was 
applied to each disease. Fixed distance band was chosen to 
conceptualize the spatial relationships so that each feature was 
analyzed within the context of neighboring features. In order to 
determine the distance, incremental spatial autocorrelation was 
performed to get the distance corresponding to the first peak. 
 
3.4 Hot Spot Analysis (Getis-Ord Gi*) 
 
After the spatial autocorrelation analysis, only measles shows a 
significant clustering pattern. To identify hot spots of measles 
within all five years, hot spot analysis was performed. In order to 
analyze the change of hot spot over time, sot spot analysis was 
then performed with measles data for each year. 
 
3.5 Ordinary Least Squares (OLS) 
 
Global ordinary least squares linear regression was performed in 
order to understand the relationship between the measles cases 
and the independent variables: Gini index, health expenditure, and 
immunization rates. Based on research, it was assumed that the 
chosen independent variables statistically explain the dependent 
variable. As described in the flowchart in figure 1, two approaches 
were attempted to construct the OLS model.  
 
In the first approach, disease incidents points were spatially joined 
to the country polygon feature using the SUM aggregation method 
and then eliminated countries that have no incidents being joined. 
Incidents were further standardized by population in each country 
and the other independent variables were also joined to the 
country polygon feature. The OLS analysis is performed based on 
the joined polygon feature by specifying one unique ID fields, 
dependent and independent variables and path to output report 
file. 
 
The second approach introduced spatial interpolation and zonal 
statistics to address the problem of countries that have no disease 
incidents. A raster surface that covers the focused study area 
(Africa) was interpolated and the country polygons were used as 
the analytical zones and the mean incident rate value for each 
African country was extracted. The mean rates value was then 
used as dependent variable in the OLS analysis in which the 
independent variables are the same as in the first approach. 
 
3.6 Interpolation 
 
Spatial interpolation was used to generate a raster surface to 
account for the fact that the spatial join method applied to the 
incident points did not have results for all countries in the study 
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area. Since previous research indicated that the incident points 
in Africa are spatially autocorrelated, inverse distance weighted 
spatial technique was used to interpolate a raster surface that 
guarantees each country has some incident rate value. The 
default parameters were applied, except the search radius was 
specified based on the result of the Incremental Spatial 
Autocorrelation. 
 

 
 

Figure 1. Methodology for OLS analysis 

 
4. RESULTS 

4.1 Spatial Characteristics 
 
Temporal spatial analysis was performed to determine where the 
diseases appear to be originating and trending globally. This 
analysis was performed primarily to reproduce the time series 
analysis presented in the news report; which was effective at 
peaking interest regarding the incidence of disease globally. 
After looking at the dispersion of disease, the most visually 
prevalent diseases throughout the time series included measles, 
polio, and whooping cough. Refer to figure 2 for a directional 
movement of diseases. 
 
Measles displayed minimally elongated dispersion with a center 
of concentration in African continent and Near East. Polio 
displayed moderately elongated dispersion with a center of 
concentration strongly focused in Northern Africa and Near 
East. Whooping cough displayed highly elongated dispersion 
with a highly variable center of concentration. Refer to figure 3 
for deviational ellipses of measles, polio, and whooping cough. 
 
 

 

 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017 
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W2-167-2017 | © Authors 2017. CC BY 4.0 License.

 
169



 
Figure 2. Spatio temporal analysis of measles, polio, 
and whooping cough 

 

 
 

Figure 3. Directional distribution measles, polio, and 
whooping cough 

 
4.2 Spatial Autocorrelation Analysis (Moran’s I) 
 
To determine whether the diseases are spatially clustered, 
randomly distributed or dispersed, spatial autocorrelation was 
applied to each disease. Fixed distance band was chosen to 
conceptualize the spatial relationships so that each feature is 
analyzed within the context of neighboring features. In order to 
determine the distance, incremental spatial autocorrelation was 
performed to get the distance corresponding to the first peak. 
Refer to table 2 for the Moran's I results for diseases. 
 

Disease Z-
score 

P-
value 

Moran’s 
I 

Disease Z-
score 

Measles 6.649 0.000 0.02 Measles 6.649 
Mumps -0.779 0.436 -0.03 Mumps -0.779 
Polio 0.061 0.952 -0.01 Polio 0.061 

Table 2. Spatial autocorrelation analysis (Moran’s I) results for 
diseases; according to the table above, only measles shows a 
significant clustering pattern based on Z-score 
 
 
4.3 Hot Spot Analysis  (Getis-Ord Gi*) 
 
Analysis of hot spots of measles by year indicates that cases are 
clustered (hot spots) in Asia in 2009 and moves to Africa in 
2010. In 2011, hot spots become strongly clustered in Africa. 
Some of the hot spots moved back to Asia again in 2012. In 

2013, the hot spots in Asia disappeared and hot spots in Africa 
become less but more concentrated. On the other hand, the hot 
spot map of all five years shows that the hot spot is in Africa and 
the cold spot is in the United States. Refer to figure 4 for hot spot 
analysis of Measles. 

 

 

 
 
4.4 Ordinary Least Squares (OLS) 
 
OLS analysis compared the relationship between the dependent 
variable and each independent variable, which was generated by 
GeoDa standardized scatter plot. Refer to figure 5 for the scatter 
plot of independent variables. The point cloud in all three scatter 
plots failed to form a linear shape, which suggests that there is no 
strong relationship between the variables. OLS analysis was 
performed using two approaches; refer to figure 6 for OLS results 
with interpolation and figure 7 for OLS results without 
interpolation. The reports are interpreted in 6 steps.  
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Figure 4. Hot spot analysis of measles 
 

 

 
Figure 5. OLS scatter plot of independent variables. 
Gini vs. case rate (left), expenditure vs. case rate 
(middle), vaccine rate vs. case rate (right)

 

 
Figure 6. OLS results with interpolation 

 

 
Figure 7. OLS results without interpolation 

 
Firstly, the sign of the coefficients are not all expected. The sign 
of health expenditure rate is expected in both cases since it is 
negative which should correspond to increased spending on 
healthcare leading to better access to healthcare and less 
likelihood of becoming infected by measles. The Gini index 
indicates fairness in dispersion of income distribution. A Gini 
coefficient of zero expresses perfect equality and a coefficient of 
one expresses maximal inequality; thus, one would expect the 
lower the Gini Index the less people will be infected. This is the 
case for the OLS model with interpolation but not for the other 
model. The coefficients for vaccine rate disagree with each other 
as well. A negative sign is expected since more people vaccinated 
are expected to lead to less infection. However, the OLS model 
without interpolation has a positive sign.  
 
Secondly, There is no redundancy in either of the models because 
the VIF[c] values are both lower than 7.5. 
Thirdly, the results of t-test suggest that the coefficients for the 
independent variables are not significantly different than 0 since 
the greatest difference is less than 1.4. 
 
Fourthly, the Jarque-Bera statistic is greater than 0.05 in both 
models, which means it is not significant. This suggests that the 
model is not misspecified or no key variable is missing from any 
of the models. 
 
Fifthly, the adjusted R2 is a small negative number for both of 
models, which indicates that the dependent variable is not being 
explained by the independent variables at all. 
 
Finally, the standard residual for both of OLS models are clustered 
in Southeastern Africa. Refer to figure 8 for the residual map for 
OLS with and without interpolation. Global spatial 
autocorrelation on both residual maps confirmed global clustering 
by its high z-score. Refer to figure 9 for the spatial autocorrelation 
report for OLS with and without interpolation. 
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Figure 8. Residual map for OLS with interpolation 
(left) and without interpolation (right) 

 

 
Figure 9. Spatial autocorrelation report for OLS with 
Interpolation (left) and without interpolation (right) 

 
 

5. CONCLUSION 
 
The most notable limitation is the dataset, which was retrieved 
from the Council on Foreign Relations, followed by the nature 
of working with a global dataset, and joining the points to 
polygons, which reduced the overall observations to fifty.  
 
The initial consideration behind using this specific dataset was 
to reproduce the maps within the news report and then examine 
their claim that there is a resurgence of vaccine-preventable 
disease due to declining vaccine rates. It was quickly determined 
that global examination would prove difficult due to the nature 
of the global dataset as well as reporting inconsistencies among 
the countries. Exploration of variables in Africa was chosen 
based on the results of hot spot analysis. However, by joining 
disease case points to country polygons in Africa, the number of 
observations was minimized to fifty, which is too few for 
analysis using geographically weighted regression.  
 
Based on inconsistent results compared to extensive literature 
reviews and the news report, it is anticipated that the data 
collection process used by the Council on Foreign Relations may 
be unreliable and inaccurate. Nonetheless, results from both 
reports indicate highly mobile disease diffusion largely initiating 
in Africa and the Near East and expanding outward over time. 
Of notable exception is whooping cough, which appears to be 
highly mobile and capable of easily expanding and retreating 
from year to year; this may be a disease to investigate further 
precisely due to this extreme variability.  
 
In conclusion, if future analysis were to ensue, attempts would 
be made to minimize error by retrieving data from an alternate 
source, such as the WHO Monitoring System for Vaccine-

Preventable Disease. By running analyses again with a more 
standardized approach to data collection, it is believed that the 
results would be more representative of the literature, or at least 
there would be more confidence in the overall analysis. Another 
independent variable for consideration would be comparing 
rural/urban population. Also, more attention would be given to a 
more specific area within Africa to explore local versus regional 
clustering that was not explicitly explored in this analysis. 
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