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ABSTRACT: 

 

Estimating exposure to fine Particulate Matter (PM2.5) requires surface with high spatial resolution. Aerosol optical depth (AOD) 

is one of MODIS products, being used to monitor PM2.5 concentration on ground level indirectly. In this research, AOD was 

derived in fine spatial resolution of 1×1 Km by utilizing an algorithm developed in which local aerosol models and conditions 

were took into account. Afterwards, due to spatial varying the relation between AOD-PM2.5, a regional scale geographically 

weighted regression model (GWR) was developed to derive daily seamless surface concentration of PM2.5 over Beijing, Tianjin 

and Hebei. For this purpose , various combinations of explanatory variables were investigated in the base of data availability, 

among which the best one includes AOD, PBL height, mean value of RH in boundary layer, mean value of temperature in 

boundary layer, wind speed and pressure  was selected for the proposed GWR model over study area.  The results show that, our 

model produces surface concentration of PM2.5 with annual RMSE of 18.6μg/m3. Besides, the feasibility of our model in 

estimating air pollution level was also assessed and high compatibility between model and ground monitoring was observed, 

which demonstrates the capability of the MODIS AOD and proposed model to estimate ground level PM2.5.  

 

1. INTRODUCTION 
 

 

Aerosols or particulate matters can be defined as a system of 
solids or liquids suspended in gaseous environments such as 
air in radios varies from some nanometre to larger than 100 
micrometre. The major concentration of the atmospheric 
aerosols is found in troposphere and its bottom layer which is  
called Planetary Boundary Layer (PBL), as most production 
sources  of aerosols are located in this layer (Kulkarni et al., 
2010).One of the major negative aspects of aerosols is their 

adverse effects on human health. In general, the finer the size 
of the particulate matter is, the deeper it can penetrate inside 
the respiration system where the absorption is more serious. 
There are a pile of papers investigating the adverse effects of 
particulate matters on health from them it can be concluded 
that measurement of ground level fine particulate matters 
(PM2.5,particles with diameters less than 2.5 μm) is  the 
fundament for epidemiological studies and sustainable 
development (Fuzzi et al., 2015; Karimian et al., 2012; Pope 

and Dockery, 2006).In spite of efforts done by China to 
control air pollutants emissions, there are reports of 
increasingly occurrence of haze or smog episodes followed 
by the high PM2.5 level and diminished visibility especially in 
mega cities of China (Kan et al., 2009; Zhang and Cao, 
2015). China has started to disclose hourly pollutant 
concentrations to the public since January 2013. One of the 
major short comings of ground level monitoring stations is 

their coarse spatial coverage, especially those are used in 
epidemiological studies where the finer special coverage is 
required.  
 
One of remote sensing products is atmospheric Aerosol 
Optical Depth (AOD) that can be defined as the degree to 
which aerosols prevent the transmission of light by 
absorption or scattering. The capability of AOD in 

monitoring PM2.5 has been demonstrated in a number of 
studies (Chu et al., 2016). MODerate resolution Image 

Spectroradiometer  (MODIS) is one of the most referring 
instruments in the field of aerosol monitoring(Hoff and 
Christopher, 2009).  The use of MODIS  on board of Terra 
and Aqua(King et al., 2003), a part of  NASA’s earth 
observation system (EOS), started a new era of atmospheric 
aerosol studies, due to its  high spectral resolution and almost 
daily global coverage(monitoring aerosols over specific areas  
nearly twice per day, at approximately 10:30 and 13:30 local 

time)(Li et al., 2005b). The latest standard MODIS algorithm 
yields AOD data in 3×3 km spatial resolution (Levy et al., 
2013). However, since the finer resolution of AOD can 
provide more valuable information for studying particulate 
matter in regional and urban scales(Paciorek and Liu, 2010), 
several studies have been conducted to produce AOD data in 
finer spatial resolution(Li et al., 2012; Lyapustin et al., 2011).  
One of the very first attempts to produce AOD in 1×1 km  
spatial resolution was done by Li et al. (2005a) in eastern 

China, through following the MODIS dark target algorithm 
procedures (Kaufman et al., 2002). By extracting AOD in 
finer resolution there may be a possibility for the new 
algorithm to introduce additional noise, especially over land. 
However, this probable source of noise can be lessen by the 
slightly more stringent requirements in de-selection and the 
minimum number of required pixels to represent the retrieval  
box (Levy et al., 2013) . Therefore, in this algorithm the 

authors defined a new series of conditions for the cloud mask 
and dark target selection which is more stringent than the 
MODIS standard algorithm. Afterwards, the required number 
of remaining pixels was changed to be more compatible for 1 
Km retrieval. In addition, a new look-up table was designed 
by focusing more on aerosol local conditions and aerosol 
models. In our study, we will follow the procedures of this 
algorithm to produce 1×1 km AOD.  
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Due to heterogeneous nature of the AOD and PM2.5, 
monitoring of PM2.5 through AOD is a challenging task. 
Since from on hand, AOD is unit less sunlight attenuation due 
to the existence of atmospheric aerosols in the vertical 
column (ground to top of the atmosphere), while PM2.5 is dry 

mass of fine particles measure in ground surface.  Previous 
studies which retrieve PM2.5 from satellite based AOD started 
with two variable empirical regression models proposed in 
different regions(Hoff and Christopher, 2009). As the 
consequence of the disagreement between correlation 
coefficients in different regions, it was concluded that beside 
AOD, other factors also have influences in this correlation, 
such as humidity, wind direction and speed, land use, 

aerosols type and height of boundary layer (Chu et al., 2016). 
Hence as an approach, global and regional chemical transport 
models (CTM) were exploited to estimate PM2.5 through 
simulating the effective factors (Emmons et al., 2010; Liu, 
2004; Pfister et al., 2011; van Donkelaar et al., 2006; van 
Donkelaar et al., 2013). Although CTMs provide spatially 
continues information about air pollutants without requiring 
ground PM2.5 and their performance will be improved by 

assimilation of satellite based AOD (Chen et al., 2014), their 
spatial resolution is coarse yet for epidemiological studies. 
Moreover, due to the lack of pollutants emissions type and 
emissions listing data in developing countries, it is hard to 
meet the conditions that required to apply in CTMs, resulting 
the numerical model uncertainties (Chu et al., 2016). Another 
widely used approach is observation based methods which 
relies on application of statistical techniques to estimate 

PM2.5 as the dependant variable, through combining AOD 
with several covariates as predictors. Among these 
aforementioned methods,   Semi empirical linear regression 
models have been  proposed based on physical understanding 
of the correlation between AOD and PM2.5 by including 
boundary layer height and hygroscopic growth factors (Chu 
et al., 2013; Li et al., 2005b). Karimian et al. (2016) claimed 
that incorporating the vertical profile of relative humidity 
instead of ground level solely and aerosol size distribution 

could improve the AOD-PM2.5 correlation. To improve the 
accuracy of the estimated PM2.5 more complex statistical 
models and machine learning methods such as mixed effect 
model, general additives model, land use regression, 
Bayesian hierarchical model, back propagation neural 
network and artificial neural network have been developed 
using different sets of covariates (Chu et al., 2016; Liu et al., 
2009; Ma et al., 2014; Wu et al., 2012; Xie et al., 2015; Zhan 

et al., 2017).  Due to the variety of sources that produce fine 
particulate matters, concentration and chemical composition 
of PM2.5 can vary in short distance(Kumar, 2010). 
Consequently, optical properties of the particles which 
influenced by chemical composition vary as well. Therefore, 
considering this variety in aerosol type is necessary in linkage 
between AOD-PM2.5. The effect of the aerosol type variation  
in the statistical model  can be take in to account if a local 

scale model could be utilized instead of global scale model. 
In the oppose to global regression models which give one 
value for the entire study area, Geographically Weighted 
Regression (GWR) (a local regression method), considers the 
non stationary and spatial heterogeneity of the relation 
between explained and explanatory variables(Fotheringham 
et al., 2002 ).  As the result, in this study we proposed a GWR 
based model to produce seamless surface of PM2.5 using 

AOD 1km in Beijing, Tianjin and Hebei (BTH) area for 
whole year 2013. 

Figure 1. Spatial distribution of ground monitoring 

PM2.5 stations (green pin for model calibration, blue 
pin for validation of the model) 

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area, including Beijing, Tianjin and Hebei (~ 113⁰-
120⁰ E, 36⁰-43⁰ N) is one of regions suffering from frequent 

and sever air pollution scenarios. Beijing, the capital city is 
located in this area with high population density. This area is  
in a warm temperate zone with typical continental monsoon 
climate(Chen, 2014). It is placed at the northern tip of north 

China plain being open to the south and east and surrounded 
by mountains in north, northwest and west, that may make 
the formation of the haze easier ,  by considering air pollution 
emission sources located in south and east (He et al., 2012; Li 
and Shao, 2009). 

2.2 Satellite Data 

Finer resolution of satellite AOD can improve the PM2.5 
derived from satellite data. Therefore, AOD with fine spatial 
resolution of (1km×1km) was retrieved for the whole year of 
2013 over the study area, which makes our study differ from 
studies using 10 km or 3 km AOD data. As the AOD is 
reported in visible range, only daytime MODIS data (~10:30 
Terra, ~13:30 Aqua; local time) was processed following the 
algorithm  developed by Li et al. (2005a). The  Estimated 
retrieval errors are within 15% to 20% by validation 

compared with sun-photometer  measurements, which is of 
the same accuracy as MODIS standard aerosol products over 
Beijing and  Hong Kong (Li et al., 2005a; Lin et al., 2015). 
The retrieved AOD (Y) was validated by the comparison to 
AERONET level 1.5 AOD (X), which was observed at the7 
AERONET stations located in eastern part of China. It 
exhibited a correlation coefficient of R= 0.79, with a slope of 
0.73 and intercept of 0.12, and suggested that MODIS AOD 

correlated well with sun-photometer observations (Lin et al., 
2015). 

2.3 Ground Level PM2.5

This study used hourly PM2.5 concentration data for entire 
2013. According to the Chinese National Ambient Air 
Quality Standard (CNAAQS, GB3095-2012, available on the 
Chinese Ministry of Environmental Protection (MEP) Web 

Tianjin 

Hebei 

Beijing 
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site http://kjs.mep.gov.cn/)(Ma et al., 2014), the ground PM2.5

data of China’s mainland are measured with the tapered 
element oscillating microbalance (TEOM)  technique or beta 
attenuation monitors (BAM or β-gauge). Data are recorded on 
hourly base, and meet the control limit of 10% for both 

accuracy and precision (EPD, 2013). There are 79 stations 
located within the study area, among which 60 stations were 
used for model calibration with the remaining 19 stations 
were used for model validation .The data close to MODIS 
overpass time was collected for further processing(Figure 1). 

2.4 Model Based Meteorology Data 

Global Forecast System (GFS) is a numeric weather 
prediction under the authority of national centre of 
environment prediction. The numerical models (atmosphere, 
ocean, land, and sea ice) are run together four times daily and 
produce global covered forecast for up to 16 days. The 
globally covered data was obtained from the GFS official 

website in the horizontal resolution of 0.5⁰ at the MODIS 

over pass time initially. Afterwards, the data over study area 

extracted in the 0.5 ⁰×0.5⁰ grids through self programming. 

Each GFS file includs several data covering geo-potential 
height in different pressure level, boundary layer height, 
relative humidity (8 levels), temperature (8 levels) and wind 
north(v) and east(u) components from that, wind speed(Ws) 
can be calculated through Eq.(1). 

2 2
W = (v +u )  (1)s

3. METHODOLOGY

GWR model was performed to consider spatially varying 
relationship. In the calibration of the regression model in 
GWR, a weight is ascribed to each observation, based on the 
distance of the data point from the regression point (distance 

decay based weight) using a continuous weighting function 
such as Gaussian or bi-square (spatial kernel function). 
Taking the weight into consideration, data closer to 
regression point get higher weight than the further one. In 
accordance to the fact that, GWR is sensitive to 
multicolinearity (redundancy) of the explanatory variables, 
which in simple words means two or more variables say the 
same story and play the same role in model. Hence in the first 

step we checked the redundancy of the explanatory variables 
by applying a linear regression between each two auxiliary 
variables (Table 1). As can be seen, except the correlation 
between topography (Topo) and pressure (Press) that express 
redundancy (R=0.99), the rest of variables exhibit no 
redundancy. Therefore, we eliminated the model which 
includes both Topo and Press value together. In the second 
stage, because the meteorological data (including wind, 

surface pressure, surface temperature, averaged surface in 
boundary layer, RH in the surface, averaged RH in the 
boundary layer and PBL height) is reported  in course spatial 
resolution(0.5○×0.5○) we assimilated all data to the pixel with 
special resolution of 5 Km using Kriging method. Next, the 
meteorology and AOD values over each ground PM2.5 station 
were extracted. With all required data collected, we used 
GWR4 to perform GWR model over study area and extract 

the surface PM2.5 concentration. One remarkable aspect of 
GWR is the capability in the case where not well distributed 
data points exist (spares data around regression point)(Ma et 
al., 2014). Due to the reason mentioned before, there are two 
type of method used for selecting bandwidth which are 
known as fixed (which is set fixed for all regression point) or 

adaptive (kernel has a larger bandwidth when points are 
spares, and narrower when points are plenty).Adaptive 
bandwidth is the optimal bandwidth selected so that there are 
the same number of data points for each regression point. 
There are several strategies in determining optimal adaptive 

bandwidth (Guo et al., 2008). Akaike Information Criterion 
(AICc) was used to determine the optimal bandwidth , and 
details can be found in Fotheringham et al. (2002 ). As GWR 
could be used to determine the best model among different 
models with various explanatory variables with the usage of 
AICc, we tried different combinations (8) to get the best one 
(the lowest value of AICc assigned to the best model). Table 2 
provides the monthly averaged performance of different 

combinations. 

PBL RH T Wind Topo Press 

PBL 0.5 0.60 0.28 0.20 0.25 

RH 0.5 0.20 0.14 0.22 0.20 

T 0.6 0.20 0.16 0.05 0.05 

Wind 0.28 0.14 0.16 0.20 0.20 

Topo 0.20 0.22 0.05 0.20 0.99 

Press 0.25 0.20 0.05 0.20 0.99 

Table 1. Correlation between explanatory variables used in 
GWR model 

Since one of the objectives of this study was testing the role 
of vertical profile of RH and temperature in model’s 
performance, mean values of these two parameters inside 
PBL were calculated and compared with the performance of 
the models calibrated with ground level value solely. In the 
table RH_surface(%) indicate the relative humidity value in 
ground level , RH_m (%) stands for the mean value in 

boundary layer, T_sur (⁰C)and T_m(⁰C) indicates surface 

value and mean value of temperature in boundary layer 
respectively. Wind is the speed of wind (m/s) measured at 10 

meter above the ground derived from (u,v) data. Topo stands 
for topography, Press for surface level pressure (hpa) and 
PBL for boundary layer height (Km). As can be seen the 
AICc has the decreasing rate and as discussed before lower 
AICc indicates better model’s performance. Based on this, 
the best model is when AOD has been applied followed by 
boundary layer height, wind speed, pressure and mean value 
of temperature and relative humidity in boundary layer.  

Table2. Assessing of different model combination regarding 
to AICc and R2 

Combination AICc R
2
 

AOD-PM 552.5 0.4 

AOD-PM-PBL-RHsur 542 0.56 

AOD-PM-PBL-RHm 539.2 0.61 

AOD-PM-PBL-RHsur-Tsur 534.1 0.62 

AOD-PM-PBL-RHm-Tm 531.8 0.64 

AOD-PM-PBL-RHm-Tm-Wind 527.4 0.69 

AOD-PM-PBL-RHm-Tm-Wind-Topo 524 0.73 

AOD-PM-PBL-RHm-Tm-Wind-Press 520.5 0.75 
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Figure 2. Spatial and temporal (seasonal) variation of PM2.5 derived from GWR (upper) 
and comparison with ground observation (lower) 

Considering meteorological parameters can improve the 
performance of the model remarkably (from 552 to 523), and 
better performance is observed when the vertical profile of 
RH and T, other than ground level, where taken into account. 

The gained correlation is compatible with the study done over 
south of China, where the authors cited their GWR model got 
correlation coefficient of 0.74 (Song et al., 2014). 
Consequently we applied the best combination as our GWR 
model over BTH.  The unites of parameters involve in model 
were explained above.  

PM2.5~AOD+PBL+RHm+Tm+Ws+Press  (2) 

In order to get surface distribution of PM2.5 we applied the 
spatial varied regression coefficients derived from GWR 
model from each pixel through multiplying to model 
parameters and add diagonal elements of this matrix to the 
model Intercept to get the PM2.5 concentration for each pixel. 

4. RESULTS and DISCUSSION 

4.1 Spatially Varying the Correlation 

Figure (2) exhibits the spatial and seasonal variation of PM2.5

concentration derived from GWR model in 5 Km spatial 
resolution. In order to validate our model, we use 19 ground 
level PM2.5 monitoring stations as control data source (Figure 
1). One of main advantages of using satellite data in 
particulate matter monitoring is providing the surface 
distribution in oppose to ground level observations, which 
have limited spatial coverage. As can be seen from the figure, 
southern part of the study area (Hebei) faces higher 

concentration of the fine particulate matter than other areas. 
This may be caused by the higher concentration of industrial 
and anthropogenic activities in that area. In the oppose of 
southern part, northern part which is a mountainous area with 
lower population density, exhibits considerably lower 
concentration. This proves the importance of anthropogenic 
activities as one of main sources that could generate PM2.5. 
Moreover, we can see a higher concentrations (above 160 

μg/m3) that is near 5 times more than the China

Figure 3.The spatial distribution of the annual PM2.5 

concentration from developed GWR model (left) and 
comparison with ground observation (RMSE=18.6μg/m3) 

standard concentration (35μg/m3) in cold seasons (winter and 
autumn). This verifies the role that heating system plays in 
pollution by utilizing coal in study area. As can be seen there 

is a very good agreement between model performance and 
ground observations which determine the ability of our 
developed GWR model for PM2.5 estimation. The mean 
annual concentration of PM2.5 derived from GWR   is shown 
in figure (3). As it is illustrated, most of study area face with 
moderate to unhealthy level of PM2.5 concentration, except 
northern regions. Compared with ground control observations 
(19 stations) the annual mean RMSE gains 18.6μg/m3. This 

distribution pattern follows the distribution of  PM2.5 derived 
from GWR for entire china with RMSE 30μg/m3  and 50 Km 
spatial resolution (Ma et al., 2014). Our model also exhibits 
better performance than a linear mixed effect model 
developed over BTH for 2013 with RMSE 23.1μg/m3 (Zheng 
et al., 2016). Also this result is compatible with the mixed 
effect model developed by Xie et al. (2015) over Beijing with 
annual RMSE 18((μg/m3). This slightly better result may due 

to the more ground stations (well distributed N=35) that were 
used to calibrate the model. 

 In all, bring these results to count, considering spatial 
variation of the relation in AOD-PM2.5, can provide 
considerably better performance of estimating PM2.5. 
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Therefore, applying MODIS AOD and good combination of 
auxiliary data is recommended in future studies in the region 
suffering from lack of ground level fine particulate matter 
monitoring .GWR model is based on this concept that 
residuals have no spatial clustering and distribute randomly. 

Therefore, a good model is the one of which  residuals are not 
clustered. As the result, we run Moran’s I model to check for 
spatial autocorrelation on residuals. The Moran’s I value, 
ranging from -1 (dispersion) to +1 (absolute autocorrelation) , 
0 is the indicator of random distribution(Wang et al., 2005). 
In our study residuals distribute randomly and our model is 
acceptable from this aspect (Moran’s I index= 0.1). 

4.2 Applicability to Air Quality Monitoring 

The major goal of monitoring air pollutants in urban areas is 
to improve air quality and health. The Air Quality Index 
(AQI) and air pollution level is designed based on six major 
atmospheric air pollutants concentration (SO2, NO2, CO, O3, 
PM10, and PM2.5). The AQI is calculated based on each 
pollutant concentration separately and reported corresponding 

to the highest AQI. Considering the fact that PM2.5 is one of 
the major pollutants in study area and most AQI is reported in 
accordance with PM2.5 concentration (Karimian et al., 2016) , 
we validate our model capability to monitor air pollution 
level .Table (3) illustrates the air quality and air pollution 
sub-index level based on corresponding PM2.5 concentrations 
(Zheng et al., 2014).  

Figure 4 illustrates the air pollution level derived based on 
mean annual concentration of PM2.5 from GWR and the 
comparison with the one derived from observation based 
data. As can be seen, unhealthy level of air pollution was 
observed in large portion of the study area in 2013  and 
people living in BTH were exposed to long term level of 
unhealthy concentration of PM2.5. Moreover, as it is 
illustrated except for one station (located in southern part of 
the study area), satellite derived PM2.5 has this ability to 

estimate true air pollution level in study area. These results 
verify the ability of MODIS aerosol optical depth to be 
utilized in fine particulate matter studies. It is emphasized 
that, inclusion of meteorological parameters such as wind 
speed, pressure, temperature and especially boundary layer 
height and relative humidity (vertical profile) can improve the 
model performance. However, extension of the study area 
and well distribution of the data used to calibrate the model 

have influence on performance of the model. 

Table 3. AQI and air pollution levels with corresponding 
PM2.5 concentrations (Ministry of Environmental Protection 

of People’s Republic of China) 

5. CONCLUSIONS

In spite of accuracy and high temporal resolution, ground 
level monitoring of PM2.5 is suffering from course spatial

Figure 4. The annual spatial distribution of the air pollution 
level based on PM2.5 concentration from the GWR (left) 

and comparison with air pollution level from ground 
observation(right) 

resolution especially for epidemiological purposes. In this 
study a regional scale geographically weighted regression 

model was developed in order to retrieve daily seamless 
surface concentration of PM2.5 over Beijing, Tianjin, Heibei 
using satellite based AOD with 1×1 Km spatial resolution. 
Because the main source of fine particulate matter is from 
anthropogenic activities, their type and chemical composition 
varies in large area. The spatial variability and non stationary 
of the relation can be considered in GWR as a local statistic 
model. Several models with various combinations of 

explanatory variables were investigated and the best 
combination including AOD, PBL height, and mean value of 
RH in boundary layer, mean value of temperature in 
boundary layer, wind speed and pressure was selected as the 
explanatory variable of the proposed GWR model over study 
area.  

The feasibility of the proposed model was examined using 19 
control stations distributed over BTH with the annual mean 

RMSE= 18.6 μg/m3. Besides, it was shown that our model 
has this ability to monitor air pollution level and the results 
are highly compatible with ground monitoring ones.  
However, some of the issues should be carried in mind before 
using GWR model. First comes to the study area where 
should be large enough to detect the correlation variation by 
the model. Second issue is data should be distributed well in 
study area. In future studies models to compensate for 

missing AOD data (non retrieved days) should be proposed. 
Moreover, capability of different statistical models in 
estimation of PM2.5 through AOD can be investigated and 
compared. 
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