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ABSTRACT: 
 
The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle 
(Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making 
processes.  Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG).   However, the 
models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation 
purposes.  Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal 
resolutions.  The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal 
resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a 
summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability 
distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed 
distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal 
distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions 
and it is found that the Gamma distributions fit much better than the Lognormal.  
 
 

1. INTRODUCATION 
 

Rainfall is an important climatic factor, which not only has 
huge influence on agriculture, transportation and many other 
human activities, but also a key parameter in ecology, 
meteorology and hydrology.  Extreme rainfall events result 
in large scale floods and flash floods which become major 
hydrological disasters.  The lack of rainfall results in droughts 
that affect food production and other environmental 
conditions.  Therefore, an investigation on rainfall distribution 
is needed for both scientific 
research such as climatic change, hydrologic circulation and 
ecological environment, and operational decision making and 
other applications, such as agriculture irrigation, prevention 
and reduction of natural disasters.   
 
The characteristics of remote sensing data are the large spatial 
coverage and the frequent satellites’ revisit times. Rain gauge 
measurements provide continuous temporal coverage, but are 
however limited to the sampling areas of the gauge.  The 
analysis of gauge networks is used for input to hydrologic 
models, however, they are limited by their spatial coverage 
(Chokngamwong & Chiu, 2007). With the increasing number 
of meteorological satellites, advances in sensor technology and 
techniques for merging satellite and gauge products, rainfall 
products have been widely applied for research and operations. 
 
Since the first meteorological satellite, TIROS-1 launched, 
satellite global rainfall maps have been developed.  With the 
launch of the Tropical Rainfall Measuring Mission (TRMM) 
and the Global Precipitation Measurement Mission (GPM), the 
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collection provided the impetus and satellite rainfall estimation 
techniques flourished. Kidd (Kidd, 2001) reviewed techniques 
for rainfall measurements and introduced rainfall climatology. 
Adler et al (Adler, Negria, Keehnb, & Hakkarinenc, 1993) 
proposed an approach to estimate mean monthly rainfall by 
combining the GOES infrared data and SSM/I microwave 
measurements. Main operational techniques for rainfall 
estimation are the CMORPH (CPC MORPHing technique) 
precipitation of NOAA Climatic Prediction Center; and the 
NASA Goddard Precipitation Rain Profiling algorithms 
for TRMM (GPROF) and merged techniques for the Global 
Precipitation Mission (GPM) from NASA and JAXA. 
 
The spatial and temporal rainfall distribution can be 
characterized by the sensor and the associated sampling 
strategy.  Different spatial and temporal scales in rainfall 
monitoring can impact rainfall distributions. As indicated by 
Hamza Varikoden (Varikoden, Preethi, Samah, & Babu, 
2011), knowledge of the spatiotemporal distribution of high 
intensity rain events would be immensely useful for planners, 
architect and disaster managers to undertake appropriate risk 
reduction strategies. In this study, the rainfall distribution at 
different spatial and temporal scales is investigated with the 
TRMM 3 hourly rainfall products.  
 

2. DATA AND METHOD 
 
2.1 TRMM 3B42V7 Data 
 
TRMM 3B42V7 is a post-real-time production computed 
with TRMM Multi-satellite Precipitation Analysis 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017 
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W2-183-2017 | © Authors 2017. CC BY 4.0 License.

 
183



(TMPA) algorithm, developed by the National Aeronautics and 
Space Administration (NASA) Goddard Space Flight Center 
(GSFC), which can be 
downloaded from https://giovanni.sci.gsfc.nasa.gov/giovanni/.
 And the TRMM 3B42 data has a 0.25degree spatial 
resolution and 3 hourly temporal resolution, covering the 
latitudinal band about 50S-50N for the period 1997 to present. 
(Kummerow, Barnes, Kozu, Shiue, & Simpson, 1998).  
 
The TRMM/TMPA 3B42 rainfall estimates are produced in 
four stages: (1) the microwave precipitation estimates are 
calibrated and combined, (2) infrared precipitation estimates 
are created using the calibrated microwave precipitation, (3) 
the microwave and IR estimates are combined, and (4) 
rescaling to monthly data is applied. Each precipitation field is 
best interpreted as the precipitation rate effective at the nominal 
observation time (Huffman, et al., 2007). The sources 
of its passive Microwave satellite precipitation estimates 
include: TRMM Microwave Imager (TMI), Special Sensor 
Microwave Imager (SSMI), Special Sensor Microwave 
Imager/Sounder (SSMIS) (3B42V7 only), Advanced 
Microwave Scanning Radiometer-EOS (AMSR-E), Advanced 
Microwave Sounding Unit-B (AMSU-B), and Microwave 
Humidity Sounder (MHS) (Chen, et al., 2013). And the IR data 
are from National Climatic Data Center (NCDC) and Climate 
Prediction Center (CPC), which are calibrated by the 
Microwave data according to the algorithm. It 
also incorporates the latest version 4 of Global Precipitation 
Climatology Centre (GPCC) full-gauge analysis from 1998 to 
2010 and the GPCC monitoring gauge analysis since 
2010 (Moazami, et al., 2013).  
 
TRMM 3B42 data covers the tropical area of 50o~ -50oN and 
180o ~ -180oE, with an original spatial pixel size of 
0.25o *0.25o, so the total pixel number of an original dataset is 
1440*400.  The TRMM 3B42 data set used in this study is the 
latest version (3B42V7) for the period from June 1st to August 
31st. In this study, the precipitation rates of raw data- every 
three hour’s measurements are aggregated to 6,12, 24 hourly, 
pentad and monthly scales at the original 0.25 degree, 1.0, and 
2.5 degrees’ grids and stored in separate HDF format files.   
 

 
Figure 1. Map of rainfall amount per hour through June 1st to 

August 31st with a spatial resolution of 0.25o * 0.25o 

Figure 1 shows the rainfall amount of the study area at a spatial 
resolution of 0.25 degree. We can observe that higher rainfall 
amount concentrates close to the equator, which is called Inter 

Tropical Convergence Zone (ITCZ). ITCZ is a belt of low 
pressure which circles the Earth generally near the equator 
where the trade winds of the Northern and Southern 
Hemispheres come together. It is characterized by convective 
activity which generates often vigorous thunderstorms over 
large areas. Therefore, large amount of rainfall appears 
there.  Other areas of the high rainfall are the maritime 
continent and the Amazon over land.  In addition, there are 
regions in the western boundaries of the Pacific and Atlantic 
showing the storm tracks.  
 
2.2 Procedure 
Firstly, the separate data files of the same date during the study 
period are merged into one file in NetCDF format, and a time 
dimension is created to express time of the data. The 
monitoring periods of raw data are 00:00~03:00, 03:00~06:00, 
06:00~09:00, 09:00~12:00, 12:00~15:00, 15:00~18:00, 
18:00~21:00, 21:00~00:00 UTC, corresponding to 8 intervals 
per day. 
 
The second step is to aggregate these merged data into different 
temporal and spatial resolutions, and store all the data with the 
same temporal and spatial resolution into one file in NetCDF 
format. A time dimension will be created to describe the 
rainfall amount of one pixel on a given time point. The size of 
the time dimension is determined by its temporal resolution: 

DT = !"#$	∗	'()                                   (1) 
Where DT is the size of temporal dimension, N+,-	is number 
of days of the study period, and T is the temporal resolution of 
the satellite rainfall data. Take dataset with a temporal 
resolution of 3 hour and a spatial resolution of 0.25*0.25 degree 
as an example, it will have a time dimension size of 
92*8(=736). After spatial and temporal aggregation, 3-
dimensional datasets of rainfall rate, denoted by Rt,x,y, are 
obtained for the following statistical analysis. For a set 
temporal and spatial resolution, its value is equal to the rainfall 
amount (RAt,x,y) per hour. 
And the third step is to analyze the characteristics and 
difference of and between datasets with different resolutions. 
 
The new rainfall rate on one pixel after temporal aggregation is 
as follows: 

R),0,- 	= 	
234,5,$

6
478

9 														              (2) 

n = 	
T
3 

where T is the new temporal resolution; t0 is the time when the 
monitoring of rainfall rate on the pixel started; x and y is the 
latitude/longitude coordinates of the pixel, which is not 
considered to be a variable at this case. 
When we fix the temporal resolution, t will not be a variable. 
Then the rainfall rate of the pixel after aggregated on spatial 
scale is: 

R=,0,- = 	 R04-4																																												(
9
?@A 3) 

n = 	
S

0.25 
where Rx,y is the value of rainfall rate of pixel (x, y), S is the 
new spatial resolution; x0, y0 is the original coordinates of the 
pixel before aggregation. 
 
2.3 Mixed Distribution 
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There are many situations in which the cumulative distribution 
function contains jumps at some points but is otherwise 
continuous. Such a distribution is neither discrete nor continuous 
but rather a combination of a discrete component and a 
continuous component (Kedem, Chiu, & North, Estimation of 
Mean Rain Rate: Application to Satellite Observations, 1990). 
The case of rain rate presents an example of a mixed distribution. 
For pixels’ RAt,x,y=0, it has a probability 1-p, otherwise the 
probability is p when RAt,x,y>0. The cumulative distribution 
function G(r), of RA can be presented as a convex combination 
of two increasing function H and F, and F is a continuous 
distribution function (Kedem, Chiu, & North, Estimation of 
Mean Rain Rate: Application to Satellite Observations, 1990): 

G(r) = (1 -p) H(r) + pF(r)                       (4) 
For  

r <0, H(r)=0 
r=0, H(r)=1 
r£0, F(r)=0 

r>0, f(r) = F'(r) 
where f(r) is the density of R conditional on R > 0. The 
generalized density g(r) corresponding to G(r) can be expressed 
as follow (Aitchison & Brown, 1963): 
for  

r < 0, g(r) = 0 
r=0, g(r)=1-p                                (5) 

r> 0, g(r)=pf(r) 
Hence the probability of detecting no rain is (1-p) and p is the 
probability of detecting rain in a space/time element. f(r) is 
also referred to as the marginal distribution.  
 

2.4  KS test 
In statistics, the Kolmogorov–Smirnov test (K–S test or KS test) 
is a nonparametric test of the equality of continuous, one-
dimensional probability distributions that can be used to 
compare a sample with a reference probability distribution (one-
sample K–S test), or to compare two samples (two-sample K–S 
test). It is named after Andrey Kolmogorov and Nikolai Smirnov 
(Hazewinkel, 2001). 
 
In this study, KS test is used to test if the distribution of samples 
from two different resolutions differ. two-sample KS test is used. 
In this case, the Kolmogorov–Smirnov statistic is 
 

D9,H = sup FM,9(r) − F',H(r)                   (6) 
where F1,m(r) and F2,n(r) are the empirical distribution 
functions of the first and the second sample respectively, 
and sup is the supremum function. The null hypothesis is that the 
two sample distributions are different if   
 

D9,H > c 9SH
9H                               (7) 

Where c =1.36 at the 95% level and n and m are the number of 
samples of each dataset.  KS tests are performed between 
distributions of the total distribution (mixed distribution) and the 
marginal (non-raining) distribution separately.  
  

2.5 Chi-Square Goodness of Fit Test 
Parametric tests are also performed using the Lognormal and 
gamma distribution. This study uses chi-square (X') goodness-
of-fit test to compare the distributions, i.e. check how "close" are 
the observed values to those which would be expected under the 
fitted model (Department of Statistics and Data Science, n.d.). 
The X' test estimates the difference between the observed data 
and the expected value according to the theoretical distribution. 
If the data are grouped in k categoried (i=1,2,3,…,k), the 
observed frequency in each class is denoted as O, and the 
expected probability from the hypothesized distribution is E 
(CHO, BOWMAN, & NORTH, 2004), then the chi-square test 
statistic is of the form: 

X' = [V4WX4]Z

X4
[
?@M                                   (8) 

A smaller X'  value means a closer distribution to the 
hypothesized distribution. 
 

3. RESULTS

 
Figure 2. Rain probability in different temporal and spatial 

resolutions 

Figure 2 shows p (rain probability) in different temporal 
resolutions with spatial resolution of 0.25, 1.0 and 2.5 degrees 
respectively. It can be found that, with the decrease of temporal 
and spatial resolutions, the fraction of raining pixels increases 
and probability of none-rainfall pixels decreases in each spatial 
resolution, i.e. the larger the observation interval, there is 
a higher probability of detecting raining events. (Kedem & Chiu, 
1987) 

	 3_0.25	 12_0.25	 daily_0.25	 panted_0.25	 monthly_0.25	

p	 0.139	 0.311	 0.443	 0.779	 0.948	

N	 59035625	 32998727	 23486118	 8073365	 1637343	

σ	(mm/hr)	 0.748	 0.493	 0.393	 0.235	 0.153	
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Mean(mm/hr)	 0.119	 0.119	 0.119	 0.119	 0.119	

CV	 6.286	 4.143	 3.303	 1.975	 1.286	

Table 1. Rain probability (p), standard deviation (σ), number of samples (N) and mean of datasets in different temporal resolutions with a 
spatial resolution of 0.25o * 0.25o

	
	 3_1	 12_1	 daily_1	 panted_1	 monthly_1	
p	 0.304	 0.546	 0.682	 0.912	 0.992	
N	 8044372	 3616658	 2260248	 590666	 107085	
σ	(mm/hr)	 9.568	 6.932	 5.687	 3.545	 2.390	
Mean(mm/hr)	 1.903	 1.904	 1.904	 1.908	 1.908	
CV	 5.028	 3.643	 2.988	 1.858	 1.253	

Table 2. Same as Table 1, except for a spatial resolution of 1.0o * 1.0o

	
	 3_2.5	 12_2.5	 daily_2.5	 panted_2.5	 monthly_2.5	

p	 0.527	 0.768	 0.865	 0.980	 1.000	

N	 2233208	 813967	 458218	 101592	 17278	

σ	(mm/hr)	 45.036	 36.035	 30.650	 20.143	 14.089	

Mean(mm/hr)	 11.895	 11.901	 11.901	 11.923	 11.923	

CV	 3.786	 3.028	 2.575	 1.689	 1.182	
Table 3. Same as Table 1, except for a spatial resolution of 2.5o * 2.5o

Table 1 to Table 3 show the rain probability, standard 
deviation(σ), mean value and CV of rainfall rate per hour of 
different resolutions.  
 
When spatial resolution stays the same and temporal resolution 
decreases, the mean value doesn’t change because 
they are derived from the same original data. The slight 
difference is due to the aggregation process with some missing 
data. The p value become larger as discussed above. On the other 

hand, the variance becomes smaller. That is, the distribution 
becomes less dispersive. When spatial interval becomes larger, p 
increases while the mean stay almost the same and 
the variance decreases if we normalize the data to the same unit 
area.  The coefficient of variations (CV= σ /mean) decrease as 
the resolution decreases.  For example, the CV at the daily 
temporal resolution are 3.30, 2.99, and 2.58 at spatial resolutions 
of 0.25, 1.0, and 2.5 degrees.

 

d																				D	 3_0.25	 12_0.25	 daily_0.25	 panted_0.25	 monthly_0.25	

3_0.25	 	 0.215	 0.278	 0.304	 0.332	

12_0.25	 0.0003	 	 0.078	 0.126	 0.175	

daily_0.25	 0.0003	 0.0004	 	 0.076	 0.124	

panted_0.25	 0.0005	 0.0005	 0.0006	 	 0.086	

monthly_0.25	 0.0011	 0.0011	 0.0011	 0.0012	 	

Table 4. KS-test of different temporal resolutions with a spatial resolution of 0.25o * 0.25o 

	

Table 4 shows the D value of KS-test between different temporal 
resolutions as well as d which refers to the threshold, 
c*[(n+m)/nm]1/2. Similar tables are constructed at other spatial 

resolutions (not shown). According to the results of KS tests, all 
D values are larger than the threshold d. This means all the 
distributions of rainfall are distinct. 
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Figure 3. PDF of log value of rainfall rate in different temporal resolutions with a spatial resolution of 0.25o * 0.25o 

	
Figure 4. PDF of log value of value of rainfall in different temporal resolutions with a spatial resolution of 1.0o * 1.0o

	
Figure 5. PDF of log value of value of rainfall in different temporal resolutions with a spatial resolution of 2.5o * 2.5o

Figure 3 to Figure 5 show the PDF of log rainfall rate at different 
temporal resolutions with spatial resolutions of 0.25o * 0.25o, 
1.0o * 1.0o, and 2.5o * 2.5o.  The rainfall amount is binned 
respectively at 0.42 mm/hr, 1.67 mm/hr and 6.67 mm/hr.  It 
should be noted that the low rain rate data (<0.1mm/hr) deviates 
substantially from the lognormal distribution. At these low rain 
rates, the radiometer data used in the algorithm may not be able 
to discriminate low rain and cloud signatures.  The peak of the 
Lognormal distribution coincides with the data at high 
resolutions, but shifts toward the low rain rates as the resolutions 
are degraded.  At the mid-high rain rate range, the 
lognormal distribution underestimates the observed distribution 
but over-estimates at the high rain end (log r ~ 3).  The 12-hourly 
data fit the lognormal distribution best according to the Chi 

square test. For the 3-hourly data, the first half part doesn’t fit 
the lognormal perfectly as well as the last half part of the daily 
data.    
 
Another parametric fit to rainfall data in this study is the gamma 
distribution. Cho et al. (CHO, BOWMAN, & NORTH, 2004) 
compared the fit of TRMM data to lognormal and gamma 
distribution and showed that in general the lognormal (gamma) 
distribution generally fits better in dry (wet) regions. Our data 
are fitted to these distributions and the fits are 
compared using the Chi square statistics.   
 
Figure 6 to Figure 8 compares the Chi square statistics for our 
dataset for one summer season. 
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Figure 6. χ2 test of lognormal distribution and gamma distribution in temporal resolution of 3 hourly with a spatial resolution of 0.25o * 

0.25o 

	
Figure 7. χ2 test of lognormal distribution and gamma distribution in temporal resolution of 3 hourly with a spatial resolution of 1.0o * 

1.0o 

	
Figure 8. χ2 test of gamma distribution and lognormal distribution in temporal resolution of 3 hourly with a spatial resolution of 2.5o * 

2.5o

Figure 6 to Figure 8 show the X' value of gamma and lognormal 
distribution. The observed data of each pixel is generated in 30 
groups. In the same temporal and spatial resolution, the  
 
X'  value of Gamma distribution is less than that of lognormal 

distribution. This means the gamma distribution 
generally outperforms the lognormal distribution for the 
study domain.  Their difference becomes less as the resolutions 
are decreased, however.   
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Figure 9. PDF of Lognormal and Gamma distribution fitting to data with temporal resolution of 3 and 12 hourly and spatial resolution of 

0.25o * 0.25o 

Figure 9 shows PDF of the Lognormal and Gamma distribution. 
The 3 hourly-0.25degree data is generated in 100 bins and the 
interval is 0.8mm/hr. Most of the rainfall amount values 
concentrate in the first few bins. More than 85% is in the first bin 
which means most of the rainfall amount (per hour) is small than 
0.8 mm/hr. The PDF of Gamma distribution fits the observed 
data well in the first two bins and smaller than the observed PDF 
in the following bins. The PDF of Lognormal distribution fails 
to fit the first bin and larger than the observed data in the 

following bins. But the first bin of the observed histogram 
contains most part of the rainfall amount value, therefore the 
lognormal performs worse than the Gamma distribution. 
The 12 hourly-0.25degree data is generated in 50 bins and the 
interval is 1.0mm/hr. The first bin still contains most of the data. 
The Lognormal distribution fits the first bin better than 3hourly 
data. It has some improvement in fitting the 12hourly data, but 
still fail to outperform the Gamma distribution generally. 

 

Figure 10. Probplot-plot of Gamma and Lognormal distribution fitting to data with temporal resolution of 3 hourly and spatial resolution 
of 0.25o * 0.25o 
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Figure 11. Probplot-plot of Gamma and Lognormal distribution fitting to data with temporal resolution of 12 hourly and spatial 

resolution of 0.25o * 0.25o 

 
Figure 10 and Figure 11 show Probplot-plot of Gamma and 
Lognormal distributions fitting to data with temporal resolution 
of 3 and 12 hourly and spatial resolution of 0.25o * 0.25o. And 
the paper take 100 samples evenly from each of the original 
datasets. According to the Probplot-plots, the Gamma 
distribution fits the datasets better than the Lognormal 
distribution in both resolutions. And the Gamma fitting result 
improves when decreasing the temporal resolution, but on the 
contrary, the Lognormal has a worse fit on the smaller temporal 
resolution. 

4. CONCLUSION 
In this study, the characteristics and distribution of rainfall 
derived from different temporal and spatial resolutions are 
compared.  It is found that: With the decrease of temporal 
resolution: (1) The fraction of raining pixels (p) becomes 
larger, as shown in Figure 12. (2) Since the total rainfall amount 
at any temporal resolution is the same, the conditional rainfall 

rate will be decrease according to the relation:  CRR= RA/RF, 
where CRR, RA and RF are the conditional rain rate, rain 
amount and rain frequency. As temporal resolution decreases, 
the average conditional rainfall rates become smaller, as shown 
in Figure 12. (3) As the resolutions decreases, the variance 
decreases as the data becomes less dispersive (lower CV). (4) 
The increasing rate of CDF become larger.  
 
And with the decrease of spatial resolution: (1) Raining pixels’ 
fractions increase and more non-rainfall events are missed, 
which means an increase on rainfall frequency. This conclusion 
is also proved by Figure 12. (2) But for pixel area is enlarged 
with the decrease of spatial resolution, conditional rainfall rate 
is not comparable between different spatial resolutions. (3) 
Difference between samples from two spatial resolutions 
increases when the value of these two resolutions differ greater.

Figure 12. Mean and median of rainfall frequency(RF) and conditional rainfall rate(CRR) in different resolutions. 

The study also compare the goodness of fit of the lognormal 
and gamma distribution. The lognormal fits are in 
general better over dry areas than over wet areas, consistent 
with the results of Cho et al. (2004). The gamma distribution 
performs better than the lognormal distribution both on the 

entire data scale and at pixel scale. But the sample data only 
contains one season (JJA) of year 2000, so for the daily, panted 
and monthly resolution there is not enough samples to draw 
an accurate conclusion.   
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While the datasets are all distinct, there are similarity among 
some datasets, such as [3hr, 1 ̊] and [12hr, 0.25 ̊] when their rain 
fraction (p) and CV are quite similar. This can be understood 
in terms of Taylor’s frozen field hypothesis (Gupta & 
Waymire, 1987), i.e. the field is advected by the mean field, 
and hence the properties averaged over 3 hourly 1 ̊ is the same 
as that at 0.25 ̊averaged over 12 hours.   
 
The results herein are only based on one season of 
data. Our next step is to examine all the available TMPA data 
and other datasets. Further studies are needed to examine the 
contributions of the rain fraction and conditional rain rate to the 
amount at various resolutions, and to examine the scales for 
which the data are compatible with certain parametric 
models.  The introduction of an autocorrelation scale will also 
be needed to refine the downscaling model as it has been 
argued the multi-scale properties of rainfall fields. 
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