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ABSTRACT: 

Understanding individual travel behavior is vital in travel demand management as well as in urban and transportation planning. New 
data sources including mobile phone data and location-based social media (LBSM) data allow us to understand mobility behavior on 
an unprecedented level of details. Recent studies of trip purpose prediction tend to use machine learning (ML) methods, since they 
generally produce high levels of predictive accuracy. Few studies used LSBM as a large data source to extend its potential in predicting 
individual travel destination using ML techniques. In the presented research, we created a spatio-temporal probabilistic model based 
on an ensemble ML framework named “Random Forests” utilizing the travel extracted from geotagged Tweets in 419 census tracts of 
Greater Cincinnati area for predicting the tract ID of an individual’s travel destination at any time using the information of its origin. 
We evaluated the model accuracy using the travels extracted from the Tweets themselves as well as the travels from household travel 
survey. The Tweets and survey based travels that start from same tract in the south western parts of the study area is more likely to 
select same destination compare to the other parts. Also, both Tweets and survey based travels were affected by the attraction points 
in the downtown of Cincinnati and the tracts in the north eastern part of the area. Finally, both evaluations show that the model 
predictions are acceptable, but it cannot predict destination using inputs from other data sources as precise as the Tweets based data.

1. INTRODUCTION

With the evolution of urban travel demand models from 
aggregate to disaggregate models (Rasouli and Timmermans, 
2014), there is a growing need of managing disaggregate travel 
data with spatial and temporal components in a GIS 
environment. Understanding travel behavior is vital in travel 
demand management as well as in urban and transportation 
planning (Yue et al., 2014; Beiró et al., 2016). Among the travel 
characteristics, trip destination and activity pattern received 
significant attention in recent studies (Ermagun et al., 2017). 
Traditionally, household travel survey sources are used to 
analysis human mobility pattern and travel behavior and create 
predictive models(Abbasi et al., 2015). The more recent studies 
tend to use machine learning (ML) methods since they generally 
produce higher levels of predictive accuracy than probabilistic 
and rule-based methods (Ermagun et al., 2017). (Deng and Ji, 
2010) present a ML approach to deriving trip purpose from GPS 
track data coupled with other relevant data sources. They employ 
a number of attributes such as time stamp and land-use type of 
trip ends, a set of spatiotemporal indices of travel, and 
demographic and socioeconomic characteristics to construct a 
decision tree for purpose of classification. Similarly, (Lu et al., 
2013) explore the feasibility of automating trip purpose detection 
employing ML method with geospatial location data, the land 
use data, and GPS-based survey data. (Oliveira et al., 2014) used 
a two-level nested logit model (probabilistic) and a decision tree 
model (ML) to differentiate between 12 trip purposes. In their 
study, the decision tree model was more accurate and much 
faster to generate functioning models than nested logit model. 
(Xiao et al., 2016) used artificial neural networks combined with 
particle swarm optimization to differentiate between 6 trip 
purposes from GPS data. To find the full list of previous studies 
in trip destination prediction, see (Lee et al., 2016; Ermagun et 
al., 2017).  
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New data sources including GPS logs, smart card records, mobile 
phone data, and location-based social media (LBSM) data (e.g.  

Twitter, Foursquare, etc.) allow us to observe and understand 
mobility behavior on an unprecedented level of details and they  
have become potential alternatives or complementary 
approaches to study large-scale human mobility patterns and 
travel behaviors(Gao et al., 2014; Anda et al., 2017). LBSM data 
as a large volumes of spatio-temporal footprints (Li et al., 2013) 
can be specifically used in the predictive models of individual 
travel destination (Anda et al., 2017) based on ML techniques 
(Ermagun et al., 2017). Although GPS survey data was heavily 
utilized in predicting individual travel destination using ML methods, 
few studies used LBSM data as a big data source to extend its potential 
in this area. (Coffey and Pozdnoukhov, 2013) applied a ML method to 
enrich the semantics behind the modes related to the trip purpose and 
user activities at destinations in a bike sharing network using content-
rich geo-referenced social media data. (Barchiesi et al., 2015) designed 
a ML algorithm to infer the probability of finding people in 
geographical locations and the probability of movement between pairs 
of locations using data from Flickr photo-sharing website. (Beiró et al., 
2016) proposed a predictive model of human flow mobility that 
integrates a Flickr dataset with the classical gravity model, under a 
stacked regression procedure. They validated the performance and 
generalizability of the model using two ground-truth datasets on air 
travel and daily commuting in the United States. 

In this research a collection of geotagged tweets was used to create a 
spatio-temporal probabilistic model based on ML framework which 
can estimate the probability of selecting each census tract as the 
destination of an individual based on the characteristics of the origin 
and the travel start time and day. The model performance was 
evaluated based on data from both LBSM itself and GPS household 
travel survey data in order to explore the accuracy of the model 
predictions using different data sources. The paper is divided into six 
sections as follows. A description of the data set and study area is 
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offered in Section 2. Section 3 presents the modeling methodology and 
addresses the spatiotemporal specification of the ML model. Empirical 
results are presented in Section 4 along with an interpretation and 
validation. Section 5 concludes and offers thoughts for further 
research. 

2. DATA & STUDY AREA

For this study, a Tweet crawler was developed based on the Twitter  
streaming API (application programming interface) to collect tweets 
posted within 419 census tracts of Greater Cincinnati area (Figure 
1). 

Figure 1. Study area 

We collected 35 days of geotagged tweets between February 1, 2017 
and March 11, 2017 and stored them in a spatial database. The dataset 
consists of over 46 thousand records generated by a total of over 4300 
users. Each geo-tagged tweet has contents of the tweets and the 
associated exact location, timestamp and source, and also each Twitter 
user has a unique identifier and a profile name. Despite the 1% limit 
of sampling, it has been reported that the streaming API returns almost 
the complete set of the geo-tagged tweets (Morstatter et al., 2013). The 
extracted tweets are preprocessed before use for modeling because 
some i) geotagged-tweets are created by social-bots (Gao et al., 2014), 
ii) some tweets do not reflect the physical location of the user since the 
default location of the user saved in the location field instead, and iii)
some users only create one tweet in the whole study time period
making infeasible to create travel by only one tweet. After bot
cleaning (Davis et al., 2016) 20360 (44% of total) geotagged
tweets from 4188 users (96% of total) remained in the database.
The mean inter-tweeting time was 232.02 minute (Figure 2).

Figure 2. Number of users for each mean inter-tweeting time 

As the smartphone GPS uncertainty is typically up to 30 meters 
(Gao et al., 2014), we consider this number as the threshold for 
defining a trip. After the overall cleaning, 3529 travels from 560 
users were created by considering each two consecutive tweets 
of a user in each day as a travel. Average number of trips per day 
was equal to 1 for 63%, 2 for 15%, 3 for 15%, 4 for 4% and more 
than 4 for 3% of the users (Figure 3). 

Figure 3. Number of users for each average number of geo-
tweets 

Figure 4 shows the location of the tweets after cleaning and also 
the kernel density map of them. In addition to geotagged Tweets, 
The Household Travel Survey data provided by the Ohio-
Kentucky-Indiana Regional Council of Governments (OKI) to 
explore the level of accuracy of the LBSM based model in 
predicting the destination of the trips extracted from other data 
sources. Between August 2009 and August 2010, the OKI 
Regional Council of Governments collected detailed travel data 
from 1137 households who carried around a Global Positioning 
System (GPS) handset tool when taking a trip. This survey 
recorded the trip information for each individual of every 
sampled household during weekdays, including trip purpose, 
origin locations, destination locations, transportation means, trip 
count, travel time, travel distance, and so on. In addition, this 
dataset also provides the socioeconomic and demographic 
information of each individual participating in the survey as well 
as the household information, such as gender, age, job type, 
income, household type and so on (Kim and Wang, 2015). Our 
final sample contains 6500 individuals located in the 419 census 
tracts. 

Figures 5 and 6 show the distribution of the number of travels in 
each week day and each hour of day for both survey data and 
geotagged tweets. As it can be noticed from Figure 5, the number 
of travel based on the tweets in Saturday and Sunday is much 
higher than survey data which was expected based on previous 
studies (Luo et al., 2016) and it happened because people tend to 
tweet in Saturday and Sunday nights in recreational activities. 
Other point that can be seen in both patterns is the high value of 
travels in Wednesdays.  
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Figure 4. Location of cleaned geo-tweets (top) and kernel 
density estimation (bottom) 

Figure 5. Number of travels in each week day based on survey 
data (top) and geo-tweets (bottom) 

In Figure 6 the first dissimilarity between two patterns is 
between midnight and 4 AM. The number of travels created by 
tweets are more than this number in survey data in this period. 
The peak value in survey data occurred around 16-17 o’clock, 
however this value occurred around 13 o’clock in the tweets 
which is again similar to the previous studies (Luo et al., 2016).  
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Figure 6. Number of travels in each hour of day based on 
survey data (top) and geo-tweets (bottom) 

3. METHODOLOGY

3.1 Model Description 

3.1.1 Random Forest model: Random forest (RF) model 
(Breiman, 2001) has demonstrated successful results in variety 
of travel behavior researches (Ermagun et al., 2017). We used 
this method to capture travel behavior in our study. RF is an 
ensemble learning approach where predictions are made based 
on multiple de-correlated decision trees built on training data 
using bootstrap aggregation or bagging procedure (Breiman, 
1996). The procedure of creating a bagging predictor is 
resampling the training dataset with replacement, building a 
prediction model on each resampled dataset and averaging the 
prediction as in equation (1). 

𝑃𝑃�𝑏𝑏𝑏𝑏𝑏𝑏(𝑛𝑛)(𝑥𝑥) =  1
𝐵𝐵

 ∑ 𝑃𝑃�∗𝑏𝑏(𝑥𝑥)𝐵𝐵
𝑏𝑏=1      (1) 

where     𝑃𝑃�(𝑥𝑥) = predictor  
    X = features used as inputs of the function 
    B = number of created bags of size n  
    b = bag number.  

Use of bagging in predictor leads to better model performance 
by decreasing the variance of the model, without increasing the 
bias. Using bagging in decision tree method can solve the 
overfitting problem of a single tree predictor because of the Law 
of Large Numbers (Breiman, 2001). According to the benefits of 
using bagging, RF method produces a large number of tree 
structures and uses all the trees to generate prediction results. It 
is also more stable than the individual decision tree models and 
less prone to errors in prediction due to data perturbations 

(Ermagun et al., 2017). Figure 7 shows a flow chart for the 
modeling framework. 

Figure 7. The flow chart of the modeling framework 

Using decision tree predictor, the probability of each class can 
be predicted, which is the fraction of training samples of the 
same class in a leaf. Probabilistic prediction results in RF are 
based on the mean predicted class probabilities of the decision 
trees in the forest. If dtrain is the dataset of training data with 
known class, c is the dataset of target classes, dtest is the dataset 
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of test data with unknown class and pj is the probability that each 
test data belongs to each class j of c, creating a probabilistic RF 
model for calculating pj consists of the following steps (John Lu, 
2010): 

Step 1. Draw a bootstrap sample Z* of size N from dtrain. 
Step 2. Grow a random forest tree Tb for the bootstrapped data, 
by recursively repeating the following steps for each terminal 
node of the tree, until the minimum node size nmin is reached. 

Step 2.1. Select m features at random from the q features of 
the data. 

Step 2.2. Pick the best feature/split-point among them. 
Step 2.3. Split the node into daughter nodes. 

3.1.2 Calculation of the Model Parameters: For calculating 
pj for each test data, equation (1) is utilized by using Z* for B and 
N for n as the process of ensemble. In our study we used 5 
features (q = 5) as the input of the model: i) census tract FIPS 
code of travel origin, ii) the landuse name where individual 
started his/her travel from there, iii) the time of the day, iv) the 
day of the week that the travel was started, and v) the population 
density of the origin census tract. The target classes (c) are the 
FIPS code of the census tract of individual destination. We used 
80% of all travels of Twitter data as model’s training data (dtrain) 
and the remaining as test data (dtest) for model evaluation. For 
creating the forests, the following variables must be defined in 
the model: bootstrap sample size of dtrain (N), number of 
randomly selected features (m), the method for pick the best 
feature/split-point among the randomly selected features, 
maximum depth of each tree and the number of trees in each 
forest. Based on the size of the bootstrap sample, we control bias-
variance tradeoff of random forest. It means that by choosing a 
large value for N we decrease the randomness and thus the forest 
is more likely to overfit. On the other hand, small value for N 
can reduce the degree of the overfitting at the expense of 
reducing the model performance. Choosing the number of 
samples in the original training dataset for N usually can 
provides a good bias-variance tradeoff (Phillips et al., 2016). We 
used this value for N in our study. For calculating the other 
variables of the model, k_fold cross validation method was used. 
k_fold divides all the samples in k groups, called folds. The 
prediction function is learned using k-1 folds, and the left out 
fold is used for test. the process is performed for each fold and 
based on the accuracy of each model the parameters of the 
highest accuracy will be considered as the optimum values 
(Kohavi, 1995). As 10-fold cross-validation is commonly used 
(McLachlan et al., 2005) we used 10 folds for optimizing the 
variables. After performing the optimization, the best value for 
i) the number of built trees in the forest was 700, ii) and m value
was square root of the number of features (√5), iii) the depth of
each tree was 9 and iv) “information gain” (IG) was used as the
method for pick the best feature/split-point. IG is based on the
notion of entropy, which characterizes the impurity of an
arbitrary set of examples (Raileanu and Stoffel, 2004). Entropy
of all the classes (ci) before splitting the data can be calculated
by equation (2).

𝐻𝐻( 𝑐𝑐1
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑐𝑐2
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

, … , 𝑐𝑐𝑛𝑛
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

) = −∑  𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1     (2)

where       n = number of classes 
  𝑝𝑝𝑖𝑖 = proportion of class i in the target column of the 

training data. 
The expected entropy of attribute A with w distinct values after 
splitting the training data with A can be calculated by equation 
(3). 

𝐸𝐸𝐸𝐸(𝐴𝐴) =  ∑ ( 𝐷𝐷ℎ
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

∗ 𝐻𝐻(𝐷𝐷𝑐𝑐(1)

𝐷𝐷ℎ
, 𝐷𝐷𝑐𝑐(2)

𝐷𝐷ℎ
, … , 𝐷𝐷𝑐𝑐(𝑛𝑛)

𝐷𝐷ℎ
)𝑤𝑤

ℎ=1 )        (3) 

Where        D = number of target values which classified in the 
node h and 

 𝐷𝐷𝑐𝑐 = the number of target values in D which is from 
class c (j, j=1 to n). 

IG can be calculated using equation (4). 

𝐼𝐼𝐼𝐼(𝐴𝐴) =  𝐻𝐻 � 𝑐𝑐1
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑐𝑐2
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

, … , 𝑐𝑐𝑛𝑛
∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

� −  𝐸𝐸𝐸𝐸(𝐴𝐴)          (4) 

Best feature/split-point is the one with highest value of IG. In our 
study the number of classes (𝑐𝑐𝑖𝑖) is 419 which is the number of 
census tract in the study area. The number of distinct value (w) 
for landuse attribute is 5 (Table 1), for days of the week is 7, for 
hours of a day is 5 as following: [0,5], [5,9], [9,12], [12,16], 
[16,24] (which are based on the hour categories of Census 
Transportation Planning Products (CTPP) 
(http://ctpp.transportation.org/)).  

Landuse Percent of Area 

Education 3.78 

Office 0.49 

Residential 26.62 

Retail 1.83 

Other 67.28 
Table 1. Landuse composite in the study area 

3.2 Model Evaluation 

For evaluating the model performance, the area under the graph 
between the true positive and the false positive rates for the 
probabilistic classifier across all thresholds (ROC plot) was 
used. The resulting value varies between 0 and 1. 0.5 value 
shows that the model predicts randomly and values under 0.5 
indicates that the model predicts the presence of an individual in 
a tract for which he/she was previously absent (Raven et al., 
2002). The total AUC of the results was calculated using the 
method described in (Provost and Domingos, 2000). In this 
method, each AUC was weighted based on the prevalence of the 
tweets presence in a related class (Which is census tract in our 
research). The sum of the weighted values considered as the total 
AUC value. The procedure was performed for the household 
travel survey data and total AUC was calculated for it separately 
in order to examine the predictability of travel destinations using 
another data source which can be considered as an empirical 
evidence data. 

4 EMPIRICAL RESULTS 

The total AUC value as the indicator for accuracy was 0.718 for 
Tweets test data and was 0.58 for the survey data. Both values 
are more than 0.5 which means the model does not predict 
randomly. The smaller AUC value of the survey data shows that 
the model cannot predict travel destination using the inputs of 
other data sources as accurate as the Tweets based data source. 
It might be happened because of the difference between travel 
patterns in two data sources. For instance, with the same values 
for the 5 attributes, about 40% of travels have the same 
destination in both Tweets based and survey based travel data. It 
shows that the pattern of destination selection is different in lots 
of cases which causes smaller value of AUC for survey based 
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data. Figure 8 shows the spatial distribution of AUC values 
calculated for each census tract for both Tweets based and survey 
based test data. The ‘None’ values show the tracts that were not 
predicted because they were not in the target column of the 
training data. 

Figure 8. The spatial distribution of AUC values of Tweets 
based (top) and survey based (bottom) test data 

As it can be noticed in Figure 8, several census tracts (about 
33%) in Tweets based map have high values of AUC (0.8 to 1) 
but only 0.09% of the census tracts are in this range in the survey 
based map. The majority of AUC values (about 63%) in survey 
based map are in (0.6-0.7) range. Also 45% of the tracts have 
low value of AUC (0 to 0.5) in Tweets based map and about 28% 
of the tracts are in low value range. This huge number of tracts 
with low AUC value in Tweets based map does not make a low 
value of total AUC because model prediction was very accurate 
in the tracts with a lot of Tweet points. On the other hand, the 
total AUC value for survey based data is in accordance with the 
huge number of tracts with medium values of AUC in survey 
based map. There is no spatial pattern in the tracts with high 
AUC value in the Tweets based map however in survey based 
map as we move toward south western parts more tracts with 
high AUC can be seen. Based on this pattern it can be concluded 

that the empirical based travels that starts from the south western 
parts have the same pattern in destination choosing with Tweet 
based travels that starts from the same regions. 
Comparing our study with some previous researches (Oliveira et 
al., 2014; Ermagun et al., 2017), our model seems to be more 
accurate. Our proposed approach can show useful information 
about the difference of the model predictions and the empirical 
pattern of destination choice. For example, Figure 9 shows the 
two rasters created from the OD matrices. The value of each cell 
was divided by the sum of its column in order to make the two 
rasters comparable to each other. The horizontal axis shows the 
destination tracts and the vertical axis shows the origin tracts. As 
it can be seen in Figure 9, the matrix of survey based travels is 
smoother than the model based one and majority of travels are 
on the main diagonal of the matrix which means there are a lot 
of intra tracts travels in this data and also it can be seen a 
recognizable spot in the down central part of the matrix. 
However, the model based raster has a distributed noisy pattern 
with non-dense main diagonal line which means model predicts 
a lot of inter travel between the tracts. Pearson correlation 
coefficient was 0.342 (p-value = 0.0001) showing a weak 
significant correlation between the matrices. 

Figure 9. Raster of OD matrix created by all possible 
combination of model’s attributes (top) and the one created by 

survey based travel data (bottom) 

Figure 10 shows the probability of selecting each tract based on 
model based and survey based OD matrix. The probabilities were 
calculated by dividing the value of each cell of the matrices by 
the sum of its of column. As it can be noticed from Figure 10, 
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some tracts in downtown area of Cincinnati city and a tract in 
northern part have a high probability (more than 0.2) in the 
model based map. However, no tract in survey based map is in 
the high probability range. This fact is in proportion to the 
matrices pattern regarding to smooth pattern of the survey based 
matrix and noisy pattern of the model based one. The pattern of 
the model based map is affected by the number of Tweet travel 
destination points in each tract since the model is trained by 
Tweets data. Two spots of high values in the maps can be 
noticed. The first one is the downtown of Cincinnati city and the 
second one is two tracts in north eastern part of the area. The 
travel attraction of the downtown case was expected however the 
attraction of the other tracts was not. A possible reason for it, 
based on the location of the destination points inside of these two 
tracts, might be the existence of the shopping centers within 
them. 

Figure 10. Probability of selecting each tract as the destination 
calculated by model based OD matrix (top) and survey based 

OD matrix (bottom) 

5 CONCLUSIONS & DISCUSSION 

In this study, we created a probabilistic model to predict the 
destination of travels using RF (ML) method. Previous studies in 
travel destination estimation using ML method were typically 
based on GPS survey data. In this study we used geotagged 
Twitter data of 419 census tracts of Cincinnati metropolitan area 
in order to show its potential in modeling individual travel 
behavior. The accuracy of the model was acceptable for 
predicting the destination of the Tweet based travels. We 
concluded that the empirical based travels that starts from the 
south western parts of the study area is similar to destination 
choosing of Tweet based travels that starts from the same 
regions. In addition, both Tweets and survey based travels 
affected by the attraction points in the downtown area of 
Cincinnati and some tracts in the north eastern part of the area. 
Using LBSM data in travel behavior studies is effective because 
they allow us to observe and understand mobility behavior on an 
unprecedented level of detail. Although collecting this type of 
data is affordable compare to traditional surveys, there are couple 
of drawbacks when applying them to real world problems. First, 
the origin and destination of a travel created by LBSM are not 
specific places in many cases. For instance, they might be at the 
middle of roads and streets because some people tend to Tweet 
when they are in car. Furthermore, these data cannot be used in 
small study areas because the small number of samples might not 
represent the whole population. Because no exact demographic 
attributes exist in Tweet based travels, we extract them via 
external sources like landuse and census data. Thus our model is 
sensitive to the availability of these data. In this case, we could 
extract small amount of attributes for using in RF method and 
using more attributes might cause better results and accuracy. 
Further studies might be use of updated online data sources such 
as google maps (Ermagun et al., 2017) for extracting a more 
reliable landuse for origin and destination of the Tweet based 
travels. Another further study is using several sources of LBSM 
data such as Foursquare, Flicker, etc. in order to make a rich data 
source for modeling. 
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