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ABSTRACT: 

Canopy height model(CHM) and tree mean height are critical forestry parameters that many other parameters such 

as growth, carbon sequestration, standing timber volume, and biomass can be derived from. LiDAR is a new method 

used to rapidly estimate these parameters over large areas.  The estimation of these parameters has been derived 

successfully from CHM. However, a number of challenges limit the accurate retrieval of tree height and crowns, 
especially in tropical forest area. In this study, an improved canopy estimation model is proposed based on dynamic 

moving window that applied on LiDAR point cloud data. DEM, DSM and CHM of large tropical forest area can be 

derived from LiDAR data effectively and efficiently. 

1. INTRODUCTION

At present, remote sensing technology has been widely used in 

forestry resources management, dynamic monitoring and 

analysis, disaster monitoring, forecasting, assessment and so on. 

However, most of the remote sensing sensors can only provide 

detailed information on the horizontal direction, the vertical 

structure of the forest is hard to get from remote sensing images. 

The emergence of airborne LiDAR technology has led to 

significant changes in natural resource management and research. 

The laser emitted by the laser scanner can partly pass through the 

voids of the vegetation to reach the ground. The vegetation and 

the ground reflected laser are received by the system, and the 

vertical structure parameters of the forest can be obtained. 

However, a number of challenges limit the accurate retrieval of 

tree height and crowns. Research has shown that stand heights in 

moderate to dense canopy forests are commonly underestimated 

with LiDAR data as the probability of a laser pulse intercepting 

the apex of a tree crown is relatively small (Nilsson 1996, Naesset 

1997). 

A number of approaches have been developed to reduce this bias. 

In this study, an improved canopy estimation is proposed based 

on dynamic search window that applied on LiDAR point cloud 

data, and then the relation between the mean heights estimated 

from LiDAR data and the mean heights from the forest inventory 

is also proposed. By this relation, other forest mean heights can 

be estimated by applying a correction value.  

2. RELATED WORKS

A variety of research have been recently conducted on forest 

attribute estimation. The estimation of vertical forest structure 

such as canopy height from LiDAR data is arguably of greatest 

interest to foresters(Lim, Treitz et al. 2003). From this 

information, other biophysical parameters (e.g., volume, above-

ground biomass) that describe the function and productivity of 

forest ecosystems can be derived (Dubayah and Drake 2000). 

The expected difference between mean tree height and the laser-

based mean canopy height is discussed in details(Magnussen and 

Boudewyn 1998, Schardt, Ziegler et al. 2002, Sileshi 2014). In 

their work, geometrical probabilities were used to estimate the 

average vertical positions of laser hits given an average crown 

size. This position was then compared to the actual tree height for 

stands in the study area and a mean tree height was computed by 

adding the calculated difference to the laser estimated tree height. 

Adding the estimated difference to the laser-based height 

improved the correlation between field and laser estimates from 

0.61 to 0.83. 

3. METHODOLOGY

The complete process of laser scanning point cloud data is earlier 

proposed by Hoffman and Jain(Hoffman and Jain 1987) which 

including five subsequent data processing steps: data collection, 

data pre-processing, segmentation (or classification), feature 

identification and object modeling. This study is mostly carried 

out according to this process. For forest applications, the process 

is generally data acquisition, data preprocessing, DEM and DSM 

extraction, CHM generation, tree height and other parameters 

estimation that are shown in Figure 1.  

CHM-canopy height model- is a continuous digital dataset 

representing vegetation heights(Wulder, Bater et al. 2008). 
Data collection and preprocessing are not discussed in this paper. 

This paper focuses on DEM and DSM extraction, CHM 

generation and tree height estimation. 
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Figure 1. General process of forest point cloud application 

3.1 DEM and DSM Extraction 

The improved moving window difference algorithm is adopted 

in view of the complicated terrain in the tropical forest area in 

this paper. The algorithm first meshes the point cloud data, 

obtains the highest point and the lowest point in each grid, as the 

initial DSM and DEM reference plane, and then sets different 

thresholds according to the initial reference surface. Then the 

remaining points are classified to DSM or DEM. Finally, the 

DEM, DSM point cloud collection are exported to output files. 

The specific steps of the algorithm are as follows: 

1) Creating DSM and DEM initial reference plane grid

Calculate the minimum and maximum of the x, y coordinates,

namely (𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛 ) and (𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥 ), then create a grid by

selecting the lower left corner(𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛) of the area as a starting

point and setting the interval size to 2 meters.

Figure 2. Point cloud to grid map 

2) DSM points and DEM points accurate classification

First, find the highest and lowest points in each grid. Points with

lowest value are marked as ground while the highest as canopy

surface, that are called initial reference plane 𝐸(𝑖, 𝑗), 𝐶(𝑖, 𝑗).

Secondly, move the grid every 1 𝑛⁄  grid spacing in the x 

direction and then y direction.  

After each moving, do the accurate classification process as 

follows:  

Calculate the difference d𝑍𝐸𝑛, d𝑍𝐶𝑛 between each unmarked

point’s z value and the initial reference plane 𝐸(𝑖, 𝑗), 𝐶(𝑖, 𝑗). 

d𝑍𝐸𝑛 = 𝑍𝑛 − 𝐸𝑠(𝑖, 𝑗)

d𝑍𝐶𝑛 = 𝑍𝑛 − 𝐶𝑠(𝑖, 𝑗)

Where 𝑍𝑛 is the elevation of point N, 𝐸𝑠(𝑖, 𝑗)and 𝐶𝑠(𝑖, 𝑗) ) are

the mean Z value of the points in  𝑔𝑟𝑖𝑑(𝑖, 𝑗)  at 3 × 3 

neighborhood. 𝐸𝑠(𝑖, 𝑗)and 𝐶𝑠(𝑖, 𝑗) can be calculated as follows: 

𝐸𝑠(𝑖, 𝑗) = ∑ ∑ 𝐸(𝑖 − 2 + 𝑚, 𝑗 − 2 + 𝑛)

3
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Thirdly, classify point N as ground point, vegetation point or 

unmarked according to the following rules: 

{
|𝑑𝑍𝐸𝑛| < 𝑀𝑒, ground point 
|𝑑𝑍𝐸𝑛| > 𝑀𝑒, unmarked

{
|𝑑𝑍𝐶𝑛| < 𝑀𝑐, vegetation point 
|𝑑𝑍𝐶𝑛| > 𝑀𝑐, unmarked

Where 𝑀𝑒, 𝑀𝑐 are the difference threshold between unmarked 

point and 𝐸(𝑖, 𝑗), 𝐶(𝑖, 𝑗). In this paper, the threshold is set to 0.2 

meters.  

Finally, the discrete DEM (ground points) and DSM (vegetation 

points) point dataset are classified from the original dataset. 

3) DSM and DEM interpolation

The IDW interpolation method is used for DSM and DEM 

interpolation and the interpolation grid size can be set to  1 𝑛⁄  

grid interval to obtain the continuous reference model  𝐸(𝑖, 𝑗) 

and 𝑇(𝑖, 𝑗). 

3.2 CHM Extraction 

The Canopy Height Model is a surface model that expresses 

vegetation distance from the ground and provides a horizontal 

and vertical distribution of tree canopy (Koukoulas and 

Blackburn 2004). According to the definition, it is generally 

generated by DSM and DEM difference calculation. Based on the 

principle of grid space analysis in GIS, CHM is easily generated 

by DSM and DEM. 

Many of the vegetation parameters in the forest survey can be 

obtained directly or indirectly from CHM, such as tree height, 

crown width, canopy density, volume and biomass, but these 

parameters are usually lower than the actual value. 

3.3 Mean Tree Height Estimation 

Based on CHM, the mean tree height can be estimated by 

calculating the mean value of the raster’s pixel values that 

greater than the minimum height value of trees HL.  

4. EVALUATION

4.1 Test Site 

In this study, part of the tropical forest in Sanya City, 

Hainan Province, China is selected as the experimental 

area which is about 2 square kilometers.  

4.2 Data Used 

Lidar data: 

Lidar data of the test site was acquired by TopoSys Riegl LMS-

Q680 Scanner with flight height 1150 meters and 1.5 points per 

squared meters. 

Field survey data: 

A total of 48 elevation sites and 69 trees’ height, position, 
diameter at breast height(DBH) and field photos were acquired 

by RTK receiver, Nikon forestry pro, rules and digital camera. 
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Figure 3. Experimental area field and surveyed points (red 

for elevation points, green for single trees) 

4.3 Experiment Results 

The algorithms are implemented by C ++ and C #. The data of 

Lidar point cloud in this area are processed by DEM, DSM 

extraction, IDW interpolation, slope, aspect generation, CHM 

generation and average tree height calculation. Figure 4 to 6 are 

DEM, DSM and CHM. 

Figure 4.  DSM renderings and illustrations (m)

Figure 5. DEM renderings and illustrations (m) 

Figure 6. CHM renderings and illustrations (m) 

By setting different lowest tree height value HL, the estimated 

and surveyed mean tree height statistics are as follows: 

Table 1. Lidar point cloud data extraction average tree height 

(unit: m) 

No. 

Lowest 

Tree 

Height 

Lidar 

Mean 

Tree 

Height 

Surveyed 

Mean Tree 

Height 

Difference 

1 3 5.7 8.9 -3.2

2 3.5 6.1 9.0 -2.9

3 4 6.5 9.0 -2.5

4 4.5 6.8 9.1 -2.3

5 5 7.2 9.2 -2

6 5.5 7.6 9.5 -1.9

7 6 8.0 9.6 -1.6

8 6.5 8.4 9.9 -1.5

9 7 8.8 10.3 -1.5
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Figure 7. Relationship between different lowest tree height

4.4 DISCUSSION 

The results show that the system can process the Lidar point 

cloud data efficiently. The smaller the minimum tree height is, 

the closer the estimate is to the survey value. When the minimum 

tree height HL is set to 4 meters, the average tree height is about 

1.9 meters below the average height of the surveyed trees.  

The reasons for the difference may be as follows: First, the Lidar 

data loss at the top of trees because of the low density of Lidar 

point data. Second, Lidar laser is difficult to penetrate the low 

vegetation to arrives at the actual ground. Both reasons lead to 

the lower estimation. 

This table analysis results can be used as an empirical value for 

late Lidar point cloud data tree corrections. 

5. CONCLUSION

In this paper, a method for canopy surface reconstruction and 

forest parameters prediction from airborne laser scanner for 

large forest area is proposed and the algorithms are 

implemented by C ++ and C #. The dynamic search window 

algorithm is improved for Lidar data processing. Part of the 

tropic forest is selected as the test area and the estimated results 

are compared with the field for verification. 

The result shows that this method can reconstruct canopy 

surface and predict forest parameters effectively and efficiently 

for large forest areas. More accurate results can be acquired 

with the empirical correction value. The future work can be 

focused on the estimation of more parameters such as crown 

width, canopy density, biomass and other indicators and 

improving methods for CHM construction for more accurate 

results.  
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