
DETECTION OF BEHAVIOR PATTERNS OF INTEREST USING BIG DATA WHICH 

HAVE SPATIAL AND TEMPORAL ATTRIBUTES 
 

R. W. La Valley1*, A.Usher2, A. Cook3 

 

1OGSystems, Inc., Data Scientist and Senior Statistician, 14291 Park Meadow Dr # 100, Chantilly, VA 20151, 

Richard.LaValley@ogsystems.com 

2 Digital Globe Intelligence Solutions, Chief Technical Officer, 4350 Fairfax Dr., Ste 950, Arlington, VA 22203 

Abe.Usher@digitalglobe.com 
3 Digital Globe Intelligence Solutions, 4350 Fairfax Dr. Ste. 950, Arlington, VA 22203, Adam.Cook@digitalglobe.com 

 

 

KEYWORDS: Geospatial, Temporal, Aggregation, Location, Z-Curve, Space-Time Boxes, Geo-Temporal Hashing, Big Data 

 

 

ABSTRACT: 

 

 New innovative analytical techniques are emerging to extract patterns in Big Data which have temporal and geospatial attributes. 

These techniques are required to find patterns of interest in challenging circumstances when geospatial datasets have millions or 

billions of records and imprecision exists around the exact latitude and longitude of the data.   Furthermore, the usual temporal vector 

approach of years, months, days, hours, minutes and seconds often are computationally expensive and in many cases do not allow the 

user control of precision necessary to find patterns of interest. 

 

Geohashing is a single variable ASCII string representation of two-dimensional geometric coordinates. Time hashing is a similar 

ASCII representation which combines the temporal aspects of date and time of the data into a one dimensional set of data 

attributes.  Both methods utilize Z-order curves which map multidimensional data into single dimensions while preserving locality of 

the data records.  This paper explores the use of a combination of both geohashing and time hashing that is known as “geo-temporal” 

hashing or “space-time” boxes.  This technique provides a foundation for reducing the data into bins that can yield new methods for 

pattern discovery and detection in Big Data. 

 

 

1. THE PROBLEM 

 

Recent developments in geospatial analysis allow for the 

discovery of patterns of behaviors of entities of interest 

(Phithakkitnukoon, Husna, & Dantu, 2008) and (Ponienan, 

Salles, & Sarraute, 2013). Several issues present challenges 

for these approaches such as the Modifiable Areal Unit 

Problem (MAUP) which shows that the outcome of 

assessments can differ when data is aggregated to differing 

levels (provincial level, municipal level aggregated to 

provincial, neighborhood levels aggregated to municipal to 

provincial) (Openshaw, 1983). Tools used in geospatial 

analyses often have limited capacity to support rigorous 

quantitative assessments of geo-coordinates, and apply 

visualizations to provide exploratory data analysis and 

subjective discovery of patterns in the data (Lambiott, et al., 

2008).   

 

Precision and accuracy limitations with contemporary GPS 

devices such as smartphones, tablets, cameras and other 

handheld personal devices create noise which causes 

challenges in determining meaningful patterns in a 

combination of data from different devices (Eagle, Pentland. 

& Lazer, 2009).   Perhaps the biggest challenge in analysis of 

spatio-temporal data is the sequence of observations and the 

validity of assessments to discovering patterns.  Valid 

approaches to pattern detection and analysis must handle the 

temporal aspects of data to determine patterns such as co-

location, loitering, meetings, et cetera.  And finally, given the 

scale of big data datasets, analytical methods must be 

computationally efficient to facilitate rapid analysis. 
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2. INDEXING OF SPATIOTEMPORAL DATA 

 

2.1 Spatial Data Indexing Using Geohashing 

 

Multiple methods for the handling and storage of spatial data 

have been developed and emerged.  These include R-tree 

(Guttman, 1984) and (Beckmann, Kriegel, Schneider, & 

Seeger 1990), Hilbert R-tree (Kamel, & Faloutos 1993), 

Quadtree (Bentley, 1975), and Geohashing (Niemeyer, 2008) 

using Z-order curve. Geohashing is a data encoding technique 

to produce spatial bounding boxes used for binning of nearby 

points based on Z-order curves (Morton, 1966). Unlike many 

of the other spatial binning techniques, the geohash algorithm 

allows for the user to define the precision determination of the 

level of precision for the geospatial data hashes to use for the 

discovery of an event of interest.  Similarly the time hash 

provides a method for summarizing intervals of time at a level 

of precision defined by the user. The method described in this 

paper, geo-temporal hashing illustrates a technique which 

allows for the selection of a range of precision for both geo 

and temporal hashes.  Geohashes represented as an ASCII 

string composed of 32 alphanumeric characters providing a 

visual representation of the granularity and the reduction of 

spatial coordinates into a single attribute that is easily used in 

the discovery of patterns.  It is important to note that multiple 

precisions are obtained without processing the data more than 

once.  Geohashes at a fixed level of precision (e.g. geohash 

size 14, which represents a very small rectangle within a 

Cartesian coordinate system) are produced from a single step 

allowing for the user to select the precision desired (geohash 

size 14, or size 13, or any of the hierarchically related geohash 

boxes).  This technique has many advantages including 
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computational efficiency which enables the processing of 

billions of data. 

 Figure 1 illustrates how applying geohash can be thought of 

as a hierarchical decomposition of boxes of various sizes that 

can be tuned to a particular level of geospatial precision 

ranging from hundreds of kilometers to less than a meter.  

 Figure 1. GeoHash – tmwg4 and each of the four images 

illustrate the five levels of precision 

2.2 Temporal Data Indexing Using Time Hashing 

Time hashing is a lossey precision technique for temporal 

encoding (Usher, 2010). This technique represents intervals of 

time and produces units of time into a single ASCII string for 

easy query and discovery of patterns.  Like geohashing, this 

technique is hierarchical decomposition method which 

produces multiple levels of amalgamation of time in the 

ASCII string which is computationally efficient. It can be 

implemented by selecting a fixed period of 128 years such as 

1970-01-01 00:00:00 GMT to 2097-12-31 23:59:59 GMT to 

take advantage of the base-2 encoding that allows for efficient 

subdivision of intervals into smaller time periods.  The 

calculation of the time hashes of 14 levels of precision can 

produce the temporal bins as large as 64 years to nanoseconds. 

Each ASCII in the string represents bits of time (e.g., +/- 16 

years, +/- 8 years, 91.2 days, +/11.4 days, etc.). 

 Figure 2 illustrates the various levels of precision which 

can be achieved in a single pass of data.  This temporal index 

can  

 Figure 2. Time hashes with eight levels of precision 

be used by a user to determine the level of precision. 

2.3   Space-Time Boxes 

The discovery of patterns in the data requires the creation a 

primitive for processing with both spatial and temporal 

components.  The concatenation of geohashes and time hashes 

yields a usable primitive once the user determines the desired 

level of precision for both space and time.  Unlike other 

methods,      this methodology initially processes the data into 

s high level of precision for both space and time hashes. These 

hashes are concatenated into a single value to represent co-

occurring three-dimensional bins of latitude, longitude and 

time    (La Valley, Usher, & Halman 2015).   

This three-dimensional variable may be thought of as a space-

time box.  This technique enables the possibility of analytical 

methods of discovery and exploration of space-time patterns 

and the discovery of previously unknown relationships 

through the use of simple visualizations such as heat maps.  

Table 1 illustrates the granularity and flexibility which is at 

the disposal of the user through the techniques described.   

 Figure 3. provides a 3D visual of this concatenation creating 

geo-temporal hashing. 

Table 1. Precision achieved using Geo-temporal hashes 

(Space Time Boxes) 

2.4 Data Locality of Geohashes and Temporal Hashes 

One of the key features of space-filling curves is that they 

preserve data locality by ensuring that if two spatial or 

temporal curves are close, their corresponding hashes will be  

 Figure 3. Concatenation of Geohashing and 

Temporal Hashing of two observations 
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numerically close.  The closeness of the locality can be 

exploited when looking for certain patterns of interest which 

require either a spatial or temporal closeness to be of interest 

to the user.  

2.5 Multiple precision levels without additional 

processing 

A key advantage of Z-order curves to over space filling curves 

is the computation of a high precision as described in sections 

2.2 and 2.3 with a single set of algorithmic calculations.  Using 

simple truncation of the least significant bits of the ASCII 

representation to achieve lower precision levels.  The ease of 

having multiple levels of precisions easily available without 

recalculating for each precision provides an ideal environment 

for the discovery of patterns of interest. 

3. SIMPLE OPERATIONALLY SIGNIFICANT

PATTERNS OF INTEREST 

3.1   Spatiotemporal Patterns in Maritime AIS Data 

The utility of these primitives (geohash, timehash & geo-

temporal hashes) outlined is illustrated by providing several 

patterns of operational significance and interest to users using 

maritime data from maritime AIS (Automatic Identification 

System) data.  Table 2 shows the variables which are 

broadcast in AIS every fifteen minutes by each system. 

Table 2. Variables in maritime Automatic Identification 

System (AIS) transmissions 

The following patterns illustrate the utility of geo-temporal 

hashing (space time boxes) for auto- matically discovering 

patterns of interest or events of interest in the maritime data in 

AIS.  These patterns will be described in each section and 

provide a brief description of their utility to address analytical 

problems of interest. 

3.1   Co-Location of Multiple Entities 

When two or more entities occupy the same geo-temporal 

hash or space time box, there is a potential for it being an event 

of interest to users.  The user will need to set the precision 

required for the event to be significant to be an event 

of interest as illustrated in Figure 4. 

However, the co-location in a single space time box does not 

always mean that it is an event of interest.  For example, if the 

geohashes occur in known commercial shipping lanes, then 

the event could be a simple passing of two or more vessels 

during the time hash.  To refine the automatic discovery of 

events of interest, the user should look for loitering of two or 

more vessels over several space time boxes or possibly adjust 

the precision of the time hashes to refine the discovery of the 

event.   

Another example of a co-location in a single space time box is 

when the multiple vessels share the same geohash in a known 

port.  This discovery may or may not be of interest to the user. 

Automatic discovery of certain events of interest such as 

illegal off-loading of cargo may require filtering out of events 

which occur in geohashes which are near to known 

commercial shipping lanes or near known shipping ports. 

3.2   Loitering of Vessels 

Another event which can be discovered using geo-temporal 

hashing is loitering.  Loitering can be defined when the user 

has the desired precision for both geo and temporal hashes, 

and a vessel is found to occupy multiple consecutive or near 

Figure 4. Illustration of the Co-Location of more than one 

vessel loitering for more than 3 or more time hashes and 

same geo-hash 

consecutive time hashes.   This loitering event may or may not 

of interest to the user and can occur when a vessel or ship is at 

a known port offloading its cargo.  If the vessel is discovered 

to be loitering and isn’t near a known port facility, it may be 

an event of interest to the user.  For example, if the vessel or 

ship is in the open sea, then it could be broken down.  

It could also be stopped and waiting for another vessel.  Either 

may be an event worth investigating.  Coastal areas and known 

shipping lanes around the world be used and mapped to a 

geohash.  The user uses geohashes to identify a vessel or ship 

which is demonstrating a loitering activity as defined above 

and is near a coastline geo-hash with no known port facility.  

This pattern could be an event of interest as it could be a ship 

is utilizing an area which is not normally designated a shipping 

port for illicit purposes such as possible offloading of cargo 

for smuggling. If the loitering is continuous for consecutive or 

near consecutive time hashes, then the event is likely to be 

either a broken down vessel or another event of possible 

interest to the user. 

3.3 Co-Location of Multiple Entities Loitering in Unusual 

Places 

There are several potential events of interest when there is co-

location of multiple vessels at a geo-hash that is not near a 

known shipping lane or not near a known port.  If multiple 

vessels are discovered to be in the same time hash or several 
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consecutive time hashes, then that event is possible an event 

of interest to the user.   

This pattern is possibly the off-loading of cargo or loading of 

an illicit cargo of interest between vessels.  If more than one 

vessels are found to be at the same geohash but at different 

times, then this could be an event of interest to the user.  This 

event could be a “drop” of illicit cargo which is picked up by 

the second or subsequent vessels.  If two or more vessels 

occupy the same space time does not include a known port, 

then the loitering event is possibly an event of interest to the 

user. 

3.4 Co-Traveling 

When more than one vessel occupies different geohashes 

across more than three or more time hashes, then the vessels 

could be considered to be “co-traveling” and is an event of 

potential interest to the user as illustrated in Figure 5. 

Figure 5. Co-traveling of multiple vessels for more than 3 

or more time hashes and different geohashes 

4. IMPLEMENTATION AND METRICS

Variations of this method have been developed for use as a 

forensic tool of exploring spatiotemporal data.  The 

enrichment of spatiotemporal data with both geo and temporal 

hashes has been measured for the speed of computation with 

a Python programming implementation of the Niemeyer 

GeoHash and the Usher Temporal Hash routines found in 

GitHub.  Random samples of AIS data of multiple sample 

sizes were extracted and the processing time was measured for 

each of 10 trials.  Average Processing was used as a metric for 

comparison and a simple pattern of interest (co-location in 

same Space-Time Box) was used for comparison. 

 Desktop trials were performed on a MacBook Pro with 

2.2GHz Core i7 processor and 16GB RAM using a Python 

implementation.   

An Amazon Web Service (AWS) cloud implementation which 

used 10 SPARK EMR workers was performed for 

comparison.   

4.1 Desktop Implementation and Metrics for Enrichment 

and Co-Location Pattern of Interest 

Table 3 provides the results and metrics for multiple trials of 

various sample sizes which were used to explore the 

computational times for performing the full enrichment with 

precision of Geo13 and Time10 and finding the co-location 

pattern of interest for a specific level of precision Geo6 and 

Time7. 

Table 3. Table of implementation results for desktop 

The results on the desktop used in the creation of the 

geospatial and temporal hashes in Python are close to linear if 

it is plotted on a log scale.  The table shows that for the co-

location in a single space-time box with the desired precision 

in the Python implementation used was also a linear growth in 

a log scale.     

4.2 Horizontal Scalable Cloud-Based Implementation 

The same set of AIS sample sets used in the desktop 

implementation were reused for the AWS implantation using 

Spark, and the results were measured.  Figure 6 illustrates the 

processing time per record comparing an eight core laptop 

with the AWS implementation.   

Figure 6. Processing results in AWS Implementation 

As is illustrated, for relatively small data sets of less than 

100,000 observations, the desktop outperforms the AWS 

implementation.  This result was investigated and found to be 

due to the management overhead time of starting the Spark 

workers.  But for datasets beyond 100,000 observations, the 

AWS implementation outperforms the desktop 

implementation. 

The AWS implementation was tested on even larger datasets 

of 10 billion observations and the findings shown above were 

consistent. 

5. LIMITATIONS

Geohashes and Temporal hashes using Z space-filling curves 

have limitations.  Niemeyer’s require additional information 

to identify neighboring regions using the binary tree or Z-

order curve technique.  This will sometimes cause neighboring 

areas to have different lead strings without an apparent pattern 

of how to associate the ASCII strings.  This problem will 

happen around the poles, equator and the prime meridian.  

Also, since Niemeyer’s technique is lossy, and the accuracy of 

the data can decrease with multiple encoding and decoding. 

User’s temporal hash technique is a lossy technique, but it 

does not have the boundary mapping issue of geohashing.  It 

does have temporal boundaries of 128 years with a starting 

point of 1/1/1970 and an ending point of 12/31/2098.  This 
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limits the discovery of patterns of interest to patterns between 

1970 through 2098.   

For datasets of billions of data, these geohash and temporal 

hashing techniques limitations need to be balanced with the 

computation efficiency achieved.  For many patterns of 

interest to the user in Big DATA, the computational efficiency 

becomes a deciding factor. 

6. CONCLUSION

There are many variations of the different patterns or events 

of interest provided that could be of interest to the user and the 

space time hash methods provide an efficient way to discover 

these patterns.  The patterns illustrated in this paper were fairly 

simple and easy to illustrate.  The foundation of the space-time 

box makes the discovery of more complex patterns easier and 

able to be automated because of the consistency of the boxes. 

This consistency and the enriching of spatiotemporal data with 

these methods lends itself to parallel computing and Cloud 

Based processing.   

The authors’ current research is the discovery of more 

complex spatiotemporal patterns than illustrated in this paper 

using this methodology and varying the precision of the geo 

and spatial hashes.  It is believed that entire families of 

patterns of interest will be discovered.  Also, it is anticipated 

that new and innovative methods for the automation of the 

discovery of those patterns will be required and programmed. 

Other areas of research by the authors include exploring the 

possible use of these techniques for entity resolution and 

identifying possible spatiotemporal relationships in one or 

more space time boxes.  There is an opportunity to leverage 

these techniques’ discretizing continuous multi-dimensional 

spatiotemporal attributes which should facilitate many 

advanced entity association techniques based consecutive 

proximity in space, time or both which leverages one of the 

real strengths of these hashing techniques. 
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