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ABSTRACT: 

Identifying erratic or unstable time-series is an area of interest to many fields. Recently, there have been successful developments 
towards this goal. These new developed methodologies however come from domains where it is typical to have several thousand or 
more temporal observations. This creates a challenge when attempting to apply these methodologies to time-series with much fewer 
temporal observations such as for socio-cultural understanding, a domain where a typical time series of interest might only consist of 
20-30 annual observations. Most existing methodologies simply cannot say anything interesting with so few data points, yet researchers 
are still tasked to work within in the confines of the data. Recently a method for characterizing instability in a time series with limited
temporal observations was published. This method, Attribute Stability Index (ASI), uses an approximate entropy based method to
characterize a time series’ instability. In this paper we propose an explicitly spatially weighted extension of the Attribute Stability
Index. By including a mechanism to account for spatial autocorrelation, this work represents a novel approach for the characterization
of space-time instability. As a case study we explore national youth male unemployment across the world from 1991-2014.

1. INTRODUCTION

In socio-cultural research, identifying instability in spatio-
temporal trends is critical for understanding global dynamics and 
finding areas of potential concern or intervention. A common 
constraint however, is the limited temporal observations that data 
of interest are typical of having. This leaves many of the advances 
from the time series data mining literature unable to contribute in 
a meaningful capacity to socio-cultural research, as they rely on 
having hundreds, if not thousands, of temporal observations for 
responsible application. Although potentially useful in other 
fields, this paper represents an attempt to develop a time series 
data mining technique specifically designed with the application 
constraints and operational definitions of identifying spatio-
temporal instability in socio-cultural research. 

1.1 Two Dimensions of Stability 

For operational definitions in socio-cultural research, instability 
is marked by two characteristics, 1) how widely varying the 
values are and 2) how predictable that variance is from one 
observation to the next. How widely varying the values of a time 
series are can be considered simply through variance. However, 
moment statistics such as variance do not consider the order of 
the observations in their summaries. For example, a vector that 
alternates regularly between the values of 5 and 10 has the same 
variance as a vector that takes the value of 5 or 10 each with a 
probability of ½. Variance is thus a necessary, but not sufficient, 
measure of instability. To address how predictable changes in a 
time series are, various instantiations of entropy have seen much 
success. Most of the entropic methods were born out of 
applications with numerous temporal observations, such as 
finance or heart rate monitoring, and thus were not designed with 
observational constraints in mind. A notable example otherwise 
is approximate entropy (ApEn). Introduced by Pincus (1991), 
ApEn is a computational approximation of Kolmogorov-Sinai 
entropy and is used to measure the amount of regularity and 
unpredictability in a time series. Due to its approximate nature 
ApEn is not burdened by the need for numerous observations and 
thus is particularly well suited for time series’ consisting of 
limited data points. ApEn however is no panacea. While useful 
in measuring how predictable changes are in a time series, ApEn 

does not consider how widely varying the changes are, just the 
regularity of a change. Furthermore, ApEn is a parametric model 
that puts requirements on the user to know at what value to set 
the input parameters. Of particular responsiveness is the value of 
𝑟𝑟 which sets the threshold of what the model considers a change. 
Anything above 𝑟𝑟 is counted towards the measure and anything 
below it passes by as if nothing changed at all. This of course can 
widely alter the resulting ApEn value of time series if all changes 
in the series were just below this value compared to just above it. 

Recently, Piburn, Morton, and Stewart (2017) proposed a 
methodology, Attribute Stability Index (ASI), that incorporates 
both the magnitude and predictability of changes for a time series 
with limited observations. They show by approximating the 
integral of ApEn with respect to 𝑟𝑟 you can produce stability 
curves and a summary value that allow for exploration and 
insights into the temporal stability of a time series. 

In this paper, we extend this methodology to incorporate the 
temporal stability information from neighbouring locations for 
each area of interest. This extension allows you to find local 
anomalies in spatial-temporal stability. That is to say, each 
location’s value now incorporates not only how unstable a 
location is through time, but also how unstable this temporal 
instability is through space. We provide a motivating example of 
this methodology by exploring national youth male 
unemployment across the world from 1991-2014. 

2. METHODOLOGY

In this section, we will define what is needed to arrive at the 
spatial extension of the ASI. Section 2.1 describes ApEn before 
section 2.2 details the ASI and its spatial extension. A 
comprehensive understanding of Section 2.1 isn’t needed to 
continue with section 2.2, but is included for the interested 
reader. 

A note on notation used in this section. Unless a mistake that 
passed unseen, all scaler values are indicated by an italicized 
lower case letter, such as 𝑥𝑥, or for referential continuity purposes, 
a capital Greek letter, such as Φ. All vectors are denoted by a 
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bold lower case letter, such as  𝐱𝐱 and any matrices are indicated 
by a bold capitalized letter, such as 𝐖𝐖. 

2.1 Approximate Entropy 

Given a time series of interest 𝐱𝐱 = (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛) construct a 
sequence of vectors, 𝐬𝐬𝑖𝑖, 𝐬𝐬𝑖𝑖+1, … , 𝐬𝐬𝑛𝑛−𝑚𝑚+1 where 𝐬𝐬𝑖𝑖 =
(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑖𝑖+𝑚𝑚−1). 𝐬𝐬𝑖𝑖 is simply a subset of the original time 
series of interest x, starting at the ith observation and continuing 
forward until the defined ending, the 𝑖𝑖𝑡𝑡ℎ + 𝑚𝑚 − 1 observation. 
So for example, 𝐬𝐬𝑖𝑖+1 = (𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑖𝑖+𝑚𝑚−1). For each 𝐬𝐬 vector we 
can now calculate the correlation dimension as follows 

𝑐𝑐𝑖𝑖𝑚𝑚(𝑟𝑟) = (𝑛𝑛 −𝑚𝑚 + 1)−1��
𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟 = 1
𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑟𝑟 = 0

𝑗𝑗≠𝑖𝑖

 (1) 

Where 𝑑𝑑𝑖𝑖𝑖𝑖 is defined as the following 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑�𝐬𝐬𝑖𝑖, 𝐬𝐬𝑗𝑗� = max
𝑘𝑘=1,2,…,𝑚𝑚

(�𝑥𝑥𝑖𝑖+𝑘𝑘−1 − 𝑥𝑥𝑗𝑗+𝑘𝑘−1�) (2) 

𝑐𝑐𝑖𝑖𝑚𝑚(𝑟𝑟) counts the number of times, as a percentage, that 𝑑𝑑𝑖𝑖𝑖𝑖 met 
or exceeded r. At this point we have 𝑛𝑛 −𝑚𝑚 + 1 values of 𝑐𝑐𝑖𝑖𝑚𝑚(𝑟𝑟)  
representing our original times series 𝐱𝐱. Taking the sum of their 
logs and then normalizing we get a measure of the average 𝑐𝑐𝑖𝑖𝑚𝑚(𝑟𝑟) 
value for 𝐱𝐱 given 𝑚𝑚 and 𝑟𝑟. In Equation 3, Φ𝑚𝑚 itself can be 
thought of as a measure of the fractal dimensionality of 𝐱𝐱 at the 
scale of 𝑚𝑚. By deriving this value for 𝐱𝐱 again but instead using 
𝑚𝑚 + 1, the approximate entropy estimate for 𝐱𝐱 comes naturally 
out of the difference between them. This difference can be 
interpreted as how different is our measurement of 𝐱𝐱 when we 
change the scale at which we measure 𝐱𝐱, similar in idea and 
formulation to a fractal dimension.    

Φ𝑚𝑚(𝑟𝑟) = (𝑛𝑛 − 𝑚𝑚 + 1)−1 � log 𝑐𝑐𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑛𝑛−𝑚𝑚+1

𝑖𝑖=1

 (3) 

Θ(𝑚𝑚, 𝑟𝑟) = Φ𝑚𝑚(𝑟𝑟) − Φ𝑚𝑚+1(𝑟𝑟) (4) 

For further details on approximate entropy please see Pincus 
(1995) and Richman and Moorman (2000). 

Going forward we will set 𝑚𝑚 = 2, as we are concerned with 
immediate change from one observation to the next, and drop it 
for notational simplicity. Do note however, that all remaining 
calculations hold at any value of  𝑚𝑚. 

2.2 Attribute Stability Index 

As mentioned above, even setting 𝑚𝑚 to a fixed value still leaves 
the ApEn estimate for  𝐱𝐱 dependent upon what level of 𝑟𝑟 is 
chosen. If you think of ApEn as a function of 𝑟𝑟, you could plot 
its behaviour over all possible 𝑟𝑟 values and see how the ApEn 
values for 𝐱𝐱 respond. Furthermore, since the ApEn of any time 
series at 𝑟𝑟 = 0 or 𝑟𝑟 > max (𝑑𝑑𝑖𝑖𝑖𝑖) will itself be 0, means that we 
can easily evaluate all possible none-zero ApEn outputs of this 
function. This is in fact exactly how the attribute stability index 
is calculated; it is the approximation of the definite integral of 
Θ(𝑟𝑟) from 𝑟𝑟 = 0 to the logical maximum value for each time 
series. By integrating over all values of 𝑟𝑟, we accomplish two 
things 1) we sidestep the problem of setting an arbitrary value of 
𝑟𝑟 and thus the sensitivity concern and 2) we can get a more 
complete picture of a time series’ instability not only graphically 
but intuitively as well by incorporating all changes large and 

small. ApEn as defined in equation 4 is reintroduced in equation 
8, but first a few preliminary calculations must be made. 

Given the same time series we introduced in section 2.1, 𝐱𝐱 =
(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1, 𝑥𝑥𝑖𝑖+2, … , 𝑥𝑥𝑛𝑛), the first step is to calculate the lagged 
difference of the vector with a lag of 1, this can be seen in 
equation 5. 

𝐱𝐱𝑙𝑙𝑙𝑙𝑙𝑙 = {(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖), (𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖+1), … , (𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)} (5) 

Once  𝐱𝐱𝑙𝑙𝑙𝑙𝑙𝑙 is defined, the absolute value of the maximum lag is 
calculated. This value is upper bound for the values of 𝑟𝑟 used in 
the ApEn calculations, with the lower bound being 0 as stated 
above. The maximum lag is defined as the upper bound because 
any value of 𝑟𝑟 that is greater than the largest lag by definition will 
result inan ApEn value of 0. Equation 6 uses this lag and an 
integer 𝜆𝜆, which can set by the user as an input into the ASI 
calculations, to determine 𝜌𝜌, how large of a step to take between 
successive evaluations of ApEn. The larger the value of 𝜆𝜆 the 
closer the approximation will be to the definite integral. 𝜆𝜆 can be 
thought of as the resolution of the resulting approximation 

𝜌𝜌 =
 max�𝐱𝐱𝑙𝑙𝑙𝑙𝑙𝑙�

𝜆𝜆
(6) 

Using 𝜌𝜌 and a vector of integers from 0 to 𝜆𝜆 we can construct a 
vector, 𝐫𝐫 (Equation 7), that contains all of values of 𝑟𝑟 for which 
we will evaluate ApEn used in the ASI calculation. 

𝐲𝐲 = (0,1,2,3, … , 𝜆𝜆) 
𝐫𝐫 = 𝜌𝜌𝐲𝐲 (7) 

At this point the final ASI estimation can be calculated with your 
favourite numerical integration method, here we use the 
trapezoidal form (Equation 8).   

 𝛼𝛼 =  
1
2�

(𝑟𝑟𝑘𝑘+1 − 𝑟𝑟𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

∙ (Θ(𝐱𝐱, 𝑟𝑟𝑘𝑘+1) + Θ(𝐱𝐱, 𝑟𝑟𝑘𝑘))

≈ � Θ(𝐱𝐱)𝑑𝑑𝑑𝑑
𝜌𝜌𝜌𝜌

0
 

(8) 

𝛼𝛼 then is the ASI scaler summary value for each time series of 
interest. If each of these time series are associated with some 
location in space, we can then extend our ASI estimates to 
incorporate this spatial information.  

If we define 𝛂𝛂 as the vector of ASI values for all locations, we 
can calculate a measure of how stable a location is relative to its 
neighbours by taking the ratio κ𝑖𝑖 of its ASI value to the average 
of its neighbour’s values 

where the neighbours of area i and there contribution to the local 
neighbourhood mean ASI is given by a standard spatial weights 
matrix 𝑾𝑾𝒊𝒊 (for example queen contiguity). 

Th vector 𝛋𝛋 of κ𝑖𝑖 provides a relative measure of how much more 
unstable a location is compared to its neighbours. A value above 
1 indicates that a location has greater temporal instability then 
it’s neighbourhood and a value of less than 1 indicating the 
opposite, a locations neighbourhood has greater temporal 
instability then the location itself. This however removes any 
magnitude differences between neighbourhoods, a location with 
an ASI of 2 and neighbourhood average of 1 would have the same 
value of a location with an ASI value of 20 and neighbourhood 

κ𝑖𝑖 =  
α𝑖𝑖
𝑾𝑾𝒊𝒊𝛂𝛂

(9)
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average of 10. If this alone is an appropriate measure for the 
question you are trying to answer than 𝛋𝛋 could be used itself to 
explore the spatio-temporal relationships of the areas under 
study, however, for our particular problem we still want to 
consider the magnitude of the variability and with the ratio alone 
we do not get this information. To reintroduce the effects of the 
magnitude of the changes we see, we use 𝛋𝛋 to weight our original 
ASI vector 𝛂𝛂. Specifically, we scale each measure again 
according to Equation 10. 
 

α𝑠𝑠𝑠𝑠(𝑖𝑖) = α𝑖𝑖 ∙ κ𝑖𝑖 (10) 
 
The vector 𝛂𝛂𝑠𝑠𝑠𝑠 is our final vector of spatially weighted temporal 
stability measures α𝑠𝑠𝑠𝑠(𝑖𝑖). This approach has the desired effect of 
shrinking the ASI values of locations that although temporally 
unstable, they are more stable than their spatial neighbours and 
increasing the values of locations that while not alone largely 
unstable, locally they are much more unstable then their 
neighbours. At the extremes, where locations have both large (or 
both small) 𝛂𝛂 and 𝛋𝛋, the result is double down on their 
distinctiveness, increasing (or shrinking) even more the measure 
of their spatio-temporal stability. 
 
   

3. CASE STUDY 

As a case study of this methodology we explore the behaviour of 
youth male unemployment as a percent of male labour force ages 
15-24 from 1991-2014 at the national level across the globe. For 
illustration purposes, the actual trends from five example 
countries are shown in Figure 1. These five countries have a 
range of different behaviours that provide insight into how ASI 
calculations behave. Botswana and France both have widely 
varying values with no clearly identifiable overall trend, Trinidad 
and Tobago has non-trivial changes in value from one 
observation to the next but with an overall downward trend, and 
finally Bahrain and China have values that tend to change in an 
irregular pattern but by smaller amounts. Since the goal of the 
ASI is to identify trends that are both irregular and widely 
varying, these examples will provide a better understanding of 
how individual trends are scored. 
 
The non-spatially weighted ASI results can be investigated in two 
ways. First, we can look at the attribute stability curve, the 
behaviour of each locations ApEn values across values of 𝑟𝑟. 
Figure 2 shows these curves for the example countries in figure 
1. The shape of the location’ curve gives us insight into the nature 
of the instability in the trend. We can see that at very low values 
of 𝑟𝑟, China and Bahrain have higher ApEn values than France or 
Botswana, but then drop quickly to zero. This indicates that while 
the changes from year to year in China and Bahrain may be 
irregular, they do not vary by a large amount. France has the 
highest peak ApEn value of the example countries and maintains 
high ApEn values across a wider range of 𝑟𝑟 values than that of 
the other countries except for Botswana. Although Botswana’s 
peak ApEn value is not has high as that of France, the ApEn 
values stay higher over a much wider range of 𝑟𝑟 values. The 
shape of Botswana’s stability curve tells us that not only are 
changes from year to year irregular, the amount by which it 
changes is also irregular. 
 

 
Figure 1. Examples of Various Trend Behaviours 

 
Figure 2. Attribute Stability Curves of Examples Trends 

 
Expanding the results to all countries in the case study, the 
spatial distribution of the non-spatially weighted ASI scores can 
be seen in Figure 3. 
 

 
Figure 3. Attribute Stability Index 

Spatial patterns immediately emerge including a large cluster of 
low ASI scores in central Africa and high scores in Eastern 
Europe. As for the example countries from above, Botswana 
falls into the highest break along with neighbouring Namibia, 
France is a member of the second highest grouping, while China 
is in the lowest category, in line with what we expected from 
inspecting the attribute stability curves. An important note is 
that the ASI values represent a temporal behaviour, not just a 
single value of the attribute in question. By summarising 
temporal behaviour into a single measure, it allows the spatial 
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distribution of temporal behaviours to be visualized on a static 
map, without the use of animation or multiple visualizations. 
 
Now that we have considered the non-spatially weighted ASI 
values for each location we can start exploring the spatially 
weighted extension. For this example, we defined our spatial 
weights matrix with queen contiguity. Following this definition 
countries with 0 defined neighbours are excluded from the 
spatially weighted ASI study. Figure 4 compares each location’s 
ASI, or 𝛼𝛼, value on the x axis to the average of its neighbours 
ASI on the y axis. The black diagonal line represents equal x 
and y values, that is locations where their ASI value is equal to 
the average of their neighbours. Locations above the line, 𝛋𝛋 >
1, can be considered more stable through time then their 
average neighbour, while locations below the line, 𝛋𝛋 < 1,  are 
more unstable through time than their neighbourhood average.   
 
 

 
Figure 4. Comparison of a Country’s ASI (𝛼𝛼) to the Average of 

its Neighbours  
 

 
Looking at the spatial distribution of our spatially weighted ASI 
values, 𝜶𝜶𝒔𝒔𝒔𝒔, in Figure 5 a few distinct patterns emerge. The most 
prominent global pattern is that for the most part, the temporal 
stability of youth male unemployment in a country is relatively 
close in magnitude and predictability to its neighbours. The 
interesting stories of course are the countries that deviate from 
what is normal.    
 

 
Figure 5. Spatially Weighted Attribute Stability Index (𝜶𝜶𝒔𝒔𝒔𝒔) 

 
The country with the lowest, 𝛼𝛼𝑠𝑠𝑠𝑠, the country that is the most 
stable in an unstable neighbourhood, is Belarus. Figure 6 shows 
the youth male unemployment trends for Belarus and all its 
neighbours.  

 

 
Figure 6. Belarus Identified with the Lowest 𝛼𝛼𝑠𝑠𝑠𝑠  

 
During the entire study period the rate of youth male 
unemployment in Belarus remained incredulously low and 
stable, ranging from a minimum of 1.06% in 2014 and a 
maximum of 1.9% in 2009. During the same period, the 
neighbour of Belarus saw multiple double digits swings from 
year to year. 
 
On the opposite side, countries that are much more unstable 
through time than their neighbours, one country dwarfs the rest. 
South Korea’s only neighbour (by our queen contiguity 
definition) is North Korea and North Korea’s reported youth 
male unemployment trend is remarkably stable, bouncing 
between 12.5-12.7% from 1996-2014. Figure 7 shows these 
trends 
 

 
Figure 7. South Korea Identified with the Highest 𝛼𝛼𝑠𝑠𝑠𝑠 

   
An additional example of a country that is much more unstable 
over time than its neighbours is Ghana. The trend of Ghana and 
its neighbours are shown in Figure 8. 
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Figure 8. Ghana Identified with the 2nd Highest 𝛼𝛼𝑠𝑠𝑠𝑠 

 
4. CONCLUSION 

In this paper, we proposed a spatially weighted extension to the 
attribute stability index, a method for investigating and 
quantifying instability in time series data with limited temporal 
observations; particularly as used in the field of spatio-temporal 
socio-cultural research where instability is understood to mean 
widely varying and irregular changes from one observation to the 
next. This methodology represents an additional tool for 
exploratory spatio-temporal data analysis and provides a novel 
technique for researchers to use in understanding spatio-temporal 
trends.   
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