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ABSTRACT: 

Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for 

developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries 

bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze 

approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data 

from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google 

infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation 

indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and 

noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to 

delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical 

Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, 

and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on 

HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, 

and potential for HYV rice adoption in Bangladesh during the dry season. 

1. INTRODUCTION

Rice is an important food staple for more than 2 billion people  

globally (Khush 2005; Muthayya et al. 2014). Therefore 

mapping the extent of rice-growing areas, understanding 

diverse rice-farming systems, characterizing rice adoption or 

abandonment, and evaluating its potential for improvement is 

crucial to current and future food security goals, as well as 

environmental concerns such as greenhouse gas emissions 

(Kuenzer & Knauer 2013; Smith et al. 2008; van Groenigen et 

al. 2013; Whitcraft et al. 2015).  

Researchers have identified remote sensing as one of the most 

effective methods to monitor rice production, especially at 

regional and national scales (Whitcraft et al. 2015). Over the 

last three decades, different methods for rice mapping and 

monitoring have been developed using remote sensing data 

(McCloy et al. 1987; Fang et al. 1998; Dong et al. 2016). The 

spatial extents of these studies range from experimental plots 

to continental scales and employ unsupervised, supervised, 

rule-based, and/or time series algorithms (Boschetti et al. 2017; 

Dong et al. 2016). The Landsat and Moderate Resolution 

Imaging Spectroradiometer (MODIS) constellations have been 

the most widely used because the spectral information they 

record is particularly suitable for agricultural characteristics 

(Okamoto 1999; Whitcraft et al. 2015). 

MODIS images have been used much more extensively in 

agricultural and rice monitoring applications at larger regional 

scales because of the faster re-visit time (~1 day) and relatively 

smaller datasets resulting from its lower resolution (Becker-

Reshef et al. 2010; Boschetti et al. 2017; Duveiler et al. 2015; 

Xiao et al. 2005, 2006; Zhang et al. 2017). Nelson et al. (2014) 

also combined MODIS time series images with SAR active 

sensor data for rice monitoring, exemplifying new initiatives 

and novel techniques becoming available with the advent of 

free access to remotely sensed datasets, and improved expert 

understanding of regional rice production systems.  

Earlier analyses of Landsat imagery were limited to only a 

single image or a few images within smaller regions due to the 

size of datasets and previous computational limitations 

(McCloy et al. 1986; Panigrahy & Parihar 1992). More 

recently, Dong et al. (2016) analyzed hundreds of Landsat 

images over Northeast Asia, which has only become possible 

with recent innovations in cloud-based computing technology 

and easy access to the Landsat archive. 

Rice mapping and monitoring using remote sensing techniques 

hinges on the creation of algorithms that can adequately 

account for spatial and temporal aspects of production, while 

simultaneously providing flexibility across the many 

environments suitable for rice (Nelson et al. 2014). This is 

especially challenging when trying to maintain automation and 
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minimizing expert user inputs. Boschetti et al. (2017) showed 

how to use expert knowledge of temporal growing season 

information and rice phenology to improve accuracy in rice 

mapping using their automated PhenoRice algorithm. A 

number of other studies have mapped rice, even at national and 

sub-continental scales (Dong et al. 2016; Zhang et al. 2017). 

These important studies illustrate the evolution of rice mapping 

in recent years and each has also discussed gaps and limitations 

to the various methods employed. These concerns are related 

to validating results and tradeoffs in the implementation of 

different methodological approaches. 

In previous studies, scientists made significant tradeoffs 

between the spatial and temporal resolutions of different 

sensors, as well as the extent of selected study areas. The 

predominant limitation was the large computational power 

required to analyze high resolution imagery across large land 

areas and over longer periods of time. For example, while much 

MODIS imagery has been successfully and widely used to map 

rice across large areas through time (Boschetti et al. 2017; Xiao 

et al. 2005, 2006; Zhang et al. 2017), the resolution is only at 

250 m, which limits analysis to homogenous landscapes with 

little fragmentation. However, rice production often occurs in 

heterogeneous, fragmented landscapes, particularly in places 

such as Bangladesh where most farmers are small holders with 

an average farm size of 0.24 hectares (Rapsomanikis 2015).  

Other studies such as Dong et al. (2016) present large area 

analyses of Landsat 30 m data for rice mapping, but limit their 

study temporally to one year, demonstrating the power of 

Google Earth Engine which is a cloud-computing platform. 

The natural next step with this newfound computational 

capacity is to conduct higher resolution analyses over longer 

time periods and across larger land areas. This would bridge 

the existing gap in linking finer resolution imagery, such as 30 

m Landsat, with long-term (multi-year) time series rice 

mapping at the country scale. Specifically, this study quantifies 

dry season rice production in Bangladesh from the late 1990s 

(Landsat 5), to the 2000s (Landsat 5 and 7), to the mid-2010s 

(Landsat 8). Moreover, we provide a new method of integrating 

spatio-temporal aspects of classification into a procedure 

which is regionally flexible and requires few input parameters 

to model.  

Thus, the objectives of this study are: (1) to demonstrate the 

use of a HTS model with VIs (HTS-VIs) in classifying dry 

season rice production in Bangladesh, (2) to compare and 

validate the results of this model with district-wise and national 

rice production statistics from Bangladesh, (3) to evaluate 

temporal changes in dry season rice production at the district-

level based on the results of the HTS-VIs classification, and (4) 

to assess the limitations of the HTS-VIs model and discuss 

potential improvements for future work. 

2. METHODS 

2.1 Datasets 

2.1.1 Remote Sensing data: In this study, ortho-rectified 

Landsat 5 (LT5), Landsat 7 (LE7) and Landsat 8 (LC8) Top of 

Atmosphere (TOA) reflectance imagery are used to analyze dry 

season rice production in Bangladesh. LT5, LE7, and LC8 

satellite platforms image(d) the entire earth every 16 days with 

a pixel resolution of 30 m and multiple spectral bands (Wulder 

et al. 2016). The TOA images are filtered spatially to cover all 

regions within the modern borders of Bangladesh. All 

Bangladeshi territory is covered by approximately 24 Landsat 

tiles. In total, 2396 LT5 images are included for years 1998 – 

2011, 729 LE7 images for 1999 – 2002, and 1368 LC8 images 

for 2013 – 2017. These ortho-rectified time series images 

provide a platform for analyzing pixel-level changes from year-

to-year and season-to-season with a re-visit time of 16 days. In 

Figure (1), we show a map of the fraction of cloud-free 

observations during the dry season (December to May) for each 

Landsat platform. The cloud cover maps were derived based on 

the ratio of used (‘good’) pixels to the total number of pixels 

for each time series of images between December 1st and May 

31st. It’s important to note that a different cloud detection 

algorithm was used for LT5, which identified a significantly 

higher number of cloud pixels. As a result, more pixels were 

masked in LT5. 

Figure 1.  Percentage of cloud-free observations available for 

LE7, LT5, and LC8 for corresponding years. 

2.1.2 Reference data from official statistics: There are 9 

divisions (provinces/states) and 64 districts in Bangladesh. 

District-wise data for boro rice production area were generated 

based on reports from the International Crops Research 

Institute for the Semi-Arid Tropics (ICRISAT) and Bangladesh 

Bureau of Statistics (BBS). ICRISAT data is available between 

2004 and 2010 (ICRISAT 2004–2010), and BBS data was used 

for 2011 to 2015 (BBS 2011–2015); these datasets will be 

referred to as the reference data for the rest of the manuscript. 

The reference data are aggregated areal estimates at district 

level and do not provide explicit spatial details or location-

specific management details. 

2.2 Google Earth Engine platform 

Google Earth Engine (GEE) is a cloud-based geospatial data 

analysis platform built on Google infrastructure and capable of 

processing petabyte-scale remote sensing data (GEE 2017; 

Moore & Hansen 2011). In previous studies, Landsat imagery 

could not be analyzed on larger regional or national scales 

because of high computational requirements. Instead, regional 

and national scale analyses were limited to moderate or low-

resolution imagery platforms (Dong et al. 2016). To address 

this, GEE has opened the way for big geo-data analysis and the 

potential for investigation of higher resolution imagery such as 

Landsat in time series models. The GEE platform provides easy 

access to archives of remotely sensed data through either a 
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JavaScript or Python API while simultaneously hiding the 

complexities of parallel computing and cyber-infrastructure.  

2.3 Rice Phenology and Spectral Characteristics 

Paddy rice, which accounts for more than 90% of rice 

production worldwide and is the main focus of this study 

(Kuenzer & Knauer 2013), typically follows three stages 

during the growing season: (1) a flooding and transplanting 

phase, (2) a flowering and tillering phase, and (3) a grain-filling 

and harvest stage (Dong & Xiao 2016; Mahmood 1997; 

Wassman et al. 2009). During the flooding and transplanting 

phase, rice fields have exposed soil with little to no vegetative 

cover, followed by water infiltration and flooding, which 

slowly transitions to light vegetation after rice seedlings are 

transplanted. As the seedlings grow, the rice canopy begins to 

cover the flooded soil below and vegetation rapidly increases 

to usher in the flowering and tillering phase. This second phase 

is defined by rapid vegetative growth, rice flowering, 

germination, and pollination, as well as panicle greening, 

lengthening, and thickening. Finally, the grain-filling and 

harvest stage follows as rice matures, browns, and dries. When 

the grain reaches ~20% moisture or less, harvest time 

commences and rice is cut from the fields, which return to 

brown exposed soil once again (Shelley et al. 2016). 

Importantly, the time-frame for each of these primary 

phenological phases changes depending on the rice varietal 

planted and the local planting times, as determined by weather 

and management decisions. Thus, any model for rice 

identification using these phenological stages must be flexible 

to changes in the length of the growing season, e.g., ~90 – 120 

days for an HYV or Hybrid versus 130 + days for many 

traditional varieties, as well as flexible to the commencement 

of the transplanting. 

The majority of previous rice-mapping research attempted to 

identify pixels that show the characteristic temporal pattern of 

flooding followed by transplanting using remote sensing 

indicators such as vegetation indices (VIs; Boschetti et al. 

2017; Xiao et al. 2005, 2006; Zhang et al. 2017). Specifically, 

these VIs are the Normalized Difference Vegetation Index 

(NDVI; Tucker 1979) and Enhanced Vegetation Index (EVI; 

Huete et al. 1997, 2002), which are sensitive to leaf chlorophyll 

content or plant greenness, and the Land Surface Water Index 

(LSWI; Xiao et al. 2004), which is sensitive to leaf water 

content and soil moisture. These indices are calculated based 

on the following formulas: 

𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅−𝜌𝑅)

(𝜌𝑁𝐼𝑅+𝜌𝑅)
(1) 

𝐿𝑆𝑊𝐼 =  
(𝜌𝑆𝑊𝐼𝑅− 𝜌𝑁𝐼𝑅)

(𝜌𝑆𝑊𝐼𝑅+ 𝜌𝑁𝐼𝑅)
  (2) 

𝐸𝑉𝐼 = 2.5 𝑋 
(𝜌𝑁𝐼𝑅− 𝜌𝑅)

(𝜌𝑁𝐼𝑅+6 𝑋 𝑅−7.5 𝑋 𝐵+1)
  (3) 

When LSWI+0.05 > NDVI or LSWI+0.05 > EVI, the signature 

represents a transition from plant cover or dry soil to primarily 

water or saturated soil and indicates the likely timeframe 

during which rice transplanting takes place. We refer to this as 

the flood signature. More details about this process can be 

found in Xiao et al. (2005, 2006). 

2.4 Fitting a Harmonic Time Series Model 

Cloud cover predominates over many regions of Bangladesh 

throughout the year, especially during the monsoon season 

between late June and October. Because of this, there are 

missing observations in addition to the atmospheric and sensor 

noise in the recorded bands of the imagery, which has to be 

dealt with in the estimation of VIs (Roy et al. 2002; Verbesselt 

et al. 2010). To correct for these issues, a HTS model was 

employed to interpolate NDVI, EVI and LSWI values over the 

time period for each pixel. The harmonic model was used to 

estimate each VI value (𝑦∗) at each time (𝑡) based on the

following equation: 

𝑦𝑡
∗ = 𝛼 + 𝛽1𝑡 + 𝛽2 sin 𝜔𝑡 + 𝛽3cos 𝜔𝑡  (4) 

where 𝛼 represents a constant,  𝛽1 is a coefficient for the overall 

trend in 𝑡, 𝛽2 is a coefficient for the sin function at the 

frequency 𝜔 of time 𝑡, and 𝛽3 is a coefficient for the cosine 

function at the frequency 𝜔 of time 𝑡. In this model, two 

harmonic frequencies per annum account for the two seasons 

of rice that occur in a given crop-calendar year in Bangladesh.  

For Landsat 8, a single HTS model was fitted to the time 

interval between 2013 and 2017, i.e., the entire four years of 

available Landsat 8 imagery. For Landsat 7, again a single HTS 

model was fitted for the years 1999 – 2002. However, for the 

Landsat 5 imagery, a HTS model was fitted corresponding to 

advancing five-year windows between 1996 and 2013 with the 

middle (third) year being the focus of analysis, e.g., for 

analyzing 2010, a HTS model was constructed using the image 

between 2008-2012. For each year, the rice classification 

timeframe was specified between December 1st and May 31st, 

which includes the boro season across the entire country. Due 

to cloud cover, time series observations of VIs were irregular. 

To ensure temporal comparability across regions, a pseudo-

model of the HTS-VIs was generated starting December 1st and 

advanced every 16 days through May 31st. This analysis 

resulted in regular time series VI values (total of 12) for each 

pixel at 16-day intervals for the dry season.  

The flooding signature was used to determine the rice 

transplanting phase using the regular HTS-VIs values. LT5, 

LE7, and LC8 collect slightly different spectral band widths 

and have lower radiometric resolutions compared to LC8. We 

found that EVI is generally more sensitive to the spectral 

characteristics of rice for LT5 and LE7, so we assumed the 

singular consideration of LSWI + 0.05 > EVI for LT5 and LE7 

was sufficient for identifying rice paddy in the transplanting 

phase for these platforms. However, for LC8 two VIs for 

vegetation (NDVI/EVI) were used. We estimated the total 

number of observations for which the conditions are satisfied 

(0 being the minimum while 12 is the maximum).     

In the time series plot below (Figure 2), LSWI+0.05 is greater 

than EVI or NDVI for five consecutive counts; this pixel would 

be classified as rice for the boro season of the year plotted. 

(Since these types of time series plots depict the phenology of 

rice, these will be identified as ‘pheno-plots’ for later 
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reference). Given that planting dates vary year-to-year and 

regionally, and phenological stages change by variety, we 

attempted to develop a flexible model for rice pixel 

identification without prior detailed knowledge of rice-

growing seasons. Three counts (~16-32 days) of the flood 

signature were used as the minimum for a rice-producing pixel, 

and eight counts (~80-96 days) were used as the maximum for 

a rice-producing pixel. Any pixel with a count of three to eight 

counts of LSWI greater than EVI/NDVI would indicate 

flooding/transplanting for at least 16 days and a maximum of 

96 days. We assume that less than three observations might be 

residual flooding from the previous aman season or rainfall and 

more than eight might be permanent water, wetland areas, or 

non-rice flooding. All the Landsat imagery analysis described 

so far was performed on the GEE platform. Each of these HTS-

VIs classifications was exported for each year and further 

analyzed in R statistical software. 

2.5 Optimization of area estimates using reference data 

The area covered by ‘possible’ rice pixels (any pixel with 3 to 

8 counts of the flood signature) was extracted within each of 

these 64 districts using the ‘raster’ package in R statistical 

software (Hijmans & van Etten 2012). We estimated different 

areas under rice with the following assumptions about the 

flooding and transplanting duration: 1) that the rice cultivation 

system for any specific district is homogeneous and flooding 

signatures can be observed for only one of the following 

flooding day intervals: 16, 32, 48, 64, 80 or 96 (3 to 8 

observations of the flooding signature); and then, 2) that the 

rice cultivation system is heterogeneous and multiple flooding 

durations can be present within a district. Based on these 

assumptions, we estimated areas under different flooding 

durations using all possible (21) combinations of flood 

signatures, i.e., 21 models of rice-producing area estimation for 

each district each year during the dry season.  

Figure 2. Rice phenology for the boro season with a flood 

signature of ‘5’ for LC8. 

Next, the calculated areas based on these 21 estimations per 

district per year were compared with those in the district-level 

reference data to find the combination which provided the 

closest estimation of rice-producing hectares to the reference 

data. For example, if the difference between the 3 – 4 counts 

(model) of the flooding signature (the total area of ‘possible’ 

rice pixels in a district between 16 to 32 days of the flood 

duration) was smaller than all other combinations, then we 

accepted that scenario as most representative of boro rice 

production in that district. Based on the minimum difference 

models, an accuracy assessment was conducted for the rice 

classified areas derived from the HTS-VIs model within each 

district against the district reports on annual boro rice areas 

from the reference data. For accuracy assessment, the Mean 

Absolute Percentage Error (MAPE) was calculated between 

the reference data and the HTS-VIs model results (Armstrong 

& Collopy 1992; Hyndman & Koehler 2006). This assessment 

provides critical understanding for how rice production in 

fragmented landscapes may be mapped spatio-temporally, 

which could lead to improvements in classification at finer 

scale resolutions in the future. 

3. RESULTS & DISCUSSION

3.1 Model Fitting and Spatial Variability of Dry Season 

Rice Production 

The HTS-VIs model estimated 4.021 million ha, 3.519 million 

ha, and 4.605 million ha of rice production at the national level 

for Bangladesh in 2015, 2010, and 2005, respectively, based on 

the closest values of LC8 and LT5 compared to the reference 

data. Notably, the LT5 analysis over-estimated rice areas in 

some years and under-estimated in others due to the 

implementation of a different cloud-masking algorithm from 

the one employed with LC8, which resulted in a lower number 

of cloud-free observations for fitting the harmonic time series 

model.  

3.1.1 Harmonic fitting of the Landsat VIs: For the purposes 

of this study, we focus on the boro season between 

December/January and April/May. The EVI and NDVI signals 

are strong here and there are fewer missing values during this 

time period. The flood signal during the transplant phase shows 

up strongly, followed by a rapid increase and peak in 

EVI/NDVI, which indicates this small test area is most likely 

under rice production. Each year produces a similar pattern for 

this test, which suggests farmers are consistently planting a 

boro season crop in this region. In Figure (3), we present the 

fitted harmonic model for LC8 at a test site near Mymensingh. 

There are generally two seasons of rice, aman followed by 

boro. Overall, there is less cloud cover during the boro season, 

so this study focuses on the second season. The rice signature 

for the boro season is clear in this representation of the 

harmonic model, but due to missing values in both February 

and May, the model would be difficult to compare with other 

regions or across years and could easily misclassify the rice 

signature. To resolve this issue and make all regions and time 

periods more comparable, we generated a common time 

interval and equal observations for all VIs, an example of 

which is presented in Figure (4). 

3.1.2 Generation of VI at equal-intervals starting December 

1st: In Figure (4), we present the same test area from Figure (3), 

but this iteration includes a generation of equal-intervals for the 

VIs beginning on December 1st and ending May 31st in the year 

2017. Importantly, the observations are consistent every 16 

days with no missing observations because they are 

interpolated based on real observations in the original HTS 

model. In the pseudo HTS model, the signature for rice is an 

improvement over the fitted model with original values. This is 

demonstrated by the fact that we see a clear harvest time in late 
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December for aman rice, followed by the flood signature for 

boro season planting, and a peak and decline in the flowering 

and tillering phase in May. These signatures can exemplify 

what is known about regional differences in rice production 

patterns in Bangladesh, namely that there is a stronger, more 

predictable boro season in the north and there are often 

flooding and drainage issues during aman in the coastal region. 

The pseudo HTS-VIs model was used for all estimations of 

rice-producing area in order to maintain this systematic 

comparability. The next section explores this spatial and 

temporal variability more explicitly. 

Figure 3. Landsat 8 fitted harmonic model for 2017 near 

Mymensingh. 

Figure 4. Generated VIs at equal-intervals starting December 

1st in the Mymensingh example. 

3.2 Comparison of rice-area estimates from remote sensing 

analysis and reference data 

The HTS-VIs model results show that indeed central and 

northern districts in Bangladesh have increased the hectares of 

rice production during the dry season, i.e., during boro and aus. 

According to the reference data, approximately 4.064 million 

ha were planted in 2005, 4.707 million ha were planted in 2010, 

and 4.090 ma hectares were planted in 2015 at the national 

level. Below, we compare our best fitting HTS-VIs results for 

2005, 2010, and 2015 with these reference data from BBS and 

ICRISAT, both nationally via MAPE and at the district level 

via mapping. In Figure (5), we see that the district-level rice 

growing spatial patterns as well as magnitude in hectares 

planted are relatively consistent. The upper row represents the 

reference data and the lower row represents the closest HTS-

VIs estimations for that year. 

In our validation assessment, we compared our closest rice area 

estimation for boro rice areas provided by the reference data 

using MAPE, also known as Mean Absolute Percentage Error 

(Hyndman & Koehler 2006). We found accuracy levels of 

10.14, 8.42, and 8.49 percent for 2013, 2014, and 2015 in 

comparing LC8 with the reference data. For LT5, we found 

accuracy levels of 8.60, 7.84, 8.21, 7.88, 7.47, 7.71, 7.78, 7.91, 

7.86, and 8.23 percent for each year from 2004–2013 in the 

HTS-VIs national estimates.  

Figure 5. District maps of dry season rice production: 

Reference vs. HTS-VIs closest model. 

3.4 Discussion of methods 

3.4.1 Advantages: The proposed methodology provides a 

flexible platform for mapping rice production in heterogeneous 

landscapes. In previous rice mapping efforts, expert knowledge 

on detailed rice phenology has been a key feature of the 

models. In other cases, where expert knowledge has not been 

included, the focus of rice mapping has been in relatively 

simple, homogenous production systems. This methodology 

allows one to fit a rice-identification scheme flexible to 

regional differences in production systems and varying 

landholder sizes. When combined with Landsat data at 30 m 

resolution as in this study, the methodology can account for 

rice in fragmented and disjointed landscapes. While the model 

shows promising results in this introductory example for 

Bangladesh, there are some limitations to the model in its 

present form and likewise, there are ways to improve it in 

future implementations.  

3.4.2 Limitations/constraints: The primary limitation of this 

methodology is the dependence on reference data in identifying 

the best rice classification for each district. We identified the 

HTS-VIs model based on the least difference model from the 

district reference data, which illustrates the robustness of the 

model to estimate rice-growing areas across heterogeneous 

agricultural practices, season lengths, and fragmented 

geographies. However, this dependence on the reference data 
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hinders the models application in un-referenced regions or 

years. This gap might be bridged in future work, which is 

discussed in more detail below. 

Another limitation prevalent in this model is its sensitivity to 

cloud cover. The model does not perform consistently in the 

aman season in Bangladesh because of the monsoonal cloud 

cover during this time. In some cases, the model adjusts to 

missing data via the interpolation of the HTS-VIs, but given a 

scenario where two to three consecutive observations are 

missing, the model prediction will be poor. Because of this, we 

introduce this model primarily for dry season mapping in 

Bangladesh and suggest it should primarily be used in regions 

where extended periods of cloud cover are less widespread. 

Cloud cover was more problematic for LT5 estimates due to a 

less nuanced cloud-masking algorithm, which could potentially 

be reduced in future work. In this case, we used all LT5 district 

estimates within 2.5 standard deviations, e.g., 95%, of the 

sample to remove outlier estimates caused by the excessive 

cloud masking. In the validations, this reduced errors 

significantly, but in future work this step may not be necessary. 

The difference between our models and the reference data may 

also be due to the influence of small, fragmented plots of rice, 

i.e., less than 30 m pixels, or omission errors from the

influences of cloud cover as described above. Instead, we

propose that the HTS-VIs model may identify rice production

more correctly than those collected in situ at the district level,

though this requires further confirmation with higher resolution

imagery or better field observations than are currently

available. At this point, higher resolution imagery is limited by

time and/or cost, and field observations in rural Bangladesh are

difficult to obtain for previous years.

3.4.3 Future research pathways: Future work could compare 

these results with previously implemented MODIS rice 

classification algorithms to identify disparities based on 

resolution. It is possible that without a maximum/minimum 

difference threshold for VIs, commission errors may occur in 

wetland areas where similar vegetative characteristics exist 

alongside watery land surfaces.  

Similarly, we use a minimum flooding duration of 16 to 32 

days, which could lead to omission errors where the flooding 

and transplanting phase is shorter. The decision to omit 

flooding duration less than 16 days was based on the 

assumption that many areas in Bangladesh could remain 

flooded for 16 days with normal precipitation patterns given 

the low-lying and relatively flat landscape. On the other end of 

the spectrum, the maximum flooding duration included is 96 

days to ensure that longer flooding and transplanting phases are 

captured. In some regions, flooding persists from the aman 

season into the dry season when farmers may begin 

transplanting rice.  

In this study, we limited ourselves to introducing the HTS-VIs 

model with Bangladesh as an example in order to demonstrate 

its effectiveness at capturing rice-producing areas in a 

fragmented landscape with diverse agricultural systems, but 

further validation and testing is needed for the HTS-VIs model. 

4. CONCLUSIONS

In this study, we demonstrate the implementation of a harmonic 

time series (HTS) model with EVI, NDVI, and LSWI to 

identify rice production areas during the boro season in 

Bangladesh. To our knowledge, this is the first time a pixel-

based time series model has been applied to Landsat at the 

national level on a decadal time scale. We found that, the HTS-

VIs model has the potential to map rice production across 

fragmented landscapes and heterogeneous production practices 

with comparable accuracy to other methods but without expert 

knowledge inputs. For LT5, this method shows approximately 

25 – 40 % difference from the reference data for districts in 

Bangladesh—generally less than the estimates made by local 

agricultural offices. For LC8, our results were within 5 – 15% 

of reference data at the district level, which is a significant 

improvement over the LT5 predictions likely due to improved 

quality bands, higher radiometric resolution, and the 

consequent larger number of good quality observations. As 

agricultural monitoring via remote sensing becomes more 

widespread and important in meeting global food security 

needs, we suggest that models like the HTS-VIs introduced 

here could improve the accuracy and efficiency with which 

scientists are able to do so, giving policy-makers and 

development practitioners an enhanced platform for their work. 
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