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ABSTRACT: 

The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, 

advanced military sensors, wearables, automotive tracking, etc.  However, current methods of spatiotemporal encoding and 

exploitation simultaneously limit the use of that information and increase computing complexity.  Current spatiotemporal encoding 

methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano’s 1890 space filling curve, for spatial 

hashing and interleaving temporal hashes to generate a spatiotemporal encoding.  However, there exist other space-filling curves, 

and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential 

to map spatiotemporal data without interleaving.  The concatenation of Niemeyer’s and Usher’s techniques provide a highly 

efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, 

and utility.  This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides 

a comparison of the methods. 

1. MOTIVATION

With the recognition of Big Data problems over the past ten 

years, numerous technologies have emerged which provide 

cost effective and efficient data storage (e.g., Hadoop, 

MongoDB, HBase).  These have been utilized to store huge 

volumes of data sourced from plethora systems, processes, 

and sensors.  The volume of social media has exploded and, 

on any given day, Facebook is estimated to generate 6 billion 

new content items per day. Instagram is estimated to have 

over 2.4 Billion likes per day. Vine has over 1.44 Billion 

videos viewed per day, and Twitter users send around 500 

million tweets per day (Carey, 2015).  The volume of data 

has increased exponentially, and the velocity of data has 

increased dramatically as more new applications become 

available to the market.  Overall, Mikal Khoso estimated in 

2016 that 2.5 Exabytes of new data daily (Khoso 2016).   

The true value of the increased spatiotemporal data occurs 

when the user can access and turn the data into actionable 

information.  The sheer volume and availability of 

spatiotemporal data are increasing rapidly, and many 

methods of storage and analysis available for accessing and 

retrieving are not adequate for rapid recognition of the 

patterns of interest by the user.  Current spatiotemporal 

mapping techniques provide unique capabilities for reduced 

storage size of complex data, rapid, intuitive comparative 

analysis, and novel pattern identification.  Some issues 

confront the user regarding existing techniques in the form 

of computational cost, efficiency, and utility. 

* Corresponding author

The goal of this paper is to extoll the virtues of 

spatiotemporal mapping techniques, expose their 

weaknesses and provide grounds to support the trades 

between cost, efficiency, and utility for the myriad use cases 

that leverage spatiotemporal data to gain insights and drive 

business decisions. 

1.1 Motivational Metrics

We define the following metrics to aid in the comparison of 

spatiotemporal mapping techniques with the goal of 

covering the decision space for selection and employment of 

spatiotemporal mappings in diverse ETL and analytics 

ecosystems. 

1.1.1 Computational Cost 

When dealing with hundreds of millions or billions of 

records, all with some spatiotemporal data associated with 

them, we must concern ourselves with how much resources 

that are required to store, search, retrieve and compare these 

records.  So when we reference cost in this paper, we refer 

to the amount of space it takes to store data, the time it takes 

to encode and decode information from one form to another 

and the complexity of performing proximity comparisons on 

the information. 

(1) We define the storage space measure of the cost metric

as the number of bits required to store spatiotemporal

data to a resolution of meters in space and seconds in

time.
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(2) We define the encode/decode measure of the cost metric 

as the number of seconds required to encode spatial or 

temporal data into a mapped/hashed form or to decode 

from the mapped/hashed form into standard spatial and 

temporal representations. 

(3) We define the complexity of proximity measure of the 

cost metric as the number of mathematical operations 

required to assess the proximity in space and time of 

two events and locations. 

 

1.1.2 Efficiency 

 

Though this paper, when we reference efficiency, we are 

assessing how well each method does the job it was intended 

to do.  Measures like retained precision, propagation of error 

and uncertainty, introduction of edge cases, increased 

complexity in comparison, and preservation of relative 

locality all contribute to efficiency of spatiotemporal 

encoding methods. 

 

(4) We define the measure of precision of the efficiency 

metric as the required length of a mapping to achieve 

sub-meter and sub-second accuracy. 

(5) We define the propagation of error measure of the 

efficiency metric as the amount of error introduced with 

each encode/decode operation cycle (from standard 

space/time representation to a mapped encoding and 

then back to space/time representation). 

(6) We define the preservation of relative locality measure 

of the efficiency metric as the likelihood that two 

neighboring regions in space or time occur in 

neighboring regions in the encoding/mapping scheme. 

 

1.1.3 Utility 

 

Because there is no point to changing the representation of 

data if that operation doesn’t facilitate the delivery of 

information or the derivation of knowledge, we want to be 

able to assess how useful the mapping is for both human and 

machine methods, techniques and processes.  When we 

discuss utility, we refer to measures like extensibility of the 

technique to other geographic domains, ease of 

human/machine interpretation, and the ability to support 

broad-spectrum analytics whether they are in the descriptive, 

predictive or prescriptive domains of analysis.  While these 

measures are more subjective than those of Cost or 

Efficiency, they play a role in the calculus of selecting the 

right tool to support analytics objectives. 

 

(7) We define the measure of extensibility of the utility 

metric as the ability of the technique to be used for 

other geographic analytics domains. {none, low, 

medium, high; high values are the objective}. 

(8) We define the ease of human/machine interpretation 

measure of the utility metric as the difficulty of 

interpreting the mapped information between two 

points or regions as opposed to leveraging the accepted 

representation of those points or regions {easy, 

moderate, difficult; easy values are the objective}. 

(9) We define the ability to support analytics measure of 

the utility metric as the ability of the mapping to support 

multiple analysis activities without decoding, 

translating or transliterating the encoded/mapped 

information and without requiring augmenting 

information to support these analytics activities {low, 

medium, high; high values are the objective}. 

 

 

2. BACKGROUND 

 

2.1 Geohashing 

 

One of the most widely used methods of geohashing 

(converting latitude and longitude into a single 

representative value) is that of Niemeyer (Niemeyer, 2012).  

 

Essentially, Niemeyer’s Geohash method encodes latitude 

and longitude as binary strings where each binary value 

derived from a decision as to where the point lies in a 

bisected region of latitude or longitudinal space.  See Figure 

1 for a graphical depiction of this.   

 
Figure 1.  Binary Geohash 

 

The encoded latitude and longitude binary string are 

interleaved (Figure 2), and the resultant binary string is 

encoded using a specialized 32-bit encoding schema.   
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Figure 2. Niemeyer's Binary Interleaving for Geohash 

 

The Niemeyer technique is similar to Morton encoding 

(Morton, 1966) (Figure 3) which is a specialized 

instantiation of a Z-order Space-filling curve (Figure 4) 

(Morton, 1966).  Similarly, Natural Area Codes 

(NAC)(Shen, 2002) follow a similar encoding schema but 

employ a 30-bit encoding.  

 
Figure 3.  Morton Encoding 

 

Niemeyer’s technique has many useful features: rapid 

computation, a single-value string representation, variable 

precision through string truncation, proximal region 

detection, pattern support and easy human/machine 

interpretation. 

 
Figure 4. Four Iterations of Z-Order SFC 

 

However, this technique has its limitations.  The Niemeyer 

technique requires augmentative data to identify 

neighboring regions as the binary tree/Z-curve encoding is 

not regionally preserved  (Figure 5), and neighboring areas 

can have wildly differing lead strings prompting users to 

question proximity without augmentative information), 

especially around the poles, the equator, and the prime 

meridian. 

 

Additionally, the GeoHash encoding is lossy: every time 

values are encoded and decoded the accuracy of the data 

decreases.  These capabilities and limitations will be 

explored empirically in Section 4. 

 
Figure 5. Neighboring Region Incongruity 

 

2.2  Timehashing 

 

Timehashing or temporal encoding pioneered by Usher 

(Usher, 2010).  Time hashing essentially follows a pattern 

similar to that of Geohashing with the noted differences that 

time is well-behaved (monotonically increasing, positive, 
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one-dimension, etc.).   Usher’s technique defines a span of 

128 years (1970 to 2098) that is subsequently partitioned 

into eight equal bins, each mapped to a hexadecimal 

character (Figure 6).  

 
Figure 6. Timehashing Methodology 

 

Usher’s timehashing using sliding time windows allows 

users to define variable precision encodings of time and to 

compare them via string-matching algorithms.  This method 

eliminates the need (as in Geohash) for complex comparison 

and similarity heuristics to be established ad hoc.  This 

technique also allows for deep analytics support and 

simplified storage of complex values. Additionally, 

timehashing via Usher’s technique maintains period 

proximity without border issues 

 

There are drawbacks to this technique.  The technique is 

lossy.  The encoding paradigm is different than that of 

geohashing which precludes further spatiotemporal 

mappings (see next section).  The boundaries of the mapping 

technique preclude hashing information before 1970 (for 

historical analysis) and beyond 2098 (fortunately we have 81 

years to find something else!). 

 

2.3 Spatiotemporal mapping 

 

Unfortunately, there does not yet exist a mapping from 

Latitude/Longitude/Time space into a single, hashed value 

that shares the same traits as the hashes we have seen for 

space and time independently.  However, by leveraging a set 

notation of hashes with both space and time, it is possible to 

“map” 3-space into 2-space and leverage the benefits of 

space and time hashing.  The technique is currently being 

exploited in multiple communities to understand when two 

entities are staying together in one location, moving in space 

together, following one another, etc.  The downside of this 

approach is, though, that we struggle with the same 

limitations as the original space and time hashes.  Although 

this is an amalgamation of two techniques, we will be 

assessing it as that assessment potentially drives future 

research on the topic of single spatiotemporal hashes. 

 

 

3. POTENTIAL ALTERNATIVES 

 

We mentioned earlier that the typical Geohash algorithm is 

a relative of the Z-order space-filling curve.  However, we 

may ask are other SFC useful to overcome the detractors of 

the current Geohash algorithm?”  The answer is yes, but we 

have to make trade-offs as discussed in in sections 4 and 5.  

The Hilbert SFC is truly a mapping of n-dimensional space 

[0,1]n to a 1-dimensional line shown in Figure 7.  

Figure 7. Six Iterations of the Hilbert SFC 

 

As opposed to the Z-order curve, the quaternary location on 

the SFC can be encoded to a hash or a Gray-like encoding 

utilized. Because we are using the actual SFC to map 2-space 

locations to 1-space, we can benefit from the complexity, as 

well as their performance in measures defined above 

precludes their assessment here.  Numerous articles and 

papers have been written on the Hilbert SFC, and it has been 

shown that the complexity and locality preservation are 

typically better than other curves (Mokbal & Aref, 

2002)(Moon, et. al., 1996). 

 

Additionally, the Hilbert curve does not have the same 

discontinuities at the equator and prime meridian that 

Geohash does. 

 

For this effort, we leverage the Google S2 libraries to map 

Latitude/Longitude space onto the Hilbert SFC.  The authors 

of S2 provide a novel way of looking at the Hilbert SFC 

mapping as seen in Figure 8. Google S2 Hilbert SFC 

Mapping 

.  By following this method, we can take advantage of the 

Hilbert features, and test it against the Geohash algorithm. 

Figure 8. Google S2 Hilbert SFC Mapping 
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As one can imagine, the computational complexity of the 

Hilbert SFC goes up, but the trade-offs in precision, 

representation, accuracy and locality preservation may 

outweigh the cost of Hilbert SFC for many use cases.   

 

 

4. ASSESSING VALUE 

 

4.1 Computational Cost 

 

The following sections illustrate our assessment and 

empirical support for those assessments against the raw 

Latitude/Longitude, Geohash and Hilbert SFC (S2). 

 

4.1.1 Storage Cost Measure 

 

Table 1 depicts the storage necessary between techniques. 

 
Table 1. Comparison of Encoding Storage Requirement 

 

As can be seen, the Hilbert Encoding, even with the 

timehash, provides a smaller footprint than the raw data. 

 

4.1.2 Encode/Decode Cost Measure 

 

To demonstrate the speed-up/slow-down of these 

techniques, we generated random latitude and longitude 

points, globally, for 1,000, 5,000, 10,000, 50,000, 100,000, 

500,000, 1,000,000, 10,000,000 locations.  We then timed 

the execution for encoding and then decoded the positions 

for Geohash and Hilbert SFC.  We performed this testing on 

an Apple MacBook Pro (2.2GHz Intel Core i7, 16GB Ram) 

and the results are shown in Figure 9. 

 

As can be seen above, the Hilbert SFC ran about two orders 

of magnitude slower than the Geohash encoding mechanism.  

Depending on the use case, this delay may or may not be 

critical. 

 
Figure 9. Comparison of Encoding Times for Geohash and 

Hilbert SFC 

 

 

 

 

4.1.3 Complexity of Proximity 

 

In determining the spatial or temporal proximity in any 

representation mechanism, there are operations that must 

occur to make that assessment.  Some are more 

computationally complex than others.  For example 

computing the proximity between two objects in 

Latitude/Longitude representation requires computing the 

Haversine (or other distance calculation) formula between 

the two objects and then determining if that distance is 

within some pre-established boundary.  In Geohash space 

this comparison is made by comparing the first n characters 

of the string representation of position; this is a trivial string 

operation as opposed to the complex algebra of determining 

the even straight-line distance between two objects.  A 

comparison of proximity complexity between methods is 

shown in Table 2. Complexity of Proximity Computations. 

 
Table 2. Complexity of Proximity Computations 

 

4.2 Efficiency 

4.2.1 Required Length of Hash 

 

To determine the efficiency of each technique, we want to 

measure the length of the representation necessary to 

encapsulate the minimal error in the measurement of 

location.  This assessment is shown in Table 3. 

Table 3. Required Hash Length Comparison 

 

Of note is the Raw Latitude and Longitude method: while 

scoring the best, one must consider that its introduced error 

is zero only because we are using floating point 

representations.  So the size of the stored values are larger 

than other representations; one must also take into account 

the computations performed on the floating point 

representation of numbers.  Rounding, machine precision, 

and other computer science issues impact these values in 

certain computations that the hashing methods are immune.  

4.2.2 Error Introduction 

 

As defined above, we need to be able to measure the amount 

of error introduced in encoding and decoding the hashed 

representations.  Because the encoding is not precise, we 

inherently add some uncertainty to the measurements every 

Method Type Highest	level	of	precision Storage	Space 1,000,000	Entry	Space	Requirement Entry	Space	(MB)

Raw	Lat/Lon Floating	Point	x	2 Sub-centemeter 128	bits	(64x2) 128,000,000	bits 16MB

Geohash String/Hash Centemeter 72	bits 72,000,000	bits 9MB

Hilbert String/Hash Sub-centemeter 64bits 64,000,000	bits 8MB

Raw	LLT Floating	Point	x	3 Sub-centemeter,	sub-second 192	bits 192,000,000	bits 24MB

Geohash	w/	Time String/Hash	set Centimeter/Subsecond 144	bits 144,000,000	bits 18MB

Hilbert	w/	Time String/Hash	set Sub-centemeter,	sub-second 136	bits 136,000,000	bits 17MB

Storage	Cost
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Number	of	Latitude/Longitude	Pairs

Morton	(Z-Curve)	v.	Hilbert	Encoding	Performance

Morton Hilbert

Method Number	of	Operations Operations Complexity	Score

Raw	Lat/Lon 3 Establish	proximity	boundary;	Compute	Distance;	Assess	Proximity High

Geohash 2 Establish	proximity	boundary;	Compare	Appropriate	Character Low

Hilbert 2 Establish	proximity	boundary;	Compare	Appropriate	Character Low

Raw	LLT 6

Establish	spatial	proximity		boundary;	Establish	temporal	proximity	

boundary;	Compute	spatial	distance;	Assess	spatial	proximity;	

Compute	temporal	distance;	Assess	temporal	proximity High

Geohash	w/	Time 4

Establish	spatial	proximity	boundary;	Establish	temporal	proximity	

boundary;	Compare	Geohash	character;	Compare	Timehash	

character Low

Hilbert	w/	Time 4

Establish	spatial	proximity	boundary;	Establish	temporal	proximity	

boundary;	Compare	Geohash	character;	Compare	Timehash	

character Low

Complexity	of	Proximity

Method Length Accuracy Score

Raw	Lat/Lon 128	bits 0	cm 0

Geohash 88	bits 0.5	cm 44

Hilbert 64	bits 0.1	cm 6.4

Required	Hash	Length
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time we encode them.  If the data is encoded and decoded 

multiple times without retaining the original encoding, there 

is a potential for introducing compounding errors that are 

unrecoverable. This method can lead to a lack of confidence 

in data and computations and introduce risk into decision-

making operations.   

 

The assessment of Geohash and Hilbert encodings shown in 

Table 4.The third column refers to the number of  

encoding/decoding cycles have before there is a loss of two 

orders of magnitude in accuracy (e.g., how many 

encode/decode cycles does it take to move from centimeter 

resolution to meter resolution due to the error introduced in 

each encode/decode operation). 

 
Table 4. Error Rate Introduction Comparison 

 

4.2.3 Preservation of Locality 

 

Rather than reproducing the work of Mokbel and Aref 

(Mokbel & Aref, 2002), we will simply reference their work 

and make the statement that since Geohash follows a Z-order 

SFC, it performs worse than a Hilbert SFC encoding.  That 

is to say; the Hilbert SFC encoding method preserves 

locality better than Geohash which makes comparison and 

neighborhood assessments easier and more accurate.  

 

4.3 Utility 

4.3.1 Extensibility 

 

We believe that a spatiotemporal encoding scheme should 

be ubiquitous and able to handle locations above and below 

the surface of the earth.  Because of the nature of Hilbert 

SFC’s we can extend the representation of sub- and above-

surface locations with relative ease.  Unfortunately, if we 

want to use Geohash for anything other than Latitude and 

Longitude mapping, we are out of luck.  The assessment is 

shown in Table 5. 

 
Table 5. Extensibility Comparison 

 

4.3.2 Interpretation 

 

To maximize utility the information being used by the 

human analyst or by the machines they employ, one must 

leverage an encoding that is easy to interpret.  Hashing 

techniques have many advantages over raw latitude and 

longitude representations: single value representation, 

multiple location comparison, relative localities, variable, 

precision, and monotonic behaviors.  However, getting 

familiar with hash representations takes some getting used 

to, and for the analyst hashing patterns can be learned and 

snap assessments can be made just as they are in Latitude 

and Longitude space.  Our assessment of the ease of 

interpretation is shown in Table 6.  In using all three 

representations, they all have benefits and detractors, and for 

this reason, we believe that they are all similar on the scale 

of interpretation. 

 
Table 6. Ease of Interpretation Comparison 

 

4.3.3 Analytics Support 

 

For the measure of analytics support, we assess how well 

each encoding mechanism supports descriptive, predictive 

and prescriptive analytics and, to the extent possible, if the 

technique can be used without amplification information and 

excessive encode/decode cycles.  Table 7 describes our 

assessment of each approach. 

 

 
Table 7. Analytics Support Comparison 

 

4.4 Summary of Findings 

 

Looking now at the metrics of computational cost, 

efficiency, and utility we see that the Geohash and Hilbert 

SFC are pretty competitive and the choice between the two, 

in our opinions, really boils down to how the user intends on 

leveraging the hashing method.  This will be discussed 

briefly in the next section.  Table 8 represents the metric 

findings for each technique. 

  
Table 8. Metric comparison 

 

 

5. TRADE-OFFS 

 

In choosing an encoding scheme (or even if an encoding is 

needed), one must ascertain what the data is to be used for 

and how encoding (or not) will benefit their intended use.  

For fast running encoding that has few encode/decode cycles 

and computational overhead of proximity determinations is 

not a concern, the traditional Geohash is the method of 

choice.  However, if you are dealing with large volumes of 

data that must be compared, patterned, encoded and decoded 

repeatedly, must incorporate sub- and above ground 

positions, and must support predictive and prescriptive 

behavioral and performance assessments, the Hilbert 

Method Error	Introduced Number	of	Cycles

Geohash 2	cm 50

Hilbert 0.1	cm 1000

Introduced	Error	at	Maximum	Resolution

Method	 Extensibility

Raw	Lat/Lon Low

Geohash None

Hilbert High

Extensibility

Method Interpretation

Raw	Lat/Lon Moderate

Geohash Moderate

Hilbert Moderate

Interpretation

Support Complexity Support Complexity Support Complexity

Raw	Lat/Lon High High Moderate High Moderate High None

Geohash High Moderate High Moderate Moderate High Some

Hilbert High Low High Low High Low Few

Prescriptive

Encode/Decode	CyclesMethod

Analytics	Support

Descriptive Predictive

Method Cost Efficiency Utility

Raw	Lat/Lon High Moderate Low

Geohash Moderate Moderate Moderate

Hilbert Moderate High High

Metric	Comparison
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encoding is the method to choose.  For both Geohash and 

Hilbert encodings, some of the computational overhead can 

be overcome via parallelization and introduction of 

additional hardware.  In the end, it is up to the analyst to 

determine which method to use, based on their needs and 

limitations. 

 

 

6. CONCLUSIONS 

 

We have discussed the limitations of current geo- and time-

hashing algorithms established a set of comparative metrics 

for assessing encoding algorithms and demonstrated a viable 

comparison of techniques for spatiotemporal encoding.  We 

find that, in general, the Hilbert encoding is preferred due to 

its post-encoding utility and computational cost.  However, 

each analytics problem is different, and there are cases in 

which geohashing or leveraging raw latitude and longitude 

values are preferable to Hilbert encoding. 

 

 

7. FUTURE RESEARCH 

 

Based on the findings presented here and the limitations of 

current techniques we believe that there is a great deal of 

research yet to be done in unifying space and time and 

determining a ubiquitous method for encoding space-time. 
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