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ABSTRACT: 

 

As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic 

information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating 

semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on 

frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack 

generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to 

automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic 

segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently 

generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward 

propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is 

tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, 

in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments. 

 

 

1. INTRODUCTION 

Semantic information is increasingly becoming an indispensable 

ingredient of BIM. Applications such as energy flow monitoring, 

emergency management, retrofit planning, visualisation (Volk et. 

al., 2014), crucially depend on the availability of the class 

information of the entities in the model. For new constructions, 

this information is essentially input in the design phase. In 

contrast, only after an existing building is geometrically 

modelled, semantic enrichment of that model takes place. In 

other words, the labels are given to extracted surfaces; the 

unstructured point cloud is not perceived to possess categorical 

information.   

 

However, the case of holding this semantic information prior to 

geometric modelling could greatly contribute to the conventional 

modelling process. For instance, directly acquiring a recognition 

of which points belong to the category of wall, could bypass the 

need for calculating the surface normal, and making the 

assumption that horizontal normal form a good basis to comprise 

that particular class.  

 

In regard to this interest of employing more meaningful features 

in modelling, the concept of semantic segmentation has arisen in 

different research domains, mainly in computer vision, and 

robotics (Thoma, 2016). As an important notion towards 

complete scene understanding, semantic segmentation is applied 

to numerous application such as autonomous driving, augmented 

reality, and computational photography (Garcia-Garcia et al., 

2017).   

 

The research in indoor modelling for semantic segmentation is 

usually performed on RGB-D sensor depth images for small 

indoor scenes. On the other hand, the importance of 3D point 

clouds for devising better performing classifiers has been 

demonstrated (Koppula et al., 2011). Thereafter the robotics 

community effectively employs SLAM based techniques to 

jointly extract localization and more meaningful maps of the 

indoor environments. Despite considerable advances of drift 

error reduction by pose estimation graphs, there are still 

feasibility issues for large scale indoor semantic segmentation 

(Fuentes-Pacheco et al., 2015).  

 

Keeping in mind the large scale building indoor models, beside 

the inherent limitations of these commonly employed data 

acquisition techniques in terms of scale, the generally 

accompanying methodological framework of probabilistic 

graphical models such as Conditional Random Fields (CRF) also 

suffer from a similar problem. In order to mitigate the 

computational burden encountered in optimization, a necessary 

clustering like super pixel grouping (Fulkerson et al., 2009), or 

line extraction (Jung et al., 2016) is drawn on the data for large 

scale classification applications. 

 

In the last five years we have witnessed the revival of neural 

networks, as deeper architectures become effectively possible 

(Krizhevsky et al., 2012), (Szegedy et al., 2015). Especially 

Convolutional Neural Network (CNN) has been the leading 

network type of many successful practical applications (Karpathy 

et al., 2014), (Farfade et al., 2015). In CNN, powerful 

hierarchical representation is generated through self-learned 

features in a supervised manner directly from the data. Compared 

to conventional features engineered by a specialist, these self-

learned features provide a powerful geometric discriminator 

among data categories. Initially practiced on image classification 

as a whole, a number of other computer vision tasks such as 

object detection, and recognition also benefit from modified 

networks and algorithms, among semantic segmentation. 

However, huge labelled training data necessary to match the 
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depth of the network, and the number of parameters to be 

optimized, becomes more deficient with per pixel labelled 

training data required for semantic segmentation.  

  

In this study, a method to directly classify large scale 3D indoor 

point clouds by using Convolutional Neural Networks has been 

developed. Our main contributions can be expressed as follows; 

 

• Large-scale indoor point cloud classification: We have 

acquired and prepared suitable datasets both real and 

synthetic, and 3D input–output relationships 

compatible with a simple, fast CNN architecture and 

tuned our algorithm to train and run over a high number 

of points, and a floor size indoor space.  

 

• Effective clutter removal based on semantics: We have 

tackled the problem of clutter in indoor modelling by 

reframing it as a simple semantic filtering. 

 

• Demonstration of enhanced planar extraction: Finally 

we demonstrate how geometry reconstruction can 

benefit from semantic segmentation with a case study 

of planar extraction enhancement in particular. (Fig.1) 

 

 

2. RELATED WORK 

The literature related to our research can be divided into five 

interrelated categories. We start with geometric indoor modelling 

from point clouds in which semantics follow the geometry 

extraction separately. Then the important work on semantic 

segmentation originated in image processing, extending to depth 

images in small scale indoor scenes are addressed. Consequently, 

the introduction of Convolutional Neural Networks to indoor 

scene segmentation, and the advances achieved in image 

processing are discussed. Besides, the implementation of CNNs 

on 3D data in general with a focus on point clouds are briefly 

touched. Finally, in order to provide a background for our case 

study of planar extraction in indoor modelling, relevant papers 

are mentioned.  

 

Semantic Indoor Modelling 

In indoor modelling from point clouds, it is common practice to 

first extract planar primitives, and subsequently classify them 

into horizontal structural elements of ceiling and floor, and 

vertical walls. Various methods have recently been developed 

based on projection plane histogram analysis (Okorn et al., 2010), 

plane sweep (Budroni and Boehm, 2010), surface normal 

(Sanchez and Zakhor, 2012), stacking (Xiong et al., 2013), and 

diffusion embedding (Mura et al., 2013). Common to all these 

methods is the sequential approach to label the structural 

elements according to previously segmented planar surfaces. 

 

Semantic Segmentation 

In contrast to the sequential approach, semantic segmentation is 

the segmentation of the data as a natural result of the 

classification procedure of a basic unit, i.e. usually being pixel or 

superpixel level. An early example can be found in the work of 

Huang et al. (2002), for land cover classification using Support 

Vector Machines. In order to provide the general framework, and 

impose the consistency of the segments CRF has been a standard 

technique for the last decade. A pioneering work of Silberman 

and Fergus (2011) applied CRF to achieve dense labelling in 

small indoor scenes captured by a low-cost depth sensor.  

 

Convolutional Neural Networks on Semantic Segmentation 

Recently, convolutional neural networks have become the state 

of the art for semantic segmentation tasks. For indoor scenes, 

depth sensors are continued to be employed, and a CNN version 

of full scene labelling is introduced by Couprie et al. (2013). With 

the advancement of CNN research, different efficient network 

architectures are proposed. Among them; Deeplab which 

combines CNNs with fully connected CRF (Chen et al., 2016), 

Fully Convolutional Networks (FCN) which employs 1*1 

convolutions and some skip connections and upsampling (Long 

and Darrell, 2015), Deconvolutional Neural Networks (Noh et 

al., 2015), CRF-Recurrent Neural Networks (Zheng et al., 2015), 

and SegNet (Badrinarayanan et al., 2015) could be named as 

significant developments. For more details about these 

architectures the reader is referred to the review paper by Garcia-

Garcia et al. (2017).   

 

Convolutional Neural Networks on 3D Data 

After a brief period of pause following the very early attempts of 

the implementation of convolutional neural networks directly on 

3D data, a rapid attention has been shown in a variety of research 

communities. VoxNet (Maturana and Scherer, 2015) based on 

volumetric representation as the name implies, is one of the first 

effective implementation of CNN on object detection, in which 

the whole of a bounding box is classified as the segment based. 

On the other hand, Multiview 2D CNNs achieve slightly better 

results due to their exploitation of pre-trained models on very 

large image datasets. Recently in a similar approach to ours 

Huang and You, (2016) classify the urban Lidar points without 

Figure 1. The input and outputs of the method; a) raw point cloud of the cluttered indoor environment; b) direct application of previously 

trained CNN classifier to the test site; c) selection of the wall points determined by the CNN; d) the result of the planar extraction, 

applied only to the corresponding wall points  
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any object detection or pre-segmentation. A detailed survey can 

be found in the survey of Ioannidou et al., (2017).   

 

It is worth here to mention another very recent approach that 

attempts to break the dilemma of CNNs applicability to 3D data 

either as volumetric 3D or Multiview 2D, by proposing a new 

deep learning architectures based on Autoencoders that could 

directly operate on 3D point cloud (Qi et al., 2017).   

 

Planar Extraction in Indoor Modelling 

Primitive extraction is a critical part of many indoor geometry 

modelling methods for extracting planar surfaces in man-made 

indoor spaces. Planar surface fitting in laser data is an already 

extensively studied field in remote sensing community. A 

comprehensive research by Nurunnabi et al. (2014) compares 

some of the existing algorithms. A similar comparison for mobile 

indoor mapping can be found in (Nguyen et al., 2007).  For 

indoor reconstruction implementation, variants of Hough 

Transform (Okorn et al., 2010), (Oesau et al., 2014) and 

RANSAC (RAndom SAmple Consensus) (Dumitru et al., 2013), 

(Ochmann et al., 2014) are employed beside plane sweeping by 

Budroni and Boehm (2010), or EM (Expectation-Maximization) 

by Thrun et al. (2004). Sanchez and Zakhor (2012) utilized 

RANSAC in a region growing method to detect planar primitives. 

Recently Boulch et al., (2014) incorporated regularized edge, and 

corner, while Monszpart et al. (2015), has imposed regularity 

constraints on extracted planes. 

 

 

3. METHOD 

The input to our method is the raw point cloud, and the output is 

the densely labelled point cloud, being that a label is assigned for 

each point.  In order to be able to employ a fast and a simple CNN 

architecture, the point cloud is densely voxelized, and an 

occupancy representation is formed in the first place. For 

labelling the training data, manual classification of the point 

cloud is transferred into the voxel domain by means of a majority 

voting of the corresponding points in that voxel. Subsequently 

voxels are agglomerated into cubes (Fig.2). To provide the 

variability of the training data, each cube is created by shifting 

along every prime direction with the smallest stride size, being a 

voxel. Once the cubes are generated, they are fed into the CNN 

architecture which is designed to handle 3D voxel data. The 

result of the CNN classifier is assigned to the centre voxel, and 

the classification is carried on to ensure a continuous dense 

classification of all voxels. 

The details of the preparation of the data and the CNN 

architecture are explained in this section. 

 

3.1 Data Preparation 

A deep Convolutional Neural Network classification paradigm is 

extremely data dependent, therefore data is at utmost importance. 

A major drawback of CNN for practical applications is the 

requirement for large amounts of data. There have been 

continuous research community efforts in computer vision, 

culminating in large-scale image databases such as ImageNet, 

presented (Deng et al, 2009) freely to the service of researches. 

Though not in the same scale, a similar strive provides RGB-D 

datasets for indoor scene reconstruction purposes. However, 

when it comes to per-pixel labelled datasets, the options are still 

scarce. Moreover, large scale indoor modelling for point clouds 

lack a direct point cloud database that could be utilized for 

training deep networks. Therefore, there is an obvious need for 

such a database.   

 

CNN demands a lattice structure as an input while the raw point 

cloud is unordered which cannot directly be processed in CNN 

architecture. Therefore, to abide in 3D the raw point cloud should 

be transferred into a volumetric representation. Depending 

whether the task is classification or segmentation, a number of 

alternative data preparation paths that can be taken are 

summarized in Table 1. Initially the bounding box of raw point 

cloud is calculated. Now we describe how we divide this 

bounding box into two scales: voxel and cuboid.  

 

A 3D bounding box is firstly divided into voxels which have a 

certain pre-defined size. There are different ways to represent a 

voxel, among which the simplest method is the binary occupancy 

value which evaluates whether there are points existing within 

the voxel. In the case of present points, the intensity value of this 

voxel is set to one, otherwise it is zero. A finer way is to count 

how many points fall into the voxel and assign this number of 

density as the voxel’s intensity value. There are also some more 

advanced representations which takes into account probability 

distributions (Maturana and Scherer, 2015). In our case, 

considering computational simplicity and information 

preservation, we select this density representation which is both 

computational efficient and preserves more information of raw 

point cloud than just occupancy value.  

INPUT (CUBOID AND VOXEL)  OUTPUT (CUBOID OR VOXEL)  

Cuboid Label (~image) Voxel Representation (~pixel) Classification / Segmentation 

Has label (from Cen. Vox.) Binary Center Voxel (from Cuboid Label) –segm.  

Has label (from Maj. Vox.)  Density Entire Cuboid (from Cuboid Label) – class.  

Has no label  Entire Cuboid (from Voxel Label) -  

Table 1 

Figure 2. Our Convolutional Neural Network has four main blocs, each having their respective convolution-pooling and activation 

layers. Input cube is fed into the network and the result of the soft-max layer is assigned to the centre voxel. n is the variable for the 

number of categories. 
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Next, the generated voxels are encapsulated as cuboids which 

will be the input of the neural network. Specifically, given a 

certain voxel, its corresponding cuboid is an aggregation of the 

voxels in three dimensions in which the centre voxel is the given 

voxel. In our setting, each cuboid consists of 21*21*21 voxels. 

For the voxel locating in the boundary of bounding box, we use 

zero-padding to generate its corresponding cuboid to confirm all 

cuboids have the same size. The concept of voxel and cuboid is 

analogous to the relation of pixel and image in 2D image plane, 

which expresses the raw point cloud in a 3D raster format as an 

input for CNN architecture. 

 

For training data, we should also assign the label of every voxel. 

Considering the difficulty to manually assign label to every 

voxel, we manually assign the label to raw 3D point cloud and 

then the label of voxels are determined with the label of its points’ 

label using majority voting. For the label of cuboid, we directly 

assign it as its centre voxel label. The empty voxels will be 

ignored both in the training and test data. 

 

For test dataset, we also generate the cuboid for each non-empty 

voxels and assign the classification result to the centre voxel of 

the cuboid. The points which fall into this voxel will all be 

assigned the label of this centre voxel. In this setting, we can 

generate point-based semantic segmentation result, without 

resorting to a more sophisticated CNN architecture such as FCN 

or Deconvolutional Neural Networks  

 

 

3.2 Model 

A CNN is essentially a discriminative classifier which models the 

desired output y in this form; 

 

y = f(x; θ, w) = φ(x; θ)T ω    (1) 

 

φ is the feature set learned through optimizing the parameters θ.   

ω maps the feature set to the output. In the case of a deeper 

network these mappings are generated with some non-linear 

activation functions, and renders the classifier highly applicable 

to non-linear classification problems. 

 

f(x) = f(n)(f(n-1)….(f(3)(f(2)(f(1)(x)))   (2) 

 

Network Architecture 

 

f(n) is generally composed of convolution and pooling layers 

which is depicted in Fig. 2. 

 

The architecture could be represented as; 

 

C(wc1; hc1; dc1 ;f c1) - P(wp1; hp1) –  

C(wc2; hc2; dc2; f c2) - P(wp2; hp2) –  

C(wc3; hc3; dc3 ;f c3) - P(wp3; hp3) –  

C(wc4; hc4; dc4 ;f c4) - P(wp4; hp4) – 

FC(n) - LR(n);  (3) 

 

where;  

w, h, d, denotes width, height, depth of the layers. 

f  denotes the number feature maps. 

FC(n) is the fully-connected layer with input size n,  

LR(n) is the softmax layer with input size n.  

 

 

Optimization 

 

In the optimization process, we employed the cross-correlation 

entropy cost function with the weight decay value of 0.001. 

Instead of using the relatively slow Stochastic Gradient Descent, 

we approximate the minima with ADAM method (Kingma and 

Ba, 2014). A batch size of 256 with 45 Epoch training is set 

during the whole training process.   

  

 

4. EXPERIMENTAL RESULTS 

 

We conduct our experiments on two different kind of datasets 

according to their generation sources. These two datasets are 

dense mobile laser scanner data, and a large scale synthetic point 

cloud data populated from an architectural CAD model. The 

overall segmentation results are in parallel with the complexity 

and the challenge expected from diversifying the sets. The overall 

classification accuracies are indicated at the right-bottom of the 

confusion matrices. CNN is implemented with MatConvNet 

library (Vedaldi and Lenc, 2015). All experiments are conducted 

with 5 cm voxel resolution. 

 

 

4.1 Indoor Point Cloud Segmentation 

Part of a mobile laser point cloud acquired by a TIMMS platform 

equipped with sideways Faro Scanners are used for real data 

evaluation (Fig.4). The cluttered indoor environment consists of 

two semi-detached rooms, of which another room resides within 

one of them. The point cloud consists of 4.5 million points in a 

total area of 90 m2.  

 

Figure 3. Clustering algorithms like connected component analysis and region growing algorithm are not effective in cluttered 

environments (left-hand side). Hence a laborious manual labelling for training dataset generation has been directly applied on 3D point 

cloud (right-hand side).  
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For training data preparation, an attempt to benefit from pre-

segmentation by using algorithms like connected component 

analysis or region growing turns out to be ineffective due to the 

highly cluttered environment. Hence we resort to the full manual 

classification of the points which proves to be laborious in large 

scale (Fig.3). As our method envisages the possibility for an 

online testing as a following study, the point cloud is not treated 

with a pre-processing of noise reduction. Nevertheless, there is 

%2 of the points which cannot be possibly recognized to be 

classified by the human operator. In order to see the potential of 

our method, we select the general computer lab. / office area as 

training site, and reserve the meeting room to the test site (Fig.4). 

 

 

Table 2 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our method is evaluated with 7 classes, and the results are 

denoted in Table 2 and Table 3.  The overall accuracy is 0.81. In 

particular the wall detection is very satisfactory, and promises a 

substantial leverage to our previous object–driven space 

partitioning framework (Babacan et al., 2016), whereas, 

accuracies for small objects, such as monitor, and shelf are not 

very gratifying. Object scale in classification appears as a 

problem, in addition to the class ambiguities themselves. For 

instance, the category shelf consist of both standalone 

bookshelves in any part of the room, and the longer wall-attached 

ones. Likewise, the category object includes anything of any size 

that could be counted as an object that is not covered in other 

categories, i.e. an artificial tree or a computer case. The other 

objects categories like desk, and chair appear to have fairly well 

exploitable geometric structures. We provide more exposure 

about the detailed results of some particular scenes in Fig.5.  

 

The full segmentation is depicted in Fig.6a. By virtue of the very 

high accuracy wall detection results, the segmented wall points 

become very representative of the indoor model even in their raw 

format (Fig.6b). For reference we digitize a CAD model of the 

test site in AutoCAD Revit. Despite some individual erroneously 

classified small clutters, and a large cabinet occluding the small 

wall, the segmented wall points closely follow the indoor model.     

 

 

4.2 Synthetic Data Segmentation 

In order to gain different insight, we further analyse another 

indoor dataset, this time being a synthetic data devoid of any 

clutter, but increased to a floor-scale environment. A synthetic 

point cloud is populated from a CAD model of a basement 

consisting over 40 rooms, and corridors (Fig.7). The model is 

relatively simple in terms of the diversity of its categories; it only 

consists of the structural elements of the building as wall, floor, 

door, and beam. We generate 10 million points for the whole 

model, but only run the training with %20 of the points due to 

computation limitations. 

 

As it could be seen from table 4 and table 5, CNN is very 

successful in dominant horizontal and vertical architectural 

structures such as walls, and floor, and also promising door 

detection results only from the door frame, as opposed to our 

previous complete door detection framework (Fig.8). Beams are 

also recognized in majority. Apart from a thin slice of a wall 

misclassified as beam, the results are satisfactory in general, and 

inviting for an object detection framework, as there is no other 

misclassification at the object scale. The overall accuracy is 0.89. 

class wall desk chair human shelf object monitor 

prec. 89.09 64.46 70.03 28.58 35.44 39.36 27.98 

recall 95.21 75.90 47.11 41.50 15.76 34.85 12.62 

confusion wall desk chair human shelf object monitor recall 

wall 1339110 8523 126 12714 28887 15105 2068 0.95 

desk 4593 72624 5122 49 276 11778 1246 0.76 

chair 1026 9045 22692 1627 685 12150 942 0.47 

human 6657 145 478 8602 496 4348 0 0.42 

shelf 104133 2030 10 2518 21983 7643 1192 0.16 

object 28655 18165 3934 4584 9608 37335 4858 0.35 

monitor 18919 2137 41 1 94 6532 4004 0.13 

precision 0.89 0.64 0.70 0.29 0.35 0.39 0.28 Acc./ 
0.81 

Figure 4. The real dataset is generated by a mobile laser scanner. 

The left hand side partition of the environment is set as the 

training site, where the right-hand side partition has both similar 

computer laboratory office characteristics, meanwhile a fairly 

different meeting room space is also present to test our algorithm 

(green part on the lower right).      

Table 3 

Figure 5. Particular details from segmentation results. Left hand 

side of the image pairs are the ground truth, while the right hand 

sides are the CNN predictions. a) of the 3 human in the scene, 

two of them correctly labelled while the one in the middle is 

mistaken as a wall; b) the table in the meeting room is generally 

segmented with surrounding chairs, despite been trained only 

from desk examples; c) shelves are fairly detected while 

monitors are largely missed. 

Figure 6. a) full semantic segmentation results from the top view; 

b) labelled wall points largely delineate the floor plan; c) CAD 

model digitized from the point cloud for quick reference.   
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Table 4 

 

 

 

 

 

Table 5 

 

 

 

 

 

 

 

 

4.3 Semantic Planar Segmentation 

 

We finally display the power of CNN based semantic 

segmentation in indoor modelling by applying the segmentation 

results to drive a planar extraction on the point cloud. Our 

motivation is the fact that planar extraction could become 

extremely challenging in indoor environments, especially in the 

presence of high clutter and occlusion. We previously have 

circumscribed this problem by means of favourable slice 

selection. However, this solution necessarily limits the 

information content into a narrow 3D, even convert the problem 

into 2D line extraction. Leaving aside the pros and cons of this 

approach, we present an alternative that could effectively be 

employed directly in 3D.  

 

Once equipped with semantic information, the approach is simple 

and straightforward; comes down to selecting the relevant 

categories for plane candidates, and applying the extraction 

algorithm individually to each individual category. Here we 

exhibit results for RANSAC algorithm (Schnabel et al., 2007) 

applied to the mobile laser scanner point cloud dataset.    

 

 

As can be seen on Fig.9 the semantic selection of the wall points 

can effectively reduce the number of irrelevant planes to be 

deployed in geometric modelling, hence increase the percentage 

of wall corresponding planes in the overall extraction. This 

framework is also potentially beneficial in the overall space 

partitioning process, as demonstrated in our previous work.  

 

 

5. CONCLUSION AND OUTLOOK 

In this paper we propose a viable method to extract semantic 

information for indoor modelling. A convolutional neural 

network is designed for 3D data to obtain semantic segmentation 

of indoor point clouds. Experimental results demonstrate that the 

methodology can adapt to different kind of datasets, both real and 

synthetic at various densities with categorical assortment. A 

simple example of how this semantic information can be 

deployed to mitigate the challenge of geometry modelling is also 

given. 

 

Yet, there is great room to improve the results. First, the inherent 

class ambiguity issue should be tackled. This problem is closely 

related to dataset size and variations, hence indoor modelling 

research community needs to give emphasis on producing large 

datasets with diverse categories. Present datasets are mainly for 

small scenes and / or object oriented; the relation between the real 

environments deprived of prior segmentation information should 

be established. Finally, we advocate that a geometry modelling 

could benefit immensely by considering semantics, which we 

strive to further in future study. 
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