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ABSTRACT: 

 

Air temperature is an essential component of the factors used in landscape planning. At similar topographic conditions, vegetation may 

show considerable differences depending on air temperature and precipitation.  In large areas, measuring temperature is a cost and 

time-consuming work. Therefore, prediction of climate variables at unmeasured sites at an acceptable accuracy is very important in 

regional resource planning. In addition, use a more proper prediction method is crucial since many different prediction techniques yield 

different performance in different landscape and geographical conditions. We compared inverse distance weighted (IDW), ordinary 

kriging (OK), and ordinary cokriging (OCK) to predict air temperature at unmeasured sites in Malatya region (East Central Anatolia) 

of Turkey. Malatya region is the most important apricot production area of Turkey and air temperature is the most important factor 

determining the apricot growing zones in this region. We used mean monthly temperatures from 1975 to 2010 measured at 28 sites in 

the study area and predicted temperature with IDW, OC, and OCK techniques, mapped temperature in the region, and tested the 

reliability of these maps.  The OCK with elevation as an auxiliary variable occurred the best procedure to predict temperature against 

the criteria of model efficiency and relative root mean squared error.      

 

 

1. INTRODUCTION 

Air temperature is an important factor determining landscape 

characteristics.  (Apaydin et al., 2011) as it  influences many 

biotic processes such as phenology, carbon fixation, 

evapotranspiration and soil-water-plant relations.  In planning 

landscapes resilient to climate changes, distribution of air 

temperature over landscape should be considered. Air 

temperature not only affects vegetation characteristics above soil 

surface but also vertical and horizontal distribution of soil 

temperature. Rates of many soil processes, which have strong 

control on plan growth are directly and indirectly related to soil 

temperature (Campbell and Norman, 1998).  Geology and 

geomorphology, hydrology, landcover and atmospheric 

circulation patterns may also have a strong influence on spatial 

distribution of air temperature (Aznar et al., 2013). 

 

Different landscape vegetation covers may form at similar 

topographic conditions, due to difference in air temperature. 

Interactions between air temperature and plant cover may be 

different on a same topography due to local differences in slope 

steepness and aspect and soil and canopy conditions (Campbell 

and Norman, 1998). Air temperature has a strong control on soil 

moisture regime, determining the vegetation type, density, and 

litter composition (Zhao et al., 2005; Attorre et al., 2007). 

Therefore, air temperature is one of the principal factors 

mediating plant and animal adaptation on a landscape.      

 

In the Malatya region, there are two principal obscures in 

building maps of air temperature. First, the area is highly 

mountainous.  As stated by (Moral, 2010) it is highly difficult to 

predict climate variables in a mountainous region due to complex 

topography.  Second, the meteorical measurement stations are 

scarce and distributed non-uniformly, and this limits predictions 

in unmeasured sites with an acceptable accuracy.  This problem 

may be overcome; using proper prediction techniques (Vicente-

Serrano et al., 2003).  

 

Many prediction techniques are used in environmental studies. Li 

and Heap (2011) reviewed 53 studies and compared performance 

of 85 techniques/sub techniques widely used in environmental 

studies.  They reported that inverse distance weighting (IDW), 

ordinary Kriging (OK) and ordinary cokriging (OCK) were the 

most frequently used techniques in environmental studies. Li and 

Heap (2011) also stressed that many times, performance of a 

technique is controlled by the nature of data (sampling density 

and scheme), type of variable, and most importantly variation of 

the data.   

 

Different prediction techniques may perform differently in 

different landscapes Hudson and Wackernagel, 1994). Many 

studies showed that OK or OCK outperformed the deterministic 

techniques such as IDW and polygonal prediction techniques 

(Moral, 2010).  Chuanyan et al. (2005) evaluated prediction 

techniques of OK, Splines, and IDW, and they concluded that all 

three methods yielded greater prediction error than linear 

regression, which accounted for terrain attributes.  However, 

Didari  et al., (2012) used OK, regression kriging (RK), universal 

kriging (UK), and modified inverse distance weighting (MIDW) 

to predict frost date at unmeasured sites.  They found that the 

MIDW prediction outperformed other techniques they used.    

  

Techniques ignoring terrain attributes such as slope steepness, 

slope aspect, and distance are generally outperformed by their 

counterparts in predicting temperature in mountainous regions. 

For example, studies (Diadato, 2005; Moral, 2010) showed that 

OCK predicted precipitation better when altitude was used as 

auxiliary variable of precipitation.  Moral (2010) compared 
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performance of OK, simple kriging (SK), universal kriging (UK), 

and OCK in predicting monthly and annual precipitation in in 41 

600 km2 area in southwest of Spain. Their results showed that 

multivariate geostatistical techniques generally outperformed the 

univariate geostatistical techniques of OK, UK, and SK.   

 

 Many different crops are grown in Malatya region, including 

apricot, which is the principal crop in the region. Malatya is one 

of the most important agro-ecological apricot producing region 

in the world, producing 11% of world’s and 70% Turkey’s total 

(Ünal,2010). In Malatya, determination of agro-climatic zones 

for apricot production planning is crucial and requires use of air 

temperature, which is one of the most important climate variable 

affecting both quality and quantity of the production. Spatial and 

temporal variation of air temperature are important in 

determining apricot growing zones (Güler and Kara, 2012). 

Knowing spatial structure of air temperature will help determine 

correlation zones of surface temperature, which can be 

considered homogenous (statistically) in production planning.  

 

This study aimed to assess performance of most widely used 

three techniques to predict air temperature in Malatya region, 

located in east of Central Anatolia of Turkey.   The results 

showed that OCK outperformed IDW and OK according to 

evaluation criteria of model performance and relative root mean 

squared error.  should be single-spaced, unless otherwise stated. 

Left and right justified typing is preferred. 

 

2. REVIEW OF THE STATISTICAL METHODS 

2.1. Length and Font 

Spatial aucorrelation (or simply correlation) of a variable is 

widely described by semivariogram and cross-semivariogram 

functions.  Equation (1) has been used widely to predict spatial 

correlation (Yates and Warrick, 1987). 
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Where ij is the semivariance (when i=j) with respect to random 

variable zi, h is the separation distance, n(h) is the number of pairs 

of zi(xk) in an given lagged distance interval of (h+dh). When i  

j, ij is the cross-semivariogram (Yates and Warrick, 1987).  

Semivariograms and cross-semivariograms were fitted using the 

spherical (Eq. (2)) and Gaussian (Eq. 3) models:   
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Where C0 is the nugget variance, C is the sill, a is the 

geostatistical range, and h is the lagged distance.  Spatial 

distribution of air temperature along with elevation was 

predicted, applying the best-fit mathematical functions of 

experimental semivariograms and cross-semivariograms.   

 

2.2. Spatial Prediction  

2.2.1. Inverse distance weighted (IDW)  

 

The inverse distance weighted (IDW) method estimates the 

values of subject variable in unmeasured points using a linear 

combination of the variable’s values at measured points weighted 

by an inverse function of the distance from the point of interest 

to the measured points. This technique assumes that measured 

values closer to an unmeasured point are more similar to it than 

those are further away in their values ( Li and Heap 2008). The 

IDW uses Eq. (4) in making prediction:  
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Where i calculated value of property x in an unmeasured site, di 

is a distance between points where property x is measured and 

predicted,  and p is the power attained to inverse distances 

between neighboring data points and point where varible x is 

predicted.  The exponent p an important factor affecting the 

calculations.   

 

2.2.2. Kriging 

 

Ordinary Kriging (OK) and ordinary cokriging (OCK) methods 

use spatial structure of data to make predictions in unvisited sites.  

Krige (1951) applied geostatistics in mining first time, so the 

method was named kriging in his honor (Malvic and Durekovic, 

2003). “The basis of kriging is the semivariogram, which is a 

representation of the spatial and differences in data between some 

or all possible ‘pairs’ of measured points, as a function of 

distance between points” (Attore et al., 2007). At an unvisited 

site, value of a subjected variable is predicted by Eq. (5) (Isaaks 

and Srivastava, 1989). 
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 Where 


v  is predicted value of variable v at an unmeasured site 

and w is the weight attained to the neighboring measured values 

of v. Detailed information on kriging can be found in Isaaks and 

Srivastava (1989).   

 

 

2.2.3. Cokriging 

 

The ordinary cokriging (OCK) procedure uses information on 

autocorrelation of a primary variable (a difficult to measure 

variable) and on cross-correlation between primary and auxiliary 

variable (a relatively easy to measure variable). The procedure 

OCK minimizes the estimation variance using both 

autocorrelation of primary variable (u) and cross-correlation 

between u and secondary variable (v) (Isaaks and Srivastava, 

1989).  Similar to that in kriging, value for a variable at an 

unvisited site is predicted by Eq. (6) (Isaaks and Srivastava, 

1989). 
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Where, )(xu


is the prediction of variable u at the location x, a is 

the weight given to the measured neighboring values of variable 

u (primary variable), b is the weight given to measured 

neighboring values of variable v (auxiliary variable).  To exploit 
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spatial correlation between primary and secondary (auxiliary) 

variable in predicting the primary variable, a reasonable spatial 

correlation between two variables should be sought.  A strong 

correlation between two variables at h=0 may not guarantee an 

adequate spatial correlation between two variables.  A 

correlogram analysis prior to cokriging may be a good start to 

examine spatial aucorrelation between primary and secondary 

variables.    

 

 

3. MATERIALS AND METHODS 

 

Study area (Malaya and its ambiance) is located in east-central 

Anatolia of Turkey (Figure 1).  Malatya and its surrounding 

region approximately (129 600 km2) is located in 35 54' and 39 

03' northern latitudes and  38 45' and 39 08' eastern longitudes 

(Anonymous, 2013a). The elevation in the region ranges from 

540 m to 2600 m. There are 28 climate stations operated by State 

Meteorology General Directorate in the study area.  The average 

lowest mean temperature occurs in January (-6.3 oC) in Sivas and 

highest in July (34.1 oC) in Şanlıurfa climate station 

(Anonymous, 2013b).   

 

 
 

Figure 1. Location of study area and climate stations in the 

study area. 

 

3.1. Methods 

 

Descriptive statistics (mean, minimum, maximum, coefficient of 

variation, skewness, and kurtosis) for mean monthly air 

temperatures (MMAT) were calculated for 28 climate stations.   

Semivariogram models for MMATs were best-fitted using GS+ 

Gamma Design Software (Robertson, 1998). Air temperature 

was predicted at unmeasured sites by inverse distance weighted 

(IDW), ordinary kriging (OK), and ordinary cokriging (OCK).  

The prediction performance of these three methods was evaluated 

against model efficiency and relative root mean squared error. In 

OCK estimation, 192 values of elevation from see level (auxiliary 

variable) was used along with 28 mean monthly air temperature 

(primary variable) values (Figure 2).  Spatial pattern of predicted 

air temperatures (MMAT) were mapped with Arcview 10.   

 
 

Figure 2. Spatial orientation of primary (mean monthly 

temperature) and auxiliary (elevation) values used in the 

ordinary cokriging prediction. 

 

3.2. Results 

 

Descriptive statistics of monthly temperatures measured from 

1975 to 2010 are given in Table 1. Air temperature is extremely 

variable in January and February and moderately variable in the 

summer months (Table 1).  Distribution of temperature values is 

slightly right skewed for all the cases; however, since the 

coefficient of skewness is below 0.50, the distribution is deemed 

normal as suggested by (Webster, 2001).  In addition, the 

distribution of mean monthly temperature values is slightly 

negatively kurtotic (Table 1).  

 

Data variation is an important factor affecting performance of 

prediction techniques.  Li and Heap (2011) showed that data 

variation has a stronger influence on model performance 

compared to data resolution, and that irregularly spaced sampling 

may increase the accuracy of the prediction.  Greater CV-values 

corresponding to winter months are attributed the greater 

differences in air temperatures measured in mountainous and flat 

landscapes in winter compared to those in summer months.  It is 

possible that cold air circulations can influence the mountainous 

northern region of the study area more than the flatter southern 

region, and this would result in greater difference between 

temperatures measured at meteorological stations located in 

mountainous region.  Greater skewness values obtained for the 

winter months show that some high outliers measured in some 

locations.  These outliers would also inflate the CV-values 

obtained for the region.         

 

Spatial predictions  

Inverse distance weighted (IDW), ordinary kriging (OK), and 

ordinary cokriging (OCK) are most frequently used techniques in 

environmental studies for the purpose of spatial interpolation of 

data (Li and Heap, 2011). We compared these three techniques 

for interpolating air temperature in a approximately (129 600) 

km2 landscape with highly different topography in
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 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Mean  -0.50 0.80 5.67 11.58 16.47 21.78 25.83 25.53 20.68 14.20 6.92 1.70 

Min -6.30 -5.10 0.10 6.60 11.10 15.20 18.90 18.90 13.90 8.10 1.40 -3.60 

Max 4.80 6.20 10.50 15.30 20.60 27.40 31.50 30.80 25.50 19.20 11.80 6.60 

#CV% 597.60 355.79 45.86 19.34 15.72 14.73 13.33 13.02 15.52 21.22 38.93 158.66 

Skewness 0.41 0.34 0.14 0.00 0.12 0.09 -0.02 -0.07 -0.11 0.13 0.27 0.46 

Kurtosis -0.66 -0.52 -0.39 -0.54 -0.78 -0.75 -0.79 -0.86 -0.85 -0.80 -0.65 -0.66 

#SD 2.97 2.86 2.60 2.24 2.59 3.21 3.44 3.32 3.21 3.01 2.69 2.70 

#CV: Coefficient of variation, SD: Standard deviation 

Table 1. Descriptive statistics of mean monthly temperatures measured from 1975 to 2010

Spatial predictions  

Inverse distance weighted (IDW), ordinary kriging (OK), and 

ordinary cokriging (OCK) are most frequently used techniques in 

environmental studies for the purpose of spatial interpolation of 

data (Li and Heap, 2011). We compared these three techniques 

for interpolating air temperature in a approximately (129 600) 

km2 landscape with highly different topography in east central 

Anatolia. We compared models with their performance by 

relative root mean squared error (RRMSE) and model efficiency 

(EF) introduced by Li and Heap (2011).  The RRMSE has the 

form (Li and Heap, 2011):  
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Where p is the predicted and o is the observed value of subject 

attribute. Eq. (7) cannot yield reasonable results when an oi is 

zero.  Therefore, we discarded one of our data values and 

calculated RRMSE with 27 of 28 data values.   

Model efficiency (EF) can be calculated by Eq. (8) (Li and Heap, 

2011).  
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Where ō is the mean of observed values.  

Of the three methods, IDW performed the worst and OCK 

performed the best. The calculated EF values for IDW were as 

low as 0.50 (Table 2) for January and February, while EF values 

of 0.78 and 0.80 were calculated for OCK-predicted values for 

the same months. The OCK did not perform well for these two 

months. Values of EF and CV (Table 2) correlated negatively, 

suggesting that the criterion EF was sensitive to data variation, 

which generally highly affect prediction quality (Li and Heap, 

2011).   Compared to EF, RRMSE calculated from OCK, OK, and 

IDW behaved somehow differently. Greatest RRMSE value (the 

worst model performance) occurred for March, while the lowest 

EF (the worst model performance) occurred for February for all 

three techniques. We suggest that EF should be given besides 

RRMSE in evaluating model performance. We compared root 

mean squared error (RMSE) and cross-validation correlation 

coefficient (r) to EF and RRMSE to evaluate model performance 

(data are not given).  Both EF and RRMESE appeared to be more 

successful in evaluating model performance. We attributed this 

greater performance of RRMSE and EF that these techniques 

normalize the error values to data values and use this normalized 

error values in evaluation model performance. Standard 

deviation (SD) is a measure of data dispersion or variation about 

the mean and it is frequently used to evaluate similarity of 

measured values to predicted ones (Isaaks and Srivastava, 1989).  

Compared to OK- and IDW-predicted values, OCK- predicted 

mean monthly temperatures were more similar to measured ones 

as their SDs were closer to those of measured values (Table 2). 

We attributed greater success of OCK to its use of spatial 

correlation information between temperature and elevation 

(Table 2).  
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EF: Model efficiency, RRMSE: Relative root mean squared error, #CV: Coefficient of variation, r: correlation coefficient between 

mean monthly temperature and elevation from the see level.   

 

 

Table 2.  Measured and predicted mean monthly air temperatures in the study area 

 

This cross-correlation information, as reported by Moral (2010) 

and Chuanyan et al. (2005), increased the accuracy of air 

temperature predictions in unvisited sites. In addition, RRMSE 

values showed that the all three models performed well for 

predicting surface temperatures in the summer months compared 

to winter months. We attributed this better success of these 

methods to less variation of data in summer months (Table 1) as 

suggested by Li and Heap (2011).   Moral (2010) reported that 

OK and OCK predicted better than IDW and other deterministic 

techniques such as polygonal method and regression kriging and 

that when topography was used as a secondary variable, the OCK 

outperformed the univariate  geostatistical techniques of 

regression kriging, simple kriging, and universal kriging in a 

41,000-ha area in southwest Spain.  Since univariate 

geostatistical techniques ignore terrain attributes, their 

performance remain relatively lower than those of multivariate 

geostatistical techniques such as OCK (Chuanyan et al., 2005). 

 

 In general, temperature decreases 6.4 oC per 1000 m (Apaydin 

et al., 2011).  Thus, in general, models that account for terrain 

attributes in temperature predictions outperform those not do.  

Apaydin et al. (2011) compared OK and OCK to predict mean 

monthly temperatures on a varying topography in Central 

Anatolia, Turkey. They reported that OCK predicted better than 

OK since the former accounts for elevation as a second variable. 

However, it is difficult to generalize the models by their 

performance since the model performance is highly case-

sensitive. Majority of the studies showed better results when OK 

or OCK are used compared to empirical multiple regression 

modeling (Moral, 2010), while in some other cases 

nongeostatistical techniques performed better. For example, 

Didari and Parsa (2012) used OK, OCK, regression kriging (RK), 

universal kriging (UK) and modified IDW (MIDW) to predict 

frost date.  They reported that MIDW predictions were generally 

more reasonable than any of the other techniques they used.  

 

The use of OCK requires that a reasonably strong correlation 

occur between primary and secondary variables and secondary 

variable should be oversampled relative to primary variable 

(Isaakas and Srivastava, 1989).  In our study, a strong correlation 

coefficient (r) occurred between air temperature values and 

altitude for all the months (Table 2), suggesting that this strong r 

resulted in OCK to outperform OK and IDW in predicting 

monthly surface temperatures. The model performance depends 

on the topography as well as the correlation degree between 

topographic variables and surface temperature.  For example, 

Zhao et al. (2005) reported that geostatistical methods OK and 

splines yielded smaller prediction errors than linear regression of 

temperature. However, Chuanyan et al. (2005) evaluated OK and 

splines and they concluded that, in general, OK and spline 

resulted in greater prediction errors compared to linear 

regression, which accounts for terrain attributes.  On the other 

hand, Yang et al. (2004) recommended OCK to predict 

temperature in the case of rough terrains and varying elevations.  

Spatial pattern of monthly average surface temperatures are given 

in (Figure 3) where greater temperature values are associated to 

flatter topographies.  In general, mean monthly air temperature 

gradually increased from northwest to southeast and similar 

pattern occurred for all 12 months. 

 

The major advantage of kriging over other nongeostatistical 

methods is its measuring prediction error for each predicted 

values.  A greater prediction error indicates poorer prediction. 

Prediction error map for two extreme months January (greatest 

CV) and August ( lowest CV) were presented in (Figure 4) for 

comparison.  Our results showed that OCK predicted better in 

northwestern part of the study area and that it predicted worse in 

southeastern corner and an isolated area in the south (Figure 4). 

Contrary to many cited results, OCK predicted well in the 

mountainous localities than flatter topographies, which we 

attributed that more strong correlation occurred between 

temperature and altitudes on mountainous topographies and this 

helped OCK better predict surface temperatures on these 

topographies. Similar results reported by Yang et al. (2004).  A 

similar spatial prediction error pattern occurred for all 12 months 

(data are not given).  The maps in (Figure 4) should be interpreted 

 Measured OCK IDW OK 

 Mean  #CV% #r Mean EF RRMSE Mean EF RRMSE Mean EF RRMSE 

Jan. -0.5 597.60 0.949 -0.25 0.778 227.88 -0.48 0.500 194.27 -0.6 0.582 355.89 

Feb. 0.8 355.79 0.951 1.04 0.803 173.60 0.83 0.551 290.27 0.68 0.591 353.52 

Mar. 5.67 45.86 0.961 5.87 0.988 645.04 5.69 0.968 847.39 5.58 0.969 679.40 

Apr. 11.58 19.34 0.963 11.77 0.998 12.73 11.62 0.994 19.54 11.5 0.993 19.27 

May 16.47 15.72 0.951 16.69 0.999 8.95 16.54 0.996 13.68 16.38 0.996 13.31 

Jun. 21.78 14.73 0.927 22.11 0.999 7.43 21.92 0.997 11.34 21.68 0.998 10.38 

Jul. 25.83 13.33 0.897 26.22 0.999 6.99 26.06 0.998 10.08 25.5 0.998 8.77 

Aug. 25.53 13.02 0.895 25.92 0.999 7.52 25.75 0.998 10.23 25.5 0.998 9.21 

Sep. 20.68 15.52 0.901 21.01 0.998 10.63 20.85 0.997 13.40 20.54 0.997 12.62 

Oct. 14.2 21.22 0.916 14.5 0.996 15.55 14.3 0.994 19.29 14.1 0.995 17.53 

Nov. 6.92 38.93 0.925 7.15 0.988 54.10 6.95 0.979 66.28 6.84 0.983 56.07 

Dec. 1.7 158.66 0.952 1.91 0.906 300.31 1.7 0.776 556.44 1.61 0.812 580.88 
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carefully since prediction error is relative to monthly averages of 

surface temperature. 

 

CONCLUSIONS 

 

We predicted mean monthly air temperatures by ordinary kriging 

(OK), ordinary cokriging (OCK, and inverse distance weighted 

(IDW). The OCK outperformed IDW and OCK.  Data variation 

affected model performance for all three models. All three 

models predicted well in summer months with relatively less data 

variations than winter months when data variation was greatest. 

However, IDW and OK did not predict as well as OCK in winter 

months.  The OCK performed well in predicting  mean monthly 

temperature in mountainous region of the study area.  Very high 

correlation occurred between monthly air temperatures and 

altitude as shown by calculated correlation coefficients.  

Therefore, we attributed this high performance of OCK to its use 

of spatial autocorrelation between altitude and air temperature.  

The OCK performed well on the mountainous landscapes due to 

high correlation coefficient occurred between altitude and air 

temperature.  We suggest that OCK may be preferred over other 

prediction techniques if a strong correlation exists between the 

subject variable and topographic variables.     

   

 
 

Figure 4. Maps of prediction error map for January (with 

greatest CV) and August (with lowest CV)  

 

 

 

Figure 3. Mean monthly air temperature predict with OCK. 
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