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ABSTRACT: 

 

Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. 

Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, 

and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and 

support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models 

with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance 

values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference 

FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data 

set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with 

radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, 

respectively.   

 

 

 

1. INTRODUCTION 

One challenging issue in snow mapping is the trade-off between 

the temporal and spatial resolution of satellite imageries. Since 

high spatial resolution reduces the temporal resolution, it 

eventually limits timely detection of the changes in snow cover. 

Whereas, high temporal resolution data reduces the precision of 

snow cover maps due to low spatial resolution. 

 

In order to deal with this problem, various fractional snow cover 

(FSC) mapping approaches have been proposed and applied to 

low or moderate resolution images such as spectral unmixing 

(Painter et al., 2003) and empirical normalized difference snow 

index (NDSI) (Salomonson and Appel, 2004) methods. In 

contrast to binary classification approach where a pixel is 

labeled as either snow-covered or snow-free, the true class 

distribution can be well estimated in  FSC mapping even though 

the precise location of class fractions within each coarse 

resolution pixel still remains unknown (Verbeiren et al., 2008). 

 

Artificial neural networks (ANNs) are a machine learning 

algorithm that can generate an information processing model by 

resembling the knowledge acquisition mechanism of the brain 

from the environment (Haykin, 2009), and have been 

extensively used in various disciplines (Dongale et al., 2015; 

Kar, 2015; Raji and Chandra, 2016). ANNs have also gained 

popularity and been frequently employed in various RS 

applications, like change detection (Dai and Khorram, 1999), 

land cover classification (Paola and Schowengerdt, 1995) and 

identification of clouds (Lee et al., 1990). Recently, there has 

also been an increasing trend in the use of ANNs for FSC 

mapping (Czyzowska-Wisniewski et al., 2015; Dobreva and 

Klein, 2011; Moosavi et al., 2014).   

 

Many types of ANNs have been developed and multilayer 

perceptron (MLP), a feed-forward neural network model, is  the 

most frequently employed one in RS applications (Kavzoglu 

and Mather, 2003; Mas and Flores, 2008). 

 

Originated from Data Mining and Statistical Learning Theories, 

support vector machines (SVMs) (Vapnik, 1995) are a state-of-

the-art supervised nonparametric classification and regression  

tool which has been successfully used in various applications 

such as seismology (Fisher et al.), energy and finance (Kumar et 

al., 2016; Mustaffa et al., 2014; Yuan and Lee, 2015), face 

identification, text categorization, bioinformatics and database 

marketing (Campbell and Ying, 2011).. 

 

Although SVMs were initially proposed for pattern recognition 

tasks, successful results were also obtained in regression and 

time series prediction applications (Drucker et al., 1997b; 

Mattera and Haykin, 1999; Müller et al., 1997). SVMs have 

also quickly drawn the attention of RS community, and they 

have many successful applications in image classification 

(Foody and Mathur, 2004; Huang et al., 2002) and regression 

(Bruzzone and Melgani, 2005; Kaheil et al., 2008; Zheng et al., 
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2008) tasks in RS; however, they have not yet been employed 

for FSC estimation. 

 

The primary focus of this research is to perform a comparison 

between ANNs and SVMs for FSC mapping applications in RS. 

As in all nonparametric classification and regression tools, 

ANNs and SVMs have also “model tuning” parameters that 

directly affect their generalization ability on unseen data. Thus, 

the secondary aim is to investigate the optimal combination of 

basic model building parameters of these methods for FSC 

mapping applications in RS. The rest of this paper is organized 

as follows: The study area, satellite image data set with pre-

processing stages, brief overviews of both MLP networks and 

SVMs, and the basic experimental design including sampling 

strategy, training and testing of ANN and SVM models are 

described in Section 2. The results are represented and 

discussed in Section 3. Finally, conclusion and outlook for 

future studies are given in Section 4. 

 

2. DATA SET AND METHODOLOGY 

2.1 Study Area 

The study area is located on the Ilgaz Mountains lying within 

the borders of Cankiri and Kastamonu provinces of Turkey, 

which also covers Kursunlu forest sub-district region (cf. Figure 

1). It encompasses an area of ~8500 km2 with altitude values 

ranging from 354 to 2326 m above mean sea level. 

 

The vegetation of the study area mainly consists of forest, 

underwood and alpine flora. The low altitude parts of the 

northern slopes are generally covered with Oak (Quercus spp.), 

European Black Pine (Pinus nigra ssp. pallasiana) and Uludag 

Fir (Abies nordmanniana spp. bornmulleriana) forests. At 

altitudes from 1000-1300 m, Hornbeam (Carpinus spp.) and 

Beech (Fagus orientalis L.) are dominantly observed with some 

other firewood and deciduous plants. At 1500 m and above, 

pure or mixed forests are established by Black Pine (Pinus nigra 

ssp. pallasiana) and Scots Pine (Pinus sylvestris L.) (Kuter, 

2008). 

 

 

 

Figure 1: Study area. 

 

Average annual temperature at the region is about 9.8 °C. The 

coldest month is January with an average temperature of -0.8 

°C, whereas the warmest month is July with 20 °C. Average 

annual rainfall is 486 mm according to the recordings of 

meteorological station in Kastamonu. At the mountain peaks, 

the rainfall is about 1200 mm. Snow cover remains for about six 

months with thickness reaching about 1 m on slopes due to the 

effect of Central Anatolian climate (Aydinozu et al., 2011; 

Kuter and Kuter, 2016). 

 

2.2 Satellite Imagery 

Moderate resolution imaging spectroradiometer (MODIS) on 

the Terra satellite has 36 spectral bands ranging in wavelength 

from 0.4 to 14.4 µm at varying spatial resolutions (Salomonson 

et al., 2006) and has been extensively used for mapping global 

snow cover since its launch in 1999. The MODIS snow 

mapping algorithm is mainly based on NDSI (cf. Eqn. (1)), 

where the MODIS bands 4 and 6 are used, along with a series of 

threshold tests and the MODIS cloud mask, and each MODIS 

pixel with 500 m ground resolution is classified as either snow 

or non-snow (Hall et al., 2002). 

 
MODIS

4 6
NDSI .

4 6

band band

band band





 (1) 

 

Two MODIS and Landsat 7 ETM+ image pairs taken on 

December 26, 2002 and February 28, 2003 are used in the 

study. Spatial subset of MODIS and ETM+ pair taken in 2002 is 

used for training, and that of 2003 image is used for testing of 

ANN and SVM models. The details of the satellite image data 

can be found in Table 1.   

 

2.2.1 Study Area Image Pre-processing and Reference FSC 

Maps 

All MODIS surface reflectance images are re-projected to a 

common UTM projection with WGS84 datum in order to match 

the projection of the corresponding Landsat scenes. In addition 

to the surface reflectance values of MODIS bands 1-7, NDSI 

and normalized difference vegetation index (NDVI) (cf. Eqn. 

(2)) are used as input variables (i.e., predictors). Cloud-covered, 

cloud shadow, water and bad quality pixels are identified by 

spatial masks obtained from the associated MODIS ancillary 

data and excluded from further analysis. 

 

Training Set 

Date acquired 26.12.2002 

ETM+ path/row 177/32 

Total number of available training samples 8872 

Total number of training samples after 

sampling 
254 

Testing Set 

Date acquired 28.02.2003 

ETM+ path/row 177/32 

Total number of available test samples 27338 

Table 1: Training and test data used in the analysis. 
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Figure 2: Derivation of reference MODIS FSC maps from 

binary-classified higher resolution Landsat ETM+ images. 
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 (2) 

 

Reference FSC maps are obtained by binary classification of 

higher spatial resolution Landsat 7 images. In this binary 

classification scheme, which is the equivalent of the original 

MODIS binary snow mapping algorithm, a pixel is labeled as 

snow if its NDSI ≥ 0.4 and Landsat ETM+ band 2 reflectance ≥ 

10% and band 4 reflectance > 11% (Klein et al., 1998). By 

calculating the percentage of snow-covered Landsat pixels 

within a circular area of 500 m radius centered at a MODIS 

pixel, FSC value for each MODIS pixel is obtained (cf. Figure 

2). Table 2 gives detailed information on the predictor variables 

and the response used in the analysis.    

 

MODIS data used as predictor variables 

Band 1 620-670 nm 

Band 2 841-876 nm 

Band 3 459-479 nm 

Band 4 545-565 nm 

Band 5 1230-1250 nm 

Band 6 1628-1652 nm 

Band 7 2105-2155 nm 

NDSI ( 4 6) / ( 4 6)band band band band   

NDVI ( 2 1) / ( 2 1)band band band band   

Landsat ETM+ data to derive reference FSC maps used as 

response variable 

Band 2 520-600 nm 

Band 4 770-900 nm 

Band 5 1550-1750 nm 

Table 2: MODIS and Landsat ETM+ data used in ANN and 

SVM models. 

 

2.3 Multilayer Perceptron (MLP) 

In this sub-section, the basics of MLP neural networks are 

introduced based on (Agirre-Basurko et al., 2006; Gardner and 

Dorling, 1998; Haykin, 2009; Mas and Flores, 2008; Rafiq et 

al., 2001). 

 

An MLP is made of a set of input nodes (i.e., the input layer), 

one or more sets of computation neurons (i.e., the hidden 

layers), and one set of computation/output nodes (i.e., the output 

layer) (cf. Figure 3). Connections are always made forward, on 

a layer-by-layer basis. A neuron on layer i on a strict feed-

forward MLP always connects to a neuron on layer i + 1. 

Neither recurrent connections nor skipping layers are allowed. 

 

 

 

Figure 3: Basic diagram of an MLP neural network (Agirre-

Basurko et al., 2006). 

 

The training of an MLP by backpropagation algorithms 

involves two stages. In the first stage, also known as the 

forward phase, random numbers are assigned to synaptic 

weights of the network using a uniform random distribution and 

the input signal is propagated through the network, layer by 

layer, until it reaches the output. As s result, changes are 

confined to the activation potentials and outputs of the neurons 

in the network. Then in the second stage, namely, 

backpropagation, an error signal is obtained by comparing the 

output of the network with a desired response. The resulting 

error signal is transmitted through the network layer by layer, 

yet the propagation is performed in the backward direction this 

time. In this stage, successive adjustments are made to the 

synaptic weights of the network. The output of an MLP network 

is given by Eqn. (3) as follows: 

 

 
1

1 1
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 (3) 

 

where  1,2, , ,k L  h and o denotes the elements of the 

hidden and the output layers, respectively, h

jiw  is the weight 

that connects the jth node of the input layer with the ith neuron 

of the hidden layer, o

ikw  is the weight connecting the ith neuron 

of the hidden layer with the kth node of the output layer, h

if  is 

the transfer function of the ith neuron of the hidden layer, 
o

kf  is 

the transfer function of the kth node of the output layer, h

ib  and 

o

kb  are the biases of the ith neuron in the hidden layer and the 

kth node in the output layer, respectively. Furthermore, h

in  is 

the excitation level of ith neuron of the hidden layer (cf. Eqn. 

(4)), o

kn  is the excitation level of kth node of the output layer 

(cf. Eqn. (5)), h

iy  and 
o

ky  are the outputs of the ith neuron of 

the hidden layer and the kth node of the output layer, 
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respectively, jx  is the jth node of the input layer, N and L 

indicate the number of nodes in the input and the output layers, 

respectively, and finally, S is the number of neurons in the 

hidden layer: 
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The most widely employed nonlinear transfer functions are 

hyperbolic tangent (tansig) and logarithmic sigmoid (logsig) 

and functions: 

 tansig( ) ,
x x

x x

e e
x

e e









 (6) 

 
1

logsig( ) .
1 x

x
e




 (7) 

 

Tansig and logsig are differentiable and bounded within the 

range from -1 to 1, and from  0 to 1, respectively (cf. Figure 4). 

As soon as the normalization of the inputs and the outputs  is 

completed, the learning process starts. This stage can be 

considered as an optimization process, in which the error 

function E has to be minimized: 

 

  
2

1

1
,

L
o

k k

k

E t y
L 

   (8) 

 

where  1 2, , ,
T

Lt t t  is the target vector of the MLP. 

 

 

 

Figure 4: Tansig and logsig transfer functions. 

 

In order to prevent the MLP from overtraining, the early 

stopping approach is often employed, where the available data 

is divided into three subsets as the training, the validation and 

the test set. To update the network weights and biases, the 

training set is used. During the training, the validation set is 

used to guarantee the generalization capability of the model; 

therefore, training should stop before the error on the validation 

set begins to rise. Finally, the test set is used to check the 

generalization ability of the MLP.    

  

2.4 Support Vector Machines (SVMs) 

In this sub-section, a basic overview of SVMs are given based 

on (Drucker et al., 1997a; Haykin, 2009; Mountrakis et al., 

2011; Richards and Jia, 2006; Smola and Schölkopf, 2004; 

Vapnik, 1995). 

 

When the most basic case is considered, SVM is a linear binary 

classifier. If a test sample is given subsequent to training, it 

assigns a class from one of the two possible labels. For a 

classification in RS, the test data to be labeled is generally an 

individual pixel with a set of numerical measurements (i.e., 

reflectance, radiance or raw DN values) for each band of the 

multi- or hyper-spectral image. 

 

Let us assume that a set of input vectors for the training data is 

given by xi with a number of relevant features (i.e., predictors). 

Each vector is associated with the corresponding label (i.e., 

class) denoted by yi such that
1 1( , ), ,( , )i iy yx x , where Nx R

is an N-dimensional space and i is the number of available 

samples. For the simplest binary case, yi can take only two 

possible labels, +1 and 1 . The ultimate aim of the learning 

task in binary SVM is to decide such an hyperplane that (1) the 

data points on one side would be labeled as 1iy    and those 

on the other side as 1iy   , and (2) the distance of the 

hyperplane from the labeled points of two classes would be 

maximized. The position of the optimal separation hyperplane 

with maximum margin that minimizes misclassifications is 

defined by two hyperplanes (i.e., support vectors) parallel to the 

separating hyperplane bordering the nearest training points from 

the two classes as illustrated in Figure 5. Two hyperplanes 

parallel to the optimal hyperplane are expressed as: 

 

 

1 for 1, 

1 for 1,

( 1,2, , ),

i i

i i

b y

b y

i k

     

     



w x

w x  (9) 

 

where “  ” is dot or scalar product, b denotes the offset of the 

hyperplane from the origin, ix  is the vector of predictors, and 

 1, ,
T

Nw ww  is the weight vector of N elements that 

determines the direction of the optimal separating hyperplane. 

 

Two inequalities in Eqn. (9) can be written in the following 

single inequality: 

 

    1   =1,2, , .i iy b i k  w x  (10) 

 

The optimal separating hyperplane with maximum margin can 

be obtained by minimizing the norm of w as shown in the 

following equation with the inequality constrained given in Eqn. 

(10): 

 1

2
( ) ( ).F  w w w  (11) 

 

 

 

Figure 5: Optimal separating hyperplane and support vectors 

(Richards and Jia, 2006). 
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This is a constrained optimization problem in which the 

objective function in Eqn. (11) is minimized subject to the 

constrained in Eqn. (10) by using Lagrange multipliers. After 

some rearrangements and substitutions, the decision rule that 

defines the optimal separating hyperplane is given as: 

 

  0 0( ) sign , ,
r

i i i

i

g y K b
 

  
 
x x x  (12) 

 

where for each of r training cases there is a vector ix  that 

represent the response of the case together with a definition of 

class membership iy , 0, ( 1,2, , )i i r    are Lagrange 

multipliers, and finally,  , iK x x  is the kernel function which 

enables the data points to spread in such a way that a linear 

hyper plane can be fitted. 

 

Linear SVM implementation assumes that the feature data is 

linearly separable which is a hardly met condition in multi- or 

hyper-spectral RS images. Additionally, spatial and spectral 

overlapping of classes in RS images make it difficult for linear 

decision boundaries to separate classes with high accuracy. Soft 

margin and kernel methods have been introduced to overcome 

these issues. Radial basis function, linear, quadratic and 

polynomial kernels are frequently used to transform the raw 

data into a high dimensional feature space (Mountrakis et al., 

2011; Pal and Mather, 2005b).  

 

SVMs have also exhibited quite satisfying performance in 

regression even though they were initially developed for pattern 

recognition tasks. In SVM regression, the main goal is to find a 

function ( )f x  that has at most   deviation from the actually 

obtained targets iy  for all the training data, and at the same 

time is as flat as possible. Errors less than   are considered as 

negligible, yet any deviation larger than this is not acceptable. 

Then, ( )f x  takes the following form: 

 

 ( )  with ,  ,if b b    x w x w X R  (13) 

 

where X  denotes the space of input patterns. According to 

Eqn. (13), “flatness” can be expressed in terms of small w , and 

one way to ensure this is to minimize  
2
 w w w , which 

can be re-written as a convex optimization problem: 

 

 

21
minimize  ,

2

,
subject to  

,

( 1,2, , ).
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i i

y b
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i N





   


   



w

w x
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Eqn. (14) tacitly assumes that such a function ( )f x  exists and 

it approximates all pairs ( , )i iyx  with   precision, i.e., the 

convex optimization problem is “feasible”. In the case of 

infeasible scenario where some errors may be allowed, slack 

variables 
*,  i i   can be used to deal with otherwise infeasible 

constraints of the optimization problem in Eqn. (14), which is 

also known as “soft margin” method. Consequently, the 

following formulation given in Vapnik (1995) is obtained: 
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The constant 0C   controls the trade-off between the flatness 

of ( )f x  and the amount up to which deviations larger than   

are tolerated. This leads to a so called  -insensitive loss 

function 


  which is graphically illustrated in Figure 6 and can 

be expressed as:  

 

 
0,            if ,

:
,    otherwise.



 


 

 
 



 (16) 

 

 

Figure 6: A basic illustration of the soft margin loss setting for a 

linear SVM (Haykin, 2009). 

 

2.5 Experimental Design 

After the removal of water, cloud cover and bad-quality pixels 

from the MODIS images, 8872 and 27338 pixels are available 

in the training and testing data sets, respectively. In order to 

train ANN and SVM regression models, 3% of 8872 (i.e., 254) 

pixels in the training data set is selected by stratified random 

sampling (cf. Table 1). Stratification is carried out with respect 

to snow cover fraction from 0.0 to 1.0 with 0.1 intervals in order 

to prevent ANN and SVM regression models from being biased 

towards a certain snow cover fraction. Surface reflectance 

values of MODIS bands 1-7, NDSI and NDVI are used as 

predictors, and associated FSC values derived from higher 

spatial resolution ETM+ images are used as response variable. 

 

The chosen neural network structure for FSC mapping is a feed-

forward network with one hidden layer trained via 

backpropagation learning rule with 9 nodes in the input layer 

and 1 node in the output layer. Since there is no unique theory 

to determine the optimal values of an ANN's internal variables 

(Moosavi et al., 2014), the number of nodes in the input and 

output layers are set equal to the number of predictor (i.e., 

input) and response (i.e., output or target) variables. The 

gradient-based Levenberg-Marquardt backpropagation is used 

during ANN training. The tansig function is employed in the 

hidden layer. For the output layer, logsig and tansig functions 

are alternatively assigned in order to investigate their effect on 

the estimated FSC values. 

 

Various methods have been proposed to determine the optimum 

number of neurons in the hidden layer such as 2n + 1, 2n and n, 

where n is the number of nodes in the input layer (Moosavi et 

al., 2014); however, trial-and-error approach is an appropriate 

way as indicated by Mishra and Desai (2006), and 

Shirmohammadi et al. (2013). Therefore, 4-22 nodes with 
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increment of 3 are tested for the hidden layer. The ANN training 

data is split into three subsets by random sampling: 70% for 

training, 15% for validation, and 15% for testing. 

 

A successful SVM application requires the optimal selection of 

two SVM key parameters; kernel function and regularization 

parameter C. However, there is no unique and universally 

accepted heuristics for the selection of these parameters which 

often leads to a basic trial-and-error approach (Mountrakis et 

al., 2011; Yuan and Lee, 2015).  

 

Kernel functions employed in SVM applications can be grouped 

under four main categories; linear, polynomial, radial basis 

function and sigmoid kernels. In RS literature, radial basis 

function (RBF) (i.e., 
 

2

ie
 x x

) and polynomial kernel (i.e., 

  1
d

 x y ) are frequently preferred (Huang et al., 2002; Pal 

and Mather, 2005a); therefore, these two kernels are used in the 

study. For RBF kernel, the width of kernel γ and C should be 

defined. On the other hand, the degree of polynomial d and 

again C should be determined for polynomial kernel. In order to 

select optimal values for these parameters, grid search method 

with cross validation is used as proposed by Kavzoglu and 

Colkesen (2009). In this approach, a coarser grid with 

exponentially growing sequence of (C, γ) and (C, d) is applied, 

and once the optimal region on the grid is identified, a finer grid 

search is performed. Finally, the pair of parameters that gives 

the highest cross validation accuracy is used for final training 

process. For RBF kernel C takes values in  1 2 152 ,2 , ,2 , 

whereas γ is varied from 2-5 to 23. For polynomial kernel, the 

degree d takes values from the set  2,3,4 .     

 

The performances of ANN and SVM regression models during 

both training and testing stages are assessed by root mean 

square error (RMSE) and correlation coefficient (R) values: 
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where N is the total number of observations, iy  is the ith 

reference value, and ˆ iy  is the ith predicted value. 

 

3. RESULTS 

Both ANN and SVM regression models give high accuracy in 

FSC mapping on the training data set. The high R (≥ 0.91) and 

low RMSE (≤ 0.4144) values not only show good agreement 

with reference Landsat-derived FSC data, but also indicate 

correct adjustment of model parameters during the training 

process (cf. Table 3). 

 

 Training Testing 

 R RMSE R RMSE 

MLP-logsig 0.91 0.4144 0.84 0.4481 

MLP-tansig 0.98 0.0772 0.93 0.1505 

SVM-RBF 0.95 0.1167 0.92 0.1638 

SVM-Poly2 0.94 0.1741 0.82 0.2012 

SVM-Poly3 0.94 0.1996 0.85 0.2279 

SVM-Poly4 0.92 0.2971 0.78 0.3204 

Table 2: R and RMSE values of ANN and SVM models on 

training and test data. 

Table 4 shows RMSE values obtained during the training of 

ANN models with logsig and tansig transfer functions in the 

output layer for different number of neurons in the hidden layer. 

The optimal number of neurons in the hidden layer that gives 

the lowest RMSE values are 10 and 7 for MLP-logsig and 

MLP-tansig networks, respectively. During the training of the 

MLP networks, MLP-tansig gives the best training performance 

with R = 0.98 and RMSE = 0.0772, whereas R and RMSE of 

MLP-logsig are 0.91 and 0.4144, respectively.  

 
Network 

type 

Number of neurons in the hidden layer 

4 7 10 13 16 19 22 

MLP 

logsig 
0.4391 0.4663 0.4144 0.4267 0.4266 0.4647 0.4284 

MLP 

tansig 
0.0823 0.0772 0.0850 0.0839 0.0868 0.0861 0.0920 

Table 4. Results of MLP networks with two different transfer 

functions in the output layer with respect to different number of 

neurons in the hidden layer during training. The boldface 

figures indicate the minimum RMSE values obtained on the test 

subset of the training data. 

For each kernel function, different SVM regression models are 

trained with various settings as explained in the previous sub-

section. Next, the performance of each model is evaluated on 

the training data by using R. It can be seen from Table 5, all of 

the kernel functions gives quite satisfactory results on the 

training data set; however, RBF kernel with C = 270 and γ = 3 

provides the highest R. The second best performance belongs to 

both 2nd and 3rd order polynomial kernel functions with the 

same R value of 0.94, and with C values of 245 and 280, 

respectively. SVM with 4th order polynomial kernel exhibits 

relatively poor performance on the training data with R = 0.92 

and C = 310. 

 

Kernel Function C parameter γ R 

RBF 270 3 0.95 

2nd order Polynomial 245 N/A 0.94 

3rd order Polynomial 280 N/A 0.94 

4th order Polynomial 310 N/A 0.92 

Table 5. Optimal training settings for SVM kernel functions. 

The independent test data provides a more rigorous and realistic 

assessment of ANN and SVM regression models since it is not 

included in the training. Not surprisingly, accuracy as measured 

by R and RMSE values are lower for the test than training. 

According to the results given in Table 3, MLP-tansig network 

gives the best performance on the test data set with R = 0.93. 

The MLP network with logsig transfer function in the output 

layer has lower accuracy as compared to the MLP-tansig 

network with R = 0.84 and RMSE = 0.4481. However, when the 

scatter plot diagrams of modelled FSC vs. reference FSC values 

given in Figure 7 are analysed, an interesting behaviour of 

MLP-logsig network is revealed. It cuts off the lower half of the 

FSC values (i.e., FSC < 0.5) and only gives the upper half (i.e., 

FSC ≥ 0.5). This trend is also observed during the training stage 

for all settings of number of neurons in the hidden layer, which 

shows that MLP network with logsig transfer function in the 

output layer is not suitable for FSC estimation. 
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Figure 7: Landsat-derived reference FSC values vs. estimated 

FSC values by ANN and SVM models. 

 

 

 

 

Figure 8: (a) Reference binary snow map of the test area 

obtained from Landsat ETM+ data, and (b) FSC map of the test 

area generated by the MLP-tansig model. 

 

The performance of SVM with RBF kernel is quite comparable 

with the MLP-tansig network with R = 0.92 and RMSE = 

0.1638. SVMs with 2nd and 3rd order polynomial kernels gives 

similar accuracies with R = 0.82 and R = 0.85, respectively; 

whereas, SVM with 4th order polynomial kernel has the worst 

overall performance with R = 0.78. The FSC image of the test 

area constructed by MLP-tansig model is given in Figure 8 with 

the reference binary snow map derived from the corresponding 

Landsat ETM+ data. 

 

4. CONCLUSIONS AND OUTLOOK 

Continuous monitoring of snow cover is often considered as an 

essential task in order to observe the changes in hydrology, 

meteorology and climatology of earth at both local and global 

scales. In this study, the suitability of nonparametric ANN and 

SVM methods for FSC mapping is investigated. Surface 

reflectance values of MODIS bands 1-7, NDSI and NDVI are 

used as predictor variables; whereas, the reference FSC values 

are generated from higher resolution Landsat ETM+ data, and 

they are used as response variable.   

 

The best performance is achieved by the MLP-tansig model 

over the independent test area. The performance of SVM-RBF 

model is slightly less than that of MLP-tansig. Advantage of 

ANNs and SVMs over traditional statistical methods lies in the 

fact that they make no assumptions about underlying 

relationship between a set of predictor variables and a response. 

Additionally, once the models are trained they can efficiently 

and quickly calculate FSC values.  

 

The training process of SVMs depends only on two parameters; 

the choice of kernel function and C, therefore it can be 

considered as much simpler. However, the same conclusion 

cannot be made for ANNs, since the number of “model tuning” 

parameters to be optimally decided is large. Parameters such as 

the number and size of the hidden layers, the type of transfer 

function in the hidden and output layers, the range of the initial 

weights, the learning rate and the value of the momentum term, 

the number of samples employed during the training of a 

network have a significant impact on the predictive performance 

and the generalization ability of the network and should be 

considered during the design and implementation of an ANN. 

Consequently, a potential future extension of this study is to 

investigate the effect of these model building parameters of 

ANNs in a more detailed fashion by using different and larger 

satellite image data sets.  
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