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ABSTRACT: 

This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal–spatial 

characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy 

logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America 

(California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second).  

The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-

themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a 

composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed 

daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty 

within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 

1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined using

a Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic  curve.

1. INTRODUCTION

Wildfires are one of the most unpredictable, devastating, natural 

catastrophes, with severe environmental consequences, causing 

damage to properties, infrastructure, and costing lives, like the 

fires in Pedrogao Grande in early June 2017, in Portugal or the 

Lake (CA) fire in October 2015. By using the Global Fire 

Emissions Database (GFED4) in combination with the 500m 

MODIS burned area maps with active fire data, from the Tropical 

Rainfall Measuring Mission, Giglio et al. (2013) estimates that 

every year on average of 3.5 million square kilometres of land is 

affected by wildfires.  

The objective of this study was to provide a framework in which 

these globally available datasets can be analysed, and combined, 

to create a realistic hazard score without the use (or dependency) 

of local datasets or high-resolution information layers. The 

proposed framework consists of three components: 

• The topographical database: Shuttle Radar Topography

Mission (SRTM) data in 3 arc-seconds, which is 1/1200th of

a degree of latitude and longitude, or about 90 meters (295

feet), has been used to find the topographical indicators. The

SRTM data is available globally and provide a mid-range

resolution suitable for modelling wild fires, and higher than

most of the global wild fire models.

• The fuel database: to estimate the fuel availability a

composite score of land cover, fuel loads, biomass, and

biovolume is constructed. The fuel database is in the final

step downscaled to the same resolution as the topographical

database to allow cell-by-cell analysis.

• The climatological database: one of the most used indices to

find the fire potential in an area is the Keetch-Byram Drought

Index (KBDI) developed by Keetch and Byram (1968). The

KBDI is forecasting the possibility of wildfire based on soil

moisture by calculating the water gain or loss within the soil.

The index (in this study) is calculated by using modelled

surface air temperature and precipitation amounts from 

Department of Civil and Environmental Engineering of the 

Princeton University (Sheffield et al., 2006). 

Within the three components, fuzzy logic operators are used to 

determine the membership values, and the membership values 

are translated into scoring factors. In the final step, the 

topographical and fuel availability scores are combined, and the 

weekly KBDI is used to rescale the score to give a weekly fire 

risk. 

2. BACKGROUND

Modelling forest or wildfires started roughly 40 years ago, with 

the first fire following model developed by Rothermel in 1973 

(Wells, 2007). Rothermel (1972) used a mathematical approach 

to predict the fire spreading, with 13 fuel models (to describe the 

fuel conditions in the field). The model calculates the spread rate, 

intensity, and flame length under any combination of slope 

steepness, wind speed, and moisture content, to predict the fire 

behaviour (Scott and Burgan, 2005). 

Most forest departments in countries with a history of wild/forest 

fires have deployed a model for risk assessment, and in general, 

all reviewed models are using the same basic parameters to 

estimate the worst-case scenario (as outlined by Rothermel). The 

increasing availability of digital data and Geographic 

Information Systems (GIS) has made it possible to create 

regional risk models, such as multicriteria risk evaluation or 

expert risk systems (Sirca, 2017). 

All models reviewed, in this study, are either using very detailed 

local data sources or complex fuel models, in combination with 

sophisticated software to compute the wildfire risk in a region. 

The difference between the most commonly used strategies for 

predicting wildfire and the proposed methodology is the use (and 
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combining) of globally available data to determine the local 

wildfire risk.  

 

Particularly, in areas where for example high-resolution data, or 

meteorological measurements, are not available the use of a more 

generic approach for calculating the fire hazard could help 

decision and policy makers to identify areas with a high-risk 

factor (van den Dool, 2017). 

 

3. METHODOLOGY 

There are several designs to model wildfire. The model designed 

to identify wildfire risk is sub divided in three components. The 

first two sub-models: Topographical Risk and Fuel Risk (Figure 

1) are giving the initial risk levels. The result of the two models 

is combined to form the final risk score. A third sub-model 

(climate) is the time-dependency model and is used to propagate 

the wildfire risk by week by setting a drought scoring for the three 

study areas (see Appendix I for the information sources). 

 

To summarise, the Basins are obtained from the HydroShed 

(Hydrological data and maps based on SHuttle Elevation 

Derivatives) dataset, the DEM, as pure elevation, and second 

level derivatives capture the Topography: aspect and slope. The 

Topographical Wetness Index (TWI) is a third level derivative 

and calculated by dividing the flow accumulation by the slope 

(Wilson and Gallant, 2000). The parameters in the topographical 

sub-model are fuzzified by using a trapezoid membership 

function (Zadeh (1983), Robinson (2003)) to express the 

relationship between the indicator and fire risk.  

 

The Fuel sub-model contains land cover, biomass, biovolume, 

and fuel bed data, and are downscaled to the model resolution (3-

arc second) by using walk-through tables providing the relation 

ship between the land cover and vegetation layer.  

 

Climatological indicators are not used in the first phase of the risk 

classifications but brought in later to highlight the most critical 

period, combining the average weekly temperature and 

precipitation to calculate the overall drought index (Alexander, 

1990). The fire products from the MODIS are used to define the 

most critical conditions in each subset.  

 

 

Figure 1: Schematic overview of the model components, and 

information flow 

 

4. ANALYSIS & FINDINGS 

This study aimed to test the possibility of creating a temporal–

spatial predictive wildfire model, based on global datasets and 

fuzzy logic functions and data-driven operations using coarse 

datasets, e.g. fuel and climatological parameters, in combination 

with a less coarse DEM. The developed methodology has 

successfully been applied in three study areas, and the results are 

a realistic representation of the wildfire risk in those areas.  

The individual model components (topographical derivatives, 

fuel loads, and meteorological indicators) are providing a robust 

framework for calculating a risk score. The creation of fuzzy 

membership functions with basic statistics is a proven method to 

analyse complex relationships and is well known as an efficient 

approach.  

• Within the group of derivatives both slope and TWI are 

giving the strongest signal when combined with the MODIS 

data, while the relation between elevation/aspect and wildfire 

occurrence is less clear.  

• The fuel score is a composite of four different information 

layers, each with product-specific limitations and resolutions, 

but the used method is creating a fuel score which is a good 

representation of the fuel availability in the study areas. 

• The modelled surface air temperature and precipitation are 

reflecting the local conditions well and, especially in Spain 

and California, showing a strong correlation between high 
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temperatures and low precipitation amounts and the period 

burned areas are detected.   

The combination of the different components is giving good 

results, but a field in which the model could be improved is the 

identification of false positives in the MODIS data products. 

More research is needed to classify the areas of false positives 

correctly, and develop a rule-set to prevent the model to calculate 

a score in these regions because false positives are likely to be in 

areas with a low fuel load.  

To test the robustness of the model, and visualisation of the 

performance, a Receiver Operating Characteristic (ROC) curve 

is created (Figure 2), in which the two models are tested for 

sensitivity (true positive rate) and specificity (false positive rate). 

For each breakpoint (fire hazard class in bands of 0.1) the 

true/false negative rates are set to be half a standard deviation as 

the estimated error rate (Winner, 2009). The Mongolian results 

are less reliable due to the lack of fires in the study area (only two 

fire hazard classes) and is therefore not shown in figure 2. 

 

Figure 2: ROC curves for North America (CA/NV) & Spain 

(Valencia) 

The models for the pilots in Spain and North America are 

behaving well, and the fire classification is sound for both models 

(AUC classification is Excellent with an AUC > 0.9). The 

susceptibility to wild fire between the pilot areas is tested by 

looking at the cut-off value which is closest to the upper left 

corner, a small distance to corner is better than large distances, 

the distance is a measurement of the predictive power of the 

model (Fawcett, 2006). The North America Model is (with a cut-

point of 60%) more susceptible to wildfire than the study area in 

Spain (cut-point set to 40%). 

 

Case Study: North America (Nevada): 

In the Nevada region, as part of the North America dataset, the 

model could be validated against a Landscape-Scale Wildland 

Fire Risk/Hazard/Value Assessment for the Pershing County 

(Figure 2). Two catchments (169085 & 169119) are both in the 

report (WFA, 2009) and in the model. The risk classification in 

the large basin (169119) is matching the report well, the 

dominant features in this catchment are present in both maps, 

although the model results are higher than the rating in the report.  

 

 

Figure 3: Fire Risk/Hazard comparison. Top: Wildfire Risk 

Classification for selected catchments in Pershing County, 

Nevada as a subset from the North America Study Area. 

Bottom: Landscape-Scale Wildland Fire Risk/Hazard/Value 

Assessment Pershing County, Nevada adapted from Wildland 

Fire Associates (2009) 

 

The risk in the Selenite Range (upper left) is underestimated in 

the model, while the plains are receiving a higher classification, 

this effect is due to the small Burned Area with Active Fires 

(BAAF) region which is emphasising the local conditions under 

the BAAF area more than the landscape-scale model.  

 

The high-risk features in the hazard assessment are not captured 

in the risk classification because they are buffered transmission 

lines and other right-of-way corridors determined to be of high-

value; these are elements unique to this study and cannot be taken 

into consideration in a generic model. It was not possible to do a 

similar comparison for the Spain and Mongolian pilot areas 

because of local fire risk maps were not available. 

 

5. CONCLUSIONS 

The study has shown that it is possible to compute a realistic risk 

score by using coarse datasets, remote sensing products and GIS 

techniques. Using the proposed methodology can support local 

planning and establish a better understanding of the fire hazard, 

especially in regions where high-quality data is not available, and 

support decision makers and environmental agencies with the 

development of management policies and approaches to mitigate 

the fire risks in those regions.  

North America: Fire Risk: 60%

Spain: Fire Risk: 40%
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The Multi-Criteria Analysis, in the current configuration, is setup 

without the consultation of (local) experts. Including expert 

opinions, in more detailed studies, might provide a less subjective 

process and an independent resource in the validation phase to 

adjust the hazard scores when the overall processes are not 

generating the correct score.   

By using the BKDI as the temporal aspect for fire occurrences, it 

is possible to assess the potential risk of fire for each week. 

Although, this is an area where the model could be improved. In 

this study, only one scale factor is used for each study area; a 

better solution would be to calculate the BKDI for each grid cell 

and use the local maximum to compute the score and calculate 

the weekly hazard. 

Recommendations: 

• The dependencies in the model should further investigated in 

areas where local risk scoring maps are available (like in the 

Nevada part of the North American study area), or tested 

against established fire predictive models 

• A more detailed study of the relationship between land cover, 

climate, and MODIS products might provide better insight in 

the detection of false positives of the burned area 

• Including (local) expert knowledge in the MCA process 

might create more defendable weighting factors and an 

independent validation resource 

• Including seasonality in the fuel-score might be another time-

dependent element, which is not taken into consideration in 

this study. Neither is the effect of historic fire events on the 

vegetation; land cover, fuel scores, bio-volume and -mass are 

kept constant between years. Modelling land cover change 

due to forest/wildfires will give a better estimation of 

available fuel loads. 
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APPENDIX I: DATA SOURCES 
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