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ABSTRACT: 

 

In this paper, an innovative framework, based on both spectral and spatial information, is proposed. The objective is to improve the 

classification of hyperspectral images for high resolution land cover mapping. The spatial information is obtained by a marker-based 

Minimum Spanning Forest (MSF) algorithm. A pixel-based SVM algorithm is first used to classify the image. Then, the marker-based 

MSF spectral-spatial algorithm is applied to improve the accuracy for classes with low accuracy. The marker-based MSF algorithm is 

used as a binary classifier. These two classes are the low accuracy class and the remaining classes. Finally, the SVM algorithm is 

trained for classes with acceptable accuracy. To evaluate the proposed approach, the Berlin hyperspectral dataset is tested. Experimental 

results demonstrate the superiority of the proposed method compared to the original MSF-based approach. It achieves approximately 

5% higher rates in kappa coefficients of agreement, in comparison to the original MSF-based method. 

 

 

1. INTRODUCTION 

Imaging spectroscopy, also known as hyperspectral imaging, is 

concerned with the measurement, analysis, and interpretation of 

spectra acquired from either a given scene or a specific object at 

a short, medium, or long distance by a satellite sensor over the 

visible to infrared and sometime thermal spectral regions 

(Shippert, 2004). Recent technological improvements in spatial, 

spectral, and radiometric resolution of spectrometer imagers 

beget the need of developing new methods for land cover 

classification. A large number of researches are presented for 

classification of hyperspectral images (Senthil et al., 2010; 

Shackelford and Davis, 2003; Shrestha et al., 2005). However, 

they can be categorized in two major groups of the spectral or 

pixel-based and the spectral-spatial approaches. While the pixel-

based techniques, e.g. the classic Maximum Likelihood and 

Support Vector Machines (SVM) classifiers, mainly emphasize 

the independence of pixels, the spectral-spatial approaches, e.g. 

Geographic Object-Based Image Analysis (GEOBIA) (Blaschke 

et al., 2014) and Minimum Spanning Forest (MSF) (Tarabalka et 

al., 2010) classifiers, employ both the spectral characteristics and 

the spatial context of the pixels. The importance of applying 

spatial patterns has been identified as a desired objective by many 

scientists devoted to multidimensional data analysis. These 

approaches have been studied from various points of views. For 

instance, several possibilities are discussed in (Landgrebe, 2003) 

for the refinement of results obtained by pixel-based techniques 

in multispectral imaging. This is normally done through a second 

step, based on a spatial context. Such contextual classification is 

extended also to hyperspectral images by distinguishing amongst 

certain land cover classes (Jimenez et al., 2005; Negri et al., 

2014).  

 

The pixel-based classification methods are often unable to 

accurately differentiate between some classes with high spectral 

similarity. This is mainly because; they take only the spectral 

information into account. Consequently, methods that can exploit 

the spatial information are crucial for producing more accurate 

land cover maps (Carleer and Wolff, 2006; Jensen, 2004; 

Shackelford and Davis, 2003). Many researchers have 

demonstrated that the use of spectral-spatial information 

improves the classification results, compared to the use of 

spectral data alone, in hyperspectral imagery (Fauvel et al., 2012; 
Huang and Zhang, 2011; Paneque-Gálvez et al., 2013; Plaza et 

al., 2009; Rajadell et al., 2009; Tarabalka et al., 2011).  In the 

early studies on spectral-spatial image classification, the spectral 

information from the neighborhoods are extracted by either fixed 

windows (Camps-Valls et al., 2006) or morphological profiles 

(Fauvel et al., 2008), and used to classify and label each pixel. 

 

Segmentation techniques are the powerful tools for defining the 

spatial dependencies among the pixels and for finding the 

homogeneous regions in an image (Gonzalez and Woods, 2002). 

An alternative way to achieve the accurate segmentation is to 

perform a marker-based segmentation (Gonzalez and Woods, 

2002; Soille, 2003). The idea behind this approach is to select 

either one or several pixels that belong to each spatial object. 

Each spatial object is often referred to as either a region seed, or 

a marker of the corresponding region. These regions, then, grow 

from the selected seeds. In this way, every region, in the resulting 

segmentation map, is associated with one region’s seed. Marker-

based segmentation significantly reduces the over-segmentation 

and has, as a result, led to a better accuracy rate.  

 

Tarabalka et al. have proposed an efficient approach for spectral-

spatial classification using the MSF grown from automatically 

selected markers (Tarabalka et al., 2010). They used a pixel-wise 

SVM classification in order to select the most reliable classified 

pixels as markers. In this framework, a connected components 

labeling is applied on the classification map. Then, if a region is 

large enough, its marker is determined as the P% of pixels within 

this region with the highest probability estimates. Otherwise, it 

should lead to a marker only if it is very reliable. A potential 

marker is formed by pixels with estimated probability higher than 

a defined threshold. 

 

In this paper, a modified spectral-spatial classification approach 

is proposed to improve the spectral-spatial classification of 

hyperspectral images. The method benefits from both MSF and 

SVM classifiers in an integrated framework. In the proposed 

approach, the SVM pixel-based algorithm is first used to classify 

hyperspectral images. Afterwards, for classes with low accuracy, 

the marker-based MSF (MMSF) spectral-spatial algorithm is 

used to improve their accuracies. 
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The rest of this paper is organized as follows. Section II describes 

the original MSF-based approach for spectral-spatial 

classification of hyperspectral images. In section III, the 

proposed classification scheme is presented. Experimental results 

and discussion are discussed in Section IV and, finally, 

conclusions are drawn in section V. 
 

2. MMSF APPROACH 

MSF spectral-spatial algorithm grown of markers is used to 

improve classes' classification in SVM algorithm. In MSF, each 

pixel is considered as a vertex, νϵV, of an undirected graph, G =
(V, E, W), where V and E are sets of vertices and edges, 

respectively, and W is a mapping of the set of the edges E 

into R+. Each edge ei,j ∈ E of this graph connects a couple of 

vertices i and j, corresponding to the neighboring pixels. 

Furthermore, a weight wi,j is assigned to each edge ei,j, which 

indicates the degree of dissimilarity between two vertices (i.e., 

two corresponding pixels) connected by this edge. We have used 

an Eight-neighborhood and a Spectral Angle Mapper (SAM) 

measure for computing the weights of edges, as described in (van 

der Meer, 2006). Given a graph G = (V, E, W), the MSF rooted 

on a set of m distinct vertices {t1, … , tm} consists in finding a 

spanning forest F∗ = (V, EF∗) of G, such that each distinct tree of 

F∗is grown from one root ti, and the sum of the edges' weights of 

F∗ is minimal (Stawiaski, 2008). 

 

In order to obtain the MSF rooted on markers, m additional 

vertices i.e. ti, i = 1, … , m, are introduced. Each additional vertex 

ti is connected by the edge with a null weight to the pixels 

representing a marker i. Furthermore, an additional root vertex r 

is added and is connected by the null-weight edges to the vertices 

ti (see Figure 1). The minimal spanning tree of the constructed 

graph induces a MSF in G, where each tree is grown on a 

vertex ti. Finally, a spectral-spatial classification map is obtained 

by assigning the class of each marker to all the pixels grown from 

this marker. 
 

 
 

 

 

 

 

 

 

Figure 1. An example of addition of extra vertices t1, t2 and r to 

the image graph for the construction of an MSF rooted on 

markers 1 and 2; non-marker pixels are denoted by “0.” 

 

3. PROPOSED FRAMEWORK 

In the proposed framework, which hereinafter is called MSF-

SVM algorithm, the hyperspectral image is first classified using 

SVM algorithm. Then, the error rate for each class is computed 

as: 

 

                                        Er=1-PA                                             (1) 

 

Where, PA is class-specific producer's accuracy. In classification 

procedure, the high error rate of certain classes is not only an 

index of low accuracy between the set of classes, but also 

depends on the population of each class. Therefore, a 

classification measure, named 𝛿, can be defined for each class i 

as follows: 

 

                                   δi =
   Ei.Pi

 max
i=1,..N

(Ei.Pi)
                                 (2) 

 

Where 𝐸𝑖 and 𝑃𝑖 are, respectively, the error rate and the 

population size for class i, and N is the number of classes.  In this 

study, class i has low accuracy if 𝛿𝑖 ≥ 0.5.  The above valuehas 

been estimated by trial and error. 

 

For this algorithm, it is in particular importance to mention that 

the labeling of each pixel is first decided using the MMSF1 

algorithm. MMSF1 is used for classifying the image into two 

classes: a class with 𝛿𝑖   maximum value and the rest of classes. 

Moreover, for the condition 'if MMSF1 ', if the answer is negative, 

the pixel label can be found using the MMSF2 algorithm.  MMSF2 

is used to improve the class with 𝛿𝑖  value less than class of 

MMSF1 algorithm. This decision making process is continued 

using other MMSF algorithms until the answer is negative for the 

pixel label which is determined by SVM algorithm. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The Berlin hyperspectral dataset was used for the experiments. 

Table 1 presents the main characteristics of this dataset  

 

Dataset Berlin 

Sensor HyMap 

Context Urban area  

Spatial coverage 300×300 

Spatial Resolution (m) 3.5 

Number of bands 114 

Number of classes 5 

Table 1. The main characteristics of the Berlin dataset. 

 

In experiments, to create a map of markers for MSF algorithm, 

each connected component of the SVM classification map, i.e. 8-

neighborhood connectivity, is analyzed. If this region contains 

more than 20 pixels, 5% of its pixels with the highest estimated 

probability are selected as the marker for this component 

(Tarabalka et al., 2010). Otherwise, the region marker is formed 

by the pixels with estimated probability higher than a threshold τ. 

The threshold τ is equal to the lowest probability within the 

highest 2% of the probabilities for the whole image. In the next 

step, the image pixels are grouped into the MSF using the spectral 

angle dissimilarity measure, built from the selected markers (van 

der Meer, 2006). Moreover, in order to compare the results of the 

proposed MSF-SVM algorithm, we have implemented 

independently SVM and MMSF algorithms for image 

classification. 

 

The accuracies of the classification maps are generally assessed 

by computing the confusion matrix using the reference data. 

Based on this matrix, several criteria have been used to evaluate 

the efficiency of algorithms (Congalton, 1991; Story and 

Congalton, 1986). These measures are a) the overall accuracy 

(OA), which is the percentage of correctly classified pixels, b) 

the Kappa coefficient of agreement (κ), which is the percentage 

of agreement corrected by the amount of agreement that could be 

expected due to chance alone, and c) the class-specific producer's 

accuracy, which is the percentage of correctly classified samples 

for a given class.   

 

It should be noted that, the training samples for MSF-SVM are 

divided in two subsets: a subset for the training SVM and a subset 
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for finding the classes with low accuracy. We have chosen 20% 

exiting training samples of each class for training the SVM and 

the remaining for its testing. 

 

Five thematic land cover classes are identified in the Berlin 

dataset (see Figure 2.d): Vegetation, Build-up, Impervious, Soil 

and Water. For each class, we have randomly chosen 30% of the 

labeled samples for training and use the other 70% for testing 

purposes. 

 

A pixel-based classification was performed using the multiclass 

SVM classifier with the Gaussian radial basis function (RBF) 

kernel. The penalty parameters C and γ (which constitute the 

spread of the RBF kernel) are estimated using a five-fold cross 

validation: C = 200 and γ = 2−3. 

  

 Figures. 2.a, 2.b and 2.c show the classification maps of SVM, 

MMSF, and the proposed MSF-SVM algorithm, respectively. As 

can be seen, the map of the MSF-SVM algorithm contains far 

more homogeneous regions when compared with the maps 

obtained by other methods (see Figure 2.c). These results can 

show the importance of using spatial information throughout the 

classification procedure. 

 

  
 (a)  (b) 

  
(c) (d) 

 

(e) 

Figure 2. Berlin dataset: (a) SVM Classification map, (b) 

MMSF Classification map, (c) MSF-SVM Classification map 

(d) reference map and (e) the legend. 

 

Table 2 shows the assessment parameters of SVM classification, 

the overall accuracy, the kappa coefficient, and the class-specific 

producer's accuracy parameters. As can be seen, Build-up and 

Impervious classes have proposed parameter (δi) greater than or 

equal to 0.5. This increase in the parameter δi , as mentioned in 

section 3, is related to the large population and high error rate 

class. Also, the proposed MSF-SVM algorithm has resulted in a) 

up to an approximately 7% higher rate of accuracy for the SVM, 

and b) up to an approximately 4% higher rate of accuracy for the 

MMSF in the OA (see Figure 3).  

 

MSF-

SVM  

MMSF SVM δi Ei. Pi  

92.7 88.3 85.6 - - OA(%) 

88.8 83.7 79.3 - - (%) 

96.8  95.6   93.9   0.31 2236.4 Vegetation 

94.1  89.8   78.6   0.97 7015.5 Build-up 

91.7   85.8  80.3   1 7249.6 Impervious 

86.2    89.7    85.9    0.14 1055.9 Soil 

96.7 97.0 96.7 0.07 528.5 Water 

Table 2. The SVM assessment parameters and the classification 

accuracies obtained on the Berlin dataset 

 

 
Figure 3. The global accuracies of different methods. 

 

In Table 2, all the class-specific producer's accuracy rates for the 

proposed MSF-SVM algorithm are higher than 90%. An 

exception is the accuracy rates for the Soil class; these rates are 

slightly reduced when compared with the MMSF results. This 

reduce in accuracy can be due to the low number of pixels and 

the high dispersion of Soil class in the image. In addition, the 

spectral complexity of the Berlin dataset is effective in this case. 
Moreover, in all classes, the MMSF classification accuracy rates 

are much higher than those of the SVM. In Build-up and 

Impervious classes, (see Tab. 2), the improvements of about 16% 

and 11% in the producer's accuracies are obtained in compared 

with the SVM algorithm. This shows the importance of using 

spatial information in these two classes. 

 

5. CONCLUSION  

In this study, a framework for the spectral-spatial classification 

of hyperspectral images has proposed. In proposed framework, 

i.e. MSF-SVM, the hyperspectral image is first classified using 

SVM algorithm. Then, the MMSF spectral-spatial algorithm is 

used to improve the accuracy for classes with low accuracy. The 

experiments have been conducted using Berlin benchmark image 

in the hyperspectral remote sensing community acquired by 

HyMap in 2003. The results demonstrate that the proposed MSF-

SVM algorithm generally improves the classification accuracy 

rates when compared to the classic SVM algorithm and the 

original MSF method. The kappa coefficient obtained for the 

MSF-SVM algorithm is approximately 5% and 9% higher than 

the MMSF and SVM algorithms, respectively. 
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