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ABSTRACT:

High density airborne point cloud data has become an important means for modelling and maintenance of a power line corridor. Since,
the amount of data in a dense point cloud is huge even in a small area, an automatic detection of pylons in the corridor can be a
prerequisite for efficient and effective extraction of wires in a subsequent step. However, the existing solutions mostly overlook this
important requirement by processing the whole data into one go, which nonetheless will hinder their applications to large areas. This
paper presents a new pylon detection technique from point cloud data. First, the input point cloud is divided into ground and non-
ground points. The non-ground points within a specific low height region are used to generate a pylon mask, where pylons are found
stand-alone, not connected with any wires. The candidate pylons are obtained using a connected component analysis in the mask,
followed by a removal of trees by comparing area, shape and symmetry properties of trees and pylons. Finally, the parallelism property
of wires with the line connecting pair of candidate pylons is exploited to remove trees that have the same area and shape properties as
pylons. Experimental results show that the proposed technique provides a high pylon detection rate in terms of completeness (100%)
and correctness (100%).

1. INTRODUCTION

Reliable mapping of electrical power line corridors (PLCs) is im-
portant for a number of applications, such as monitoring of vege-
tation encroachment within a PLC (Ahmad et al., 2013) and anal-
ysis of power line structural stability (Guo et al., 2016). In fact,
adding spatial context to asset (e.g., power line) management sig-
nificantly improves the efficiency of managing an asset which in-
volves millions of components, spread across thousands of linear
kilometres and impacting diverse land uses. Traditionally, PLCs
are surveyed in person or by manually inspecting aerial photos
and videos. However, periodic manual inspection of thousands
of kilometres of PLCs is not only time consuming and labour
intensive, but also subject to errors due to involvement of hu-
man judgement. These inspection technologies are all spatially
based, so a reliable map base is essential to gain maximum ben-
efit. Furthermore, the map of most utilities may be out of date
due to inaccuracies of original surveys and alterations to the net-
work. Therefore, utility companies are seeking the benefits of
modern technology to monitor the condition of their assets and re-
duce maintenance costs. Fortunately, the advent of airborne laser
scanning technology, also known as LIght Detection And Rang-
ing (LIDAR), has made the survey automatic and economic. By
using the LIDAR technology, millions of 3D points on the earth
surface and objects on it are collected and then processed off-line
on powerful computers automatically. Thus, the LIDAR technol-
ogy has made the entire survey more effective and efficient. A
recent comprehensive review of various types of PLC surveying
methods can be found in Matikainen et al. (Matikainen et al.,
2016).

The processing of LIDAR data for 3D mapping of PLC has two
main steps (McLaughlin, 2006): Points are first classified or seg-
mented into different objects such as trees, pylons, wires and
∗Corresponding author

ground. Then, points on individual power line span are exploited
to model wires between successive pylons. However, a well mod-
elling of thin power lines requires a high density input data. Thus,
there can be millions of points in a given 1 km2 scene. However,
the actual number of points reflected from wires and pylons is
far smaller than the number of input points. The detection of
pylons can make the wire extraction step faster as in this case
only the non-ground points between successive pylons need to
be processed. Most existing power line extraction methods (e.g.,
McLaughlin (McLaughlin, 2006)) overlook the detection of py-
lons as a pre-requisite for power line extraction, except Sohn et
al. (Sohn et al., 2012). Nonetheless, the absence of pylons can
make a 3D PLC map incomplete and less useful.

In the literature, pylons are usually classified as a separate class
using supervised classifiers, e.g., Random Forest (RF) (Kim and
Sohn, 2013) and JointBoost (Guo et al., 2016). The classifica-
tion output consists of a set of points for each class. Thus, 3D
positions of individual pylons are not provided. Moreover, su-
pervised classifiers have two main requirements: large training
data set and balanced learning (Zhu and Hyyppä, 2014). A large
training data set for pylons is in general hard to get for a given
test scene. For example, the data set used by Kim and Sohn (Kim
and Sohn, 2013) had only 0.81% points for pylons. So, pylons
are in general a minority class compared to trees, buildings and
wires in any input data. Using such an unbalanced classes of data,
supervised classifiers tend to learn incorrect classification toward
minority classes (Kim and Sohn, 2013).

Sohn et al. (Sohn et al., 2012) proposed the only pylon detec-
tion technique that provided individual pylon locations. 3D lines
were first extracted using RANSAC (RANdom SAmple Consen-
sus) algorithm. Then, these lines were converted into a binary
image, from which 2D lines were classified using the RF classi-
fier based on the orientation and parallelism properties. Finally,
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Figure 1. Test data set (5,560 m × 330 m): (a) input point cloud data and (b) non-ground points. (‘N’: north direction)

non-pylon objects were removed using a voting scheme based on
contextual relations among the lines.

This paper proposes a new and classifier-free pylon detection
technique from point cloud data. The proposed technique is based
on the rules derived from the intuitive observation about the geo-
metric property of objects in the scene. For instance, while pylons
have a symmetric and/or cylindrical shape, trees mostly possess a
random shape mainly due to branches and leaves. Since the pro-
posed method does not use any supervised classifiers, it avoids
the aforementioned problems associated with the classifier-based
techniques.

2. DATA SET

Figure 1 shows the test data set from Maindample, Victoria, Aus-
tralia. The test site is 5,560 m in length and 330 m in width.
There are 3 power line corridors (2 transmissions and 1 distribu-
tion). The two transmission corridors include 26 pylons (13 on
each), which are columns made of steel frames. The distribution
corridor has only 2 poles, which are cylindrical columns. The
width of each transmission and distribution corridors is 30 m and
10 m, respectively. Note that the word ‘pylon’ is used for both
‘pylon’ and ‘pole’ in this paper.

The total number of points in the point cloud is 32,708,377 (see
Figure 1(a)). However, the number of non-ground points, shown
in Figure 1(b), is 2,097,265 (16.5% of the total points). Also, the
number of non-ground points within the three corridors is only
279,867 (6.4% of the total points). Thus, the aim of the research
presented in this paper is to automatically obtain all the pylons
and, therefore, to effectively define the power line corridors to
use in any future investigations.

3. PROPOSED METHOD

Figure 3 shows the flowchart of the proposed pylon detection
technique. The input data consists of a LIDAR point cloud and
DTM (Digital Terrain Model). The DTM is a height representa-
tion of the earth surface without any objects on it.

At first, the LIDAR points are classified into two groups: ground
points, such as ground, road furniture and bushes that are below
a height threshold, and non-ground points, which represent ele-
vated objects (such as power lines, pylons and trees) above this
threshold. The power line mask Mm, is generated using the non-
ground points. Individual pylons, power lines and trees are ob-
tained as clusters of black pixels in Mm. Pylons and power lines
of the same power line corridor are found connected in Mm, but
if two or more corridors intersect (horizontally and/or vertically),
then they are also found connected.

In Mm wires and pylons are found connected and it is hard to
separate them. So, the non-ground points are again processed
to generate the pylon mask Mp, where pylons are found stand-
alone and not connected at all with wires. The candidate py-
lons are obtained using a connected component analysis in the
mask, followed by a removal of trees by comparing area, shape
and symmetry properties of trees and pylons. Finally, the paral-
lelism property of wires with the line connecting pair of candidate
pylons is exploited to remove trees that have the same area and
shape properties as pylons.

3.1 Mask Generation

If a DTM is not available, one can be generated from the LIDAR
point cloud data using a commercial software. We assume that
the DTM is given as an input to the proposed technique. Then,
for each LIDAR point, the corresponding DTM height is used as
the ground height, Hg . A height threshold Th = Hg + hc, where
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Figure 2. Sample scene from Figure 1: (a) all input points and (b) non-ground points. (‘F’: flight direction)

hc is a height constant that separates low height objects from high
height objects, is then applied to the LIDAR data. Thus, the point
cloud is divided into two groups: ground and non-ground points.
The second group consists of the points that represent elevated
objects, such as pylons, power lines and trees with heights above
Th. Many authors have used hc = 2 m (Kim and Sohn, 2013) or
4 m (Zhu and Hyyppä, 2014). However, as we are focusing on
the detection of individual pylons, which are sometimes only 10
to 15 m in height, to get all pylon points hc has been set at 1 m
in this study. Figure 2(b) shows the non-ground points obtained
from the input sample data shown in Figure 2(a).

The power line mask, Mm, as shown in Figure 4(b), is generated
as follows. Let the resolution of Mm be Rm and all pixels are
initially assigned 1 (white). Then, for each non-ground point the
corresponding pixel in the mask is marked 0 (black). The value
of Rm is crucial here, because the input point cloud data can be
sparse and/or there may not be enough points reflected from nar-
row wires to make the pylons on the same power line corridor
connected. Ideally, in the mask there should be at least one wire
between two consecutive pylons to make the whole corridor con-
nected. However, the value of Rm should not be large that will
make the mask small in size and, thus, individual objects on the
power line become too tiny and confusing in the mask. Conse-
quently, the value of Rm is kept fixed at 0.25 m, but for each non-
ground point a neighbourhood Ω = N ×N , where N = 2n + 1
, is filled with 0 (black). The value of n is estimated as follows:

n =

∣∣∣∣Rw

Rm

∣∣∣∣− 1, (1)

where |.| indicates the round operation and Rw is defined as

Rw =

{
dm
2

if dm > 1.0
0.5 otherwise

, (2)

where dm is the maximum point-to-point distance on a wire.
When there are two or more wires between the pylons in a cor-
ridor, it is fine to consider the smallest value of dm among the
wires. The minimum value of dm is set at 0.5 in Eq. 2. Therefore,
n ≥ 1, which ensures any pair of successive pylons in a corridor

are connected. Figure 4(a) shows the mask with only the non-
ground point locations marked 0. It is easily observed that there
are a number of white pixels on each of the wires and so the dif-
ferent components of the power line corridor are not connected.
However, after the neighbourhood filling individual components
of a power line are found connected in the final mask shown in
Figure 4(b).

As expected, Mm contains pylons and wires connected. Thus,
this mask is not suitable for detection of individual pylons. In
order to find the pylons, a pylon mask Mp is first generated us-
ing the same technique as presented above, but only non-ground
points below a certain height TH are used. Given the minimum
pylon’s height is 15 m, TH = 12 m is set in order to avoid the
connection between successive pylons. A power line is found in
general in the form of a catenary curve and, therefore, its parts
connected to the pylons have higher height (close to the pylon)
than those away from the pylons. As a consequence, pylons are
found stand-alone (without any connected wires) in Mp.

Since vertically some pylons may have holes in them, probably
due to missing points, Mp is then flood filled in order to remove
the holes. Figure 4(c) shows the pylon mask for the sample scene.
As can be observed, this mask contains a true pylon along with
the trees in the scene. The single isolated points in the mask are
due to noises in the data.

3.2 Finding Candidate Pylons

A connected component analysis is then carried out on Mp. Com-
ponents that are larger than a predefined threshold Ta are re-
moved as trees. Since the largest length and width of a pylon are
20 m and 3 m, respectively, Ta = 60 m2 is set in this investiga-
tion. Figure 4(d) shows 13 components in different colours. The
largest component comprising a number of trees at the bottom of
Figure 4(d) is removed at this stage.

Usually, trees and pylons possess different shape properties. For
instance, majority of the points on a tree are reflected from
branches and leaves, so there may be no or a very small num-
ber of points reaching its trunk. On the other hand, points are
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Figure 3. Flow chart of the proposed pylon detection technique.

Figure 4. Generation of masks: (a) initial power line mask Mm, (b) final Mm, (c) Pylon mask Mp and (d) Connected components in
Mp.
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Figure 5. Removal of trees using a height histogram.

reflected from everywhere of a pylon. In addition, pylons can
have at least two (horizontal) lines of symmetry, but a tree may
not have any such lines of symmetry due to its random shape.
Thus, while points on a tree make an asymmetric pattern, those
of a pylon make a symmetric pattern.

Based on the above observation, the non-ground points within
each of the remaining connected components are analysed as fol-
lows to remove the false pylons further. These points are first di-
vided into six histogram bins at 2 m intervals: 2, 4, 6, 8, 10 and 12
m. Let the histogram of a component be {bi}, where 1 ≤ i ≤ 6
and bi indicates the number of points in bin i. If there are no
points at any bins, the corresponding component is straightway
removed as a tree. The isolated noisy points also get removed in
this stage. For the remaining components, there are points at all
six bins. Due to symmetric nature of a pylon the number of points
in a bin does not differ significantly from other bins. In contrast,
for a tree the number of points in a bin should differ significantly
from other bins. Figure 5 shows the height histogram for a tree.
As can be seen, the lower height bins (bin numbers 1 to 4) are
for the trunk and contain much smaller numbers of points than
the higher height bins (bin numbers 5 and 6). In order to remove
trees having such a histogram pattern two ratios are estimated:
{ui} = {bi}

mx
and {vi} = {bi}

mn
, where mx and mn are maximum

and mean values of {bi}. If a connected component has a bin
that has a very low number of points (ui ≤ 0.1) or a very high
number of points (vi ≥ 2), then that component is removed as a
tree. Figure 4(d) shows all 12 removed false pylons with nearby
red crosses. The only remaining component is the true pylon in
the sample scene.

3.3 Finding Final Pylons

Figure 6(a) shows all the candidate pylons in pink coloured
squares after removal of majority of trees using the procedure
discussed above. There are still some small trees, which exhibit
similar characteristics of pylons, remain in the mask. In order to
remove these trees the following inherent observation is applied.

There are long wires connecting successive pylons in a power line
corridor. Nevertheless, such wires do not exist between trees.
Therefore, straight lines are first extracted from the power line
mask Mm and then a constraint of having long straight lines in
between nearby candidate pylons is applied.

To extract straight lines from Mm the procedure introduced in
(Awrangjeb et al., 2012) is followed. Canny edge algorithm is

first applied to find edges. Corners are then detected on the ex-
tracted edges. A straight line is finally fitted between the two
consecutive corners on each extracted edge. Figure 6(b) shows
all the extracted lines {Lk} in cyan colour, where k ≥ 1, from
the test data set. Thereafter, for each candidate pylon Pc, other
candidate pylons {Po,j}, where j ≥ 0, in its vicinity (consider-
ing minimum and maximum distances between successive py-
lons 108 m and 450 m, respectively) are obtained. If there are
no neighbouring candidate pylons found (i.e., {Po,j} = ∅), Pc is
removed as an isolated tree. Otherwise, for each Pn ∈ Po,j a line
PcPn is generated. All the long lines (at least 6 m) from {Lk}
that are parallel to and reside within the vicinity (i.e., the power
line corridor) of PcPn are obtained. If there is no such lines exist
between Pc and ∀Pn ∈ Po,j then Pc is removed as a tree.

Figure 6(b) shows all the pylons that survive after this stage in
blue coloured squares and they are considered as the final pylons.
The position of each of the pylon is the mean of the non-ground
points used to form its connected component in Mp. The se-
quence of pylons in each of the three corridors (see Figure 1) can
be easily obtained by considering which pylon is a neighbour of
which in the above refinement procedure.

4. EVALUATION, COMPARISON & PARAMETERS

To our knowledge this research is the second work that detects
individual pylons from LIDAR point cloud data. Sohn et al. pre-
viously detected pylons as part of their power line scene classifi-
cation and reconstruction method (Sohn et al., 2012). They clas-
sified the input point cloud data in several object types includ-
ing pylons. The classification results were presented using the
numbers of correctly and incorrectly classified points on pylons.
Consequently, an existing performance evaluation result using the
number of correctly and incorrectly detected pylons is absent in
the state-of-the-art research. Moreover, since the data sets used in
the existing research could not be accessed, an appropriate analy-
sis of the comparative results between the proposed and existing
techniques is therefore not possible in this investigation.

The proposed method has been implemented using MATLAB
Version R2016a on a 64-bit Windows 7 Enterprise version ma-
chine with Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz pro-
cessor and 16 GB RAM. We have evaluated the performance us-
ing the object-based completeness and correctness, defined as fol-
lows (Awrangjeb and Fraser, 2014):

Cm =
TP

TP + FN
and (3)

Cr =
TP

TP + FP
, (4)

where TP is the number of truly detected pylons, FP is the num-
ber of falsely detected pylons and FN is the number of missing
pylons that cannot be detected by the involved pylon detection
technique. Since, the proposed technique detected all the true py-
lons and did not detect any false pylons, both completeness and
correctness are 100%. The same performance was obtained by
Sohn et al. (Sohn et al., 2012) using only 10 pylons. Due to
the absence of any reference information about the detected py-
lons, their localisation error could not be estimated. However,
in the magnified version, shown in Figure 6(b), each position is
obtained at the centre of the pylon.

Regarding the use of different parameters by the proposed tech-
nique, most of the parameters, such as minimum and maximum

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4, 2017 
4th International GeoAdvances Workshop, 14–15 October 2017, Safranbolu, Karabuk, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W4-81-2017 | © Authors 2017. CC BY 4.0 License.

 
85



Figure 6. Refinement of candidate pylons in the whole test data set: (a) Candidate pylons and (b) Final pylons.

distances between pylons, are related to the input data and it is as-
sumed that these parameter values are available with the data set.
The resolution of the mask Rm = 0.25 m was previously used
for building extraction (Awrangjeb and Fraser, 2014, Gilani et al.,
2016). The height constant hc = 1 m was earlier used in many
research, including Awrangjeb et al. (Awrangjeb et al., 2012), on
building detection. A higher value of hc can also be used since
for the human safety purpose the power line wires are always
hung at well above a certain height from the ground. However, if
a higher hc value is used, the height range of 2 to 12 m above the
ground for generation of the pylon mask Mp needs to be updated
as well.

The density of the input point cloud is 23.7 points/m2. So, in or-
der to keep n ≥ 1 in Eq. 1, the maximum point-to-point distance
dm is kept fixed at 0.5 m. This value obviously would not make
two close wires (say, within about 30 cm) separate in the power
line mask Mm. As evident from Figure 4(b), three pairs of close
wires are captured as three thick lines in Mm.

The resolution of the input DTM is 1 m. Since, the power line
pylons are well above the ground (at least 15 m), a fine (say, 0.5
m resolution) or a coarse (say, 3 m resolution) DTM should make
no problem at all because the use of the DTM is simply to ap-
ply the (approximate) ground threshold Hg value to obtain the
non-ground point set. Moreover, the height constant hc = 1 m
reduces the effect of a coarse DTM. Even if some ground points
may remain in the non-ground point set (specifically, in hilly ar-
eas) due to the use of a coarse DTM, this will have an insignificant
effect since the pylon mask Mp is generated from the non-ground
points within 2 to 12 m above the ground.

Since, the proposed technique removes the huge amount of
ground points in the mask generation step (Section 3.1), it makes
the remaining steps very fast. Table 1 shows the running time for

Table 1. Running time for different steps of the proposed pylon
detection technique.

Step Section Time (sec.) Time (%)
Mask Mm 3.1 3.94 0.15
Mask Mp 3.1 3.65 0.14
Candidate pylons 3.2 30.83 1.19
Edge extraction from Mm 3.3 2474.09 95.27
Line extraction from edges 3.3 83.70 3.22
Final pylons 3.3 0.65 0.03
Total 2596.86 100

different steps of the proposed pylon detection technique when it
is applied to the large test data set (5,560 m × 330 m) with more
than 32.5 million points in the input point cloud data. For each
step in the table the fastest time is recorded from about ten runs.
As can be seen, most of the steps required a very short execution
time (e.g., less than 5% of the total running time). These steps
are mostly newly proposed in this research.

However, the extraction of edges from the power line mask
Mm took a significant time (more than 95% of the total run-
ning time) because of the involved pixel-based edge extraction
method adopted from Awrangjeb et al. (Awrangjeb et al., 2012).
The size of Mm was 21, 736× 7, 101 pixels with resolution of
Rm = 0.25 m for the whole test area. The majority of the time
was mainly used to extract edges around the vegetation in the
scene. The more the vegetation, the higher the edge extraction
time. In order to reduce the edge extraction time, an efficient
implementation of the edge extraction algorithm is required.

5. CONCLUSION AND FUTURE WORK

This paper has presented a new and classifier-free technique for
pylon detection from point cloud data. Experimental results show
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that the proposed technique provides a high pylon detection rate.
Since, it does not use any classification algorithms, it avoids the
problem associated with classifier-based pylon extraction tech-
niques mentioned in Section 1.

In our future investigation, we will extract the individual power
line wires through processing the limited number of non-ground
points that reside between successive pylons. A parallel comput-
ing for achieving a low computation cost is obvious as points in-
between a pair of neighbouring pylons can be independently pro-
cessed. Our future work will also include 3D modelling of power
line corridors, specifically each extracted wire will be modelled
as a catenary curve (Ahmad et al., 2013). In addition, it would
be interesting to investigate the performance of the proposed py-
lon detection technique with a low point density input data set.
An empirical study with different value of dm (the maximum
point-to-point distance) could be exploited for this investigation
(Awrangjeb and Fraser, 2014).
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