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ABSTRACT: 

This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds 

from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an 

exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but 

processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced 

smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available 

knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially 

many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and 

allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

1. INTRODUCTION

Among the ever-increasing flood of data collected every day, 

geospatial data occupies a large portion. While the well-known 

sentence “80% of the data is geographic” (Hahmann et al., 2011) 

is an arguable empirical statement, it delineates a need to find 

new or improved ways to derive value from big geospatial data 

(Li et al., 2015). The expansion’s potential to benefit many 

applications such as construction, emergency response, planning, 

monitoring critical infrastructures and transportation makes it a 

favourable way to address many societal problematics. 

Extracting information from spatial concepts help us better 

understand our world and take informed decisions. Although 

geospatial data “stricto senso” is the bedrock of many decision-

making processes, the injection of semantics enhances the 

representativeness of the data while enlarging possible 

applications. GIS research targets this enrichment by finding 

solutions to make the storage, retrieval, and manipulation of 

spatial data easier and more representative.  

Since a decade, computing power is advanced enough allowing 

GIS systems to be extended for managing 3D models hosting 

metadata. The Open Geospatial Consortium (OGC) work and 

standards has brought stable references that are adopted 

internationally. The most used example for planning and 

construction is CityGML, IndoorGML, as well as BIM-IFC ISO 

standards, which allows many applications that 3D geospatial 

data alone (i.e meshes, CAD) could not answer. But these models 

are derived from a more direct source of information, and as our 

means to capture all 3 dimensions of our world evolve, we 

increasingly deal with point clouds from LiDAR, TLS1, MLS2, 

HMLS3, MMSS4 and dense image-matching. They constitute 

geospatial data that are gradually more produced through various 

* Corresponding author.
1 Terrestrial laser scanner 
2 Mobile laser scanner 
3 Hand-held mobile laser scanner 
4 Backpack-mounted mobile scanning system 

means and platform, but their democratization doesn’t follow the 

same growth curve. Indeed, on top of the captured 3D geometry, 

each application specifically requires additional semantics often 

domain-linked to allow a direct exploitation from the collected 

information. For this reason, it is highly impractical to solely base 

reasoning on point cloud spatial attributes alone. 

Our paper aims at solving this issue to allow a straight integration 

and a better interfacing of point cloud data in our computerized 

environment. On top of an efficient data management system that 

can handle the ever growing data size, complexity and 

heterogeneity, the addition of knowledge to such a structure is 

very interesting for meaningful information integration (Poux et 

al., 2016a). Enabling semantic injection to point cloud is a first 

part in undertaking the creation of intelligent environments 

(Novak, 1997) to allow digital copies of the world to be used as 

decision-making tools. However, this demands a highly 

functional reasoning engine that allows both spatial and semantic 

queries to efficiently interpret natural language and spatial 

operations. However, the needed metadata are “typically drawn 

from distributed sources and often are thematically and spatially 

fragmented. Thus, for a given geographic region, data differ in 

quality and modelled semantic aspects” (Stadler and Kolbe, 

2007). Therefore, spatio-semantic coherence is mandatory to 

enable a valid and representative modeling of the environment. 

This article is based on the previous work of (Poux et al., 2016a), 

which defines a Smart Point Cloud (SPC) workflow that enables 

a connection between point cloud data and three identified 

knowledge sources being device, analytic and domain 

knowledge. We extend this concept by proposing a conceptual 

data model composed of three meta-models acting at three 

different conceptual levels to efficiently manage massive point 
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cloud data (and by extension any complex 3D data) while 

integrating semantics coherently. 

In the first part, we will review the use of semantics for 
enhancing 3D data regarding domain applications and existing 

standards for managing multi-dimensional geospatial data. Then 

we will present the extended modular Smart Point Cloud model 

to allow a more direct interoperable integration of semantics in 

point-based virtual environments. Finally, we will discuss and 

illustrate the proposed conceptual model by a prototype in 

python and PostgreSQL to manage an indoor point cloud 

captured by a terrestrial laser scanner, enabling reasoning from 

information extraction. 

2. SEMANTICS & 3D DATA

Communities working with 3D data are very different implying 

a wide diversity on how the data is used. This explicitly demands 

that data-driven applications enable targeted information 

extraction specific to each use case. For example, if you work 

with a mesh representing what looks like a table, while you know 

it is a table, you need to digitally attach some extra information 

if you want to deepen the operations made by the computer rather 

than interpreting on the fly (brain work). Indeed, once metadata 

is attached to 3D data, then you can more easily grasp, or even 

can make calculations that were impossible before (e.g. count 
the number of table in the scene, what is the surface size of each 

table …). These are very basic examples of how metadata 

enhances the use of 3D data. But of course, while this is rather 

convenient for one use case, making a general rule that applies 

to all models is a daunting task. Each application requires its 
own semantic and geometric information. In this first part, we 
will study the attempts, standards and existing reflections to 

define a common scheme for exchanging relevant 3D 

information. 

2.1 Explicit 3D spatial information systems 

Datasets that explicitly include spatial information are typically 

distinguished regarding the data models and structures used to 

create, manage, process, and visualize the data. Ee consider 
three analogically distinct categories of 3D data environments 
(Ross, 2010):  

- 3D GIS: GIS systems typically model the world itself, 

retaining information about networks, connectivity, 

conductivity, associativity and topology. This enables 

spatial analysis, often carried on large collections of 

3D instances stored in virtual data warehouses with 

coordinates expressed in a frame of reference. 

- 3D CAD: CAD/CAM techniques model objects in the 

real world through parametric and triangular 

modelling tools. The topology is often planar or 

limited (although vendors extend functions to include 

semantics and higher descriptive topology (Zlatanova 

and Rahman, 2002)) and the retained information 

usually plays on a visual scale. The distinction 

between storage and visualization is not as well 

defined as in 3D GIS systems, and typically files are 

stored as single complex 3D objects (one file). CAD 

files carry visualization information that is not 

relevant to the data itself. A simplistic difference 

consists in thinking of 3D GIS systems as 3D spatial 

database whereas 3D CAD models are rather related 

to 3D drawings. The coordinate system is therefore 

linked to a defined point of interest (often the 

centroid) in the scene.  

- BIM: it constitutes working methods and a 3D 

parametric digital model that contains “intelligent” 

and structured data initially for planning and 

management purposes. It is often studied for its 

integration with 3D GIS systems with an extensive 

review in (Liu et al., 2017), but their parallel 

evolution (conditioned by temporal and hermetic 

domain research) and fundamentally different 

application scopes are slowing down their common 

assimilation. BIM models share many properties with 

3D CAD models, including their expression of 

coordinates in a local system, but benefit of a higher 

semantic integration. 

The emergence of new data sources and evolution in data models 

constantly put in question the suitability of these categorizations. 

Established and emerging data types and their integration / 

characterization can become difficult for meeting the 

characteristics of one of these categories. For example, a more 

primal spatial data from a more direct data source such as 3D 

point clouds could benefit of their own category. Indeed, they 

have a very small direct integration in these groups, but rather 

serve as a support for the creation of CAD/CAM models, BIM 

models or 3D GIS systems. In some advanced cases, the 

information included in 3D point clouds can help extract 

metadata for the future data model. 

However, it is important to note that while barriers between each 

category was well defined five years ago, the improvement and 

added functionalities to each category as well as interoperability 

and integration research and standardization plays a major part 

into blurring the respective frontiers. 

2.2 Interoperability and ontologies for 3D semantically-rich 

data 

“Semantic interoperability is the technical analogue to human 

communication and cooperation” (Kuhn, 2005). This sentence 

pertinently summarize the drive in GIS research to formalize 

semantics in order to facilitate the communication of data among 

different communities. Different levels of interoperability exist, 

and we are looking in this paper at the technical parts without 

looking at societal issues raised by enterprise-oriented 

information sharing (Harvey et al., 1999). However, the 

conceptualization of interoperability in our computerized 

environment remains a challenge at different levels:  

1. The nature of concepts that defines interoperability

should not arise from simplistic assumptions as

notions evolve with time;

2. The ever growing use of 3D data makes it very hard

to define a common language to be spoken by all

professionals;

3. The knowledge involved is sparse enough to

constraint natural language extension in a

computerized formalism;

4. Standardization efforts need an international

cooperation to represent as thoroughly as possible the

reality and benefit of effective coordination;

5. Retaining semiotic relationships between concept,

symbol and entity, as in the semantic triangle (Ogden

et al., 1923).
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In a narrower context, 3D data as 3D models are largely used for 

a high number of applications, which vary in scope and scale as 

well as enlargement. Therefore, semantic schemes as generic as 

possible provide a potential solution for interoperability. 

Ontologies are a good way to explicitly define knowledge in 

order to address semantic heterogeneity problematics arising 

from this large variety. However, independent work and research 

limits their extension to a broader audience especially looking at 

3D content. But the rise in usage demands that specific solutions 

allow 3D data to be exchanged and used as thoroughly as 

possible. Independent development and uncoordinated actions in 

the research field of ontologies applied to GIS are addressed by 

entities such as the World Wide Web Consortium (W3C), the 

International Organization for Standardization (ISO), the Open 

Geospatial Consortium (OGC), the International Alliance for 

Interoperability (IAI) and the rise of open-source developments 

and repositories. Clarifying standardization processes over 3D 

data is especially important, with issues arising at both a technical 

level and a consideration level (how is 3D data considered by the 

community?)   

In general, a standard defines a data model at two levels: 

properties and geometry. A well-known example is the standard 

GML3 issued by the OGC which is used by the CityGML data 

model describing the geometrical, topological, and semantic 

aspects of 3D city models (Kolbe et al., 2005). The specification 

and the decomposition in Level of Details (LoD) as well as the 

current 2.0 version allowing to define semantic concepts has 

made the integration of city models easier and applicable to a 

wider range of use cases (Biljecki et al., 2015). Indeed, this gives 

the possibilities for decision makers to impose a specific 

“abstraction figure” (LoD1, LoD2 …) that characterizes the 

granularity level of the wanted geometry and semantic concepts. 

This interoperability “tool” is a leap forward in the 

democratization of the standardized data model CityGML. 

However, its integration with other standards or ontologies is still 

being discussed and studied, where a discrete number of LoD 

with ‘unconnected’ (potentially uneven) levels could be a 

concern (Karim et al., 2017). This illustrates the need to find 

interoperable systems between already established standards to 

benefit of higher semantics and topology integration that 

enhances our comprehension and usability of 3D data. 

The Semantic web is a great tool standardized through Semantic 

Web 3.0 that is able to create links between already established 

standards, which encourages the use of web-based data formats 

and exchange protocols, with the Resource Description 

Framework (RDF) as the basic format. Indeed, this has the 

potential to greatly reduce the gap/frontier between each 

previously defined category in 2.1, and better integrate 

knowledge within 3D spatial data. This is especially efficient if 

we better integrate 3D point clouds, on which we today derive so 

many systems and data models. Indeed, in a first time it could 

serve as transition data, but given time it could provide all the 

necessary information if correctly integrated. 

2.3 Transition to point clouds 

The work of (Janowicz et al., 2010) constitutes a pertinent 

analysis of identified interoperability problems and semantic 

enrichment routines. The authors outline semantic challenges for 

geospatial applications, namely discovery, access, registration, 

processing and visualisation. They propose a Semantic 

Enrichment Layer which includes interesting functionalities, in 

particular a reasoning module to load and query specific 

ontologies. 

Semantics injection into point cloud constitutes an opening to 

gather interoperable data with a reasoning potential. It relates to 

complex and active point cloud research vigorously driven by 

governmental, industrial and academic needs, such as sustainable 

planning, self-driving cars or VR teaching. It includes 

problematics that arise from point cloud data management in 

terms of storing and efficient structuration for semantic and 

spatial demands. Indeed, existing PCDBMS (point cloud 

database management systems) and indexing techniques provide 

a solution to storing, compressing and managing the data (Dobos 

et al., 2014; Richter and Döllner, 2013; van Oosterom et al., 

2015), but efficiency and extensibility to dynamic semantic 

update and ontological reasoning stays limited. Queries over 

octree derived indexing techniques can provide an efficient 

solution for out-of-core rendering and parallel processing, but 

data structuration cannot efficiently include context adaptation 

and inference reasoning. 

Therefore, identifying links and relations within segmented 

objects becomes essential to truly understand how each spatial 

entity relates to its surroundings and connecting GIS, CAD and 

BIM concepts (as seen in 2.1) to 3D point clouds. Certain 

approaches such as (Ben Hmida et al., 2012a) and (Ben Hmida et 

al., 2012b) provide an opening on domain knowledge integration. 

An important contribution is made by (Rusu et al., 2008), to 

turn a kitchen point cloud – and by extending any environment  
– into a meaningful representation for robot interaction and 

recognition called an object-map. Their algorithm includes data 

acquisition, geometrical mapping and functional mapping. 

Geometrical mapping is composed of an outlier removal, a 

persistent feature estimation, a point cloud registration and then 

a resampling step. Building on this, a segmentation process and 

model fitting based on the geometrical mapping constitute the 

basis for region identification and object hypotheses 

constituting the functional mapping. As an end product, the 

algorithm produces a mesh via functional reasoning. It is 

interesting to note that the intangible hierarchy representation 

allows to validate segmentation and add constraints to refine the 

results. Although the concept is a first step toward topological 

concepts, this paper bases functional reasoning on common-

sense knowledge mostly hardcoded. 

While these constitute pertinent examples of knowledge and 

semantic enhancing capabilities, no clear and defined structure is 

developed. The work of (Poux et al., 2016a) is a first step in this 

direction: it proposes a global framework that classify, organise, 

structure and validate objects detected through a flexible and 

highly contextual structure that can adapt to three identified 

knowledge sources being domain, device and analytic 

knowledge. This lays the groundwork for the development of a 

new data model – the smart point cloud – that can address 

previously identified issues while retaining a high level of 

interoperability with existing standards. 

3. THE SMART POINT CLOUD

(Poux et al. (2016a) propose a definition for a point cloud 
knowledge-based structure contextually subdivided according to 

classification results. The semantization process relies on 

geometrical descriptors as well as a domain analogy integrated in 

a new structuration of the point cloud data through correct 

indexing techniques. This implies a separation between 

relationships / topology and spatial / attribute information to 

provide efficient data mining capabilities. At a higher conceptual 

level, the creation of an intelligent virtual environment from point 

clouds can be inspired by our cognitive system: recognizing an 

object means accessing symbolic units stored in a semantic 

memory and which are abstract from our previous experiences 
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while being independent from any context. Disposing of either 

digital copies of the real world, invention / conception of “things” 

to be integrated in the world or a combination of both, we refer 

to geometries from the “physical space” and  “fictional space” 

(immaterial, concept-based) as in (Billen et al., 2012). In their 

paper, they propose an ontology of space in order to facilitate an 

explicit definition of CityGML. By extending the formalism, it 
constitutes a basis for semantic injection into point clouds. 

However, the study of ethno physiography as well as human 

cognition of geospatial information is mandatory for defining 

information system ontologies. Indeed, the closer (and the richer) 

the model is to the domain concept, the better (and more 

extensible) the ontology will be. But the questions of how 

detailed an ontology should be dependent on the levels of 
interoperability that is envisioned. 

3.1 Conceptual SPC (Smart Point Cloud) Model 

The purpose of the SPC characterization is to represent the real 

world spatially described by point clouds in a computerized form: 

a user-centered frame representation serving an intelligent 

environment. The definition of a generic model that applies to a 

general purpose is very complex, as opening on all domains that 

benefit from 3D semantically rich models and point clouds range 

from neuro-psychiatry to economics or geo-information. Our 

approach was thought to allow a maximum flexibility by defining 

a conceptualization on which different domain formalization 

can be attached (Figure 1). 

Figure 1 Meta-model articulation for the creation of a SPC 

It is for this reason that we wanted to clearly illustrate a privileged 

domain of application: indoor environments (for BIM, 

emergency response, inventory management, UAV collision 

detection …). Therefore, we divided the characterization 

(knowledge representation and data modelling) in different 

hierarchical levels of abstraction to (1) avoid overlap to existing 

models, and (2) enhance the flexibility and opening to all possible 

formalized structure. The core instruction is that the lower levels 

are closer to a domain representation than higher levels (level-0 

being the highest level) but they impose their constraints. The 

overall structure can be seen as a pyramidal assembly, allowing 

the resolution of thematic problems at lower levels with reference 

to constraints formally imposed by the higher levels.  

Knowledge integration is essential to the creation of the SPC 

structure, as it constitutes the necessary source for the meaning 

and adaptation of different entities within the pyramidal model. 

By default, we integrate a core external algorithmic module that 

allows to extract a raw relationship graph based on a voxel-based 

element mining routine inspired by (Gorte and Pfeifer, 2004; 

Wang et al., 2017). This was established as it does not require 

any external semantic information other than pure spatial 

information which encourage flexibility and adaptation. 

However, more domain-verse classification modules such as 

(Xiong et al., 2013) provide potentially enhanced workflows. As 

seen beforehand, while RDBMS are a great fit logically speaking, 

they do not perform well considering the very high number of 

rows. Clustering via indexing-schemes is mandatory for 

interactive visualisation as well as efficient data loading, inserts 

and updates. Building this spatial structure over an object-based 

binary host/guest structure would provide powerful analysis and 

visualization exploitation. In parallel, an ontology structure 

allows inference reasoning and semantics retention, and is 

directly linked to the spatial structure thus defining relationships 

and topology for points and objects. 

The top level, called level-0 gathers data, information, and 

knowledge about the core SPC components.  

3.2 Level-0: Generalized SPC meta-model 

For clarity, we specifically target point clouds, but the model can 

easily be extended to all kind of gathered data from our physical 

world, and in an extended version provide an opening for 3D 

Figure 2 Level-0 Generalized SPC meta-model (UML). A point cloud constituted of points is block-wise organized through 
semantic patches. These can be pure spatial conglomerate or retain a coherent semantic relationship between constituting points. 

Generalizations via different schemes are possible using the generalisation structure to provide additional analysis flexibility. 
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meshes or parametric model integration. The different meta-

models are formalised in UML, and provide a conceptual 

definition for implementations. We therefore modelled as a goal 

to provide a clear vision and comprehension of the underlying 

system, but the database creation slightly differs to privilege 

performances, therefore adaptations are made at the relation 

scheme modelling level. 

The generalized SPC meta-model (Figure 2) formalizes the core 
components needed for constituting semantic point patches. It 

starts with the most primitive geometry: a point. It has a position 

defined by three coordinates in Euclidean space (R3): X, Y and 

Z. Each point has a limited number of attributes, for an example 

in Figure 2 derived from 3 different sources: device knowledge 
(scan angle, intensity …), analytic knowledge (normal, 

curvature, roughness …) or domain knowledge (definition, 

representativeness …). While the UML model shows a one to 

many relationship, to avoid too many SQL joints and for 

performances sake, the attributes can directly be integrated 

within the point table (the same applies to semanticPatch). 

However, it is important to note that one point can have many 

sets of attributes (consequently, as does a semanticPatch). 

Figure 3 Example of a basic LOD n-1 Generalization of 3 

SemanticPatches from a point cloud with color attributes only. 

A collection of points sharing the same type of dimensions 

(spatial and semantic) constitute a point cloud. This is a data-

driven aggregation, as depending on the definition of the dataset, 

the point cloud object parameters will differ. However, one 

dataset often represents a coherent point aggregation which 

serves a domain purpose. This point cloud entity also benefits 

from a knowledge source identifier to identify which knowledge 
source it relates to (if multiple domain-specific ontologies are 

connected to the model). To cope with heterogeneity in point 

cloud sources, a schema is defined and attached to all point 

clouds that share a similar dimension number, dimension type, 

scale and offset, similarly to (Cura et al., 2017).  Each point 

cloud is then parsed in semantic patches, regarding available 

knowledge and an adapted subdivision technique. Arbitrary, 

such a technique could be point-number related, geometry 

related or position related. While the existing postgreSQL 

plugin pgpointcloud defining patches in a XML scheme 

provides spatial patches, we propose to greatly enhance such an 

approach by constructing semantic patches, which retain both 

spatial and semantic properties. It constitutes small spatial 

subsets of points that share a relationship based on available (and 

injected) knowledge. By default our proposed voxel-based 

subdivision method groups point using geometrical & 

topological properties that implicitly relate to abstract 

conceptualization of our mind (such as geometric shapes to group 

points belonging to a plane, others floating above it …). As such, 

they are indirectly semantized. “semanticPatch” retains many 

attributes, with an emphasis on two specifics: a classification 

status (which can be 0:unclassified, 1:one class only or 2:many 

classes), and a confidence level for the classification. These are 

computed through a segmentation and classification routine as 

described in 4, which is independently developed from the 

proposed point cloud data model. In order to speed up 

computations, allow enhanced spatial & semantic searches and 

provide new generalization possibilities to better address our 

representation of the data, a LoD generalization structure 

definition is directly linked to the semantic patches (Figure 3). It 

defines the indexation scheme used, the different levels (if any), 

its node spatial extent and neighbours, associated geometries (if 

any) and other generalized attributes derived from statistical 

computations (average, Gaussian mixture …). (Poux et al., 

2016a) suggests a 3DOR-Tree as defined in (Gong and Ke, 2011) 

for improved performances, but hashing and implicit storage 

(Cura et al., 2016) can also greatly improve the internal 

coherence. 

3.3 Level-1: Connection-layer meta-model 

The connection-layer meta-model (i.e. the strict framework that 

drives the use of a formalism and resolves any ambiguities about 

the use of its concepts) plays the role of a plug system: an 

interface between the core SPC level-0 generalized meta-model, 

and a domain ontology that formalizes the domain-specialization 

of a generic ontology. It is constituted of two sub-levels, L1-1 

and L1-2 (Figure 4). 

The core element in this meta-model is created by an aggregation 

of one or many patches that define a connected element 

(connectedElements). These are the entities that closely relate to 

classified objects, retaining both spatial and metadata coherence. 

Connected elements transparently describe a portion of the space 

that is by default indirectly influenced by analytical knowledge 

and device knowledge, from the underlying patch organization. 

Connected elements have a spatial extent computed from the 

aggregation of patches, as well as one or several geometries that 

can be obtained by topological calculations from the patches. 

Aside from geometrical attributes including a spatial 

generalization (which can be for example the barycentre of the 

spatial extent, but also more representative statistical 

generalization) they retain raw semantics from the underlying 

patch aggregation rule. This can be ConnectedElement, 

VerticalElement or HorizontalElement, but the integration of 

domain knowledge gives the opportunity at this level to deepen 

the representativeness of a connected element. Nevertheless, one 

connected element regarding a variety of applications can have 

different spatio-semantic interests. Therefore, aggregated 

elements constitute an aggregation of connected elements which 

provide additional granularity and flexibility (a chair, with 4 feet 

and one sitting area, which is either 5 connected elements or one 

aggregate element). In a same philosophy, each connected 

element retains basic relationships with its surrounding 

environment. We therefore detect and store host and guest 

relationship information (the table is the guest of the floor, and 

the floor is the host of the table). These strong concepts have an 

influence on how deep the selectivity can go. Retaining relations 

and organizing hierarchically through topological relations refers 

to mereology, applied on point clouds object generalization 

regarding DE-9IM (Clementini and Di Felice, 1997). Therefore, 

a double structural definition retaining generalization and point 

primitives (Level-0) allows new analysis combining multi-LoD 

definitions. This pyramidal graph relationship formalization 

permits to easily access a spatially connected graph for reasoning 

engines that interpret topological relations. These conditions can 

be used to infer a physical description and combine many 

possible analysis, for example the possibility to recreate 

occluded zones, reason about position in time and space and 

conduct structural investigation.
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Connected elements also have additional properties and specific 

attributes inherited from the patches that it relates to. While 

every point can retain a date stamp, a connected element can be 

influenced by temporal variations, but duplicating a physical 

description of the connected element at every discrete temporal 

interval would not be sufficient. Therefore, connectedElements 

can have a temporal modifier that will describe the different
modifications from the in-base initial state. They can also relate 

to multiple spaces, which define a set of dimensions in R, R2… 

Rn (for example X/Y/Z in R3). 

“Space” and “ConnectedElements” are connected to a lower 
abstraction level L1-2 within the connection-layer. A space can 

have many subspaces defined in respect to the space dimensions. 

In a spatial context, it is interesting to note that they are mostly 

fiat subspaces in regard to (Smith and Varzi, 2000). Indeed, bona 

fide boundaries represent physical separators whereas fiat 

boundaries will describe a fictional border, and most of subspaces 

for human cognition have a fictional border (i.e. a room with an 

open door). The topological inward relation allows to constitute 

different subspace LoDs (we can consider a building, or the first 

floor of that building, or the room 2/43 of that first floor …). 

“subSpace” therefore retain a domain knowledge source pointer 

that can be dedicated to one or many specific domains (it can be 

a subspace in regard to the ontology of buildings, to the 

archaeology temporal findings in Australia …). The concept of 

world objects results from the definition of (Billen et al., 2012), 

which is a mind conceptualization of an object that also follows 

the categorization of (Smith and Varzi, 2000). “worldObject” is 

a specialisation of “connectedElements” retaining a domain 

related semantic pointer similarly to “subSpace” (a knowledge 

source mirroring the domain conceptualization). Geometries 

attached to these entities are useful for topological calculations 

and the direct link to “subSpace” allows many possible queries 

for information extraction (testing the inclusion of a world object 

in a subspace, testing the intersection of two objects geometries 

with a fiat boundary from a subspace …). “subSpace” and 

“worldObject” constitute the entry points on which domain 

ontologies can plug themselves to adapt to a specific application. 

3.4 Level-2: Domain adaptation 

As stated by (Tangelder and Veltkamp, 2007) “any fully-fledged 

system should apply as much domain knowledge as possible, in 

order to make shape retrieval effective”. With the rise of online 

solutions, we have seen a great potential in using knowledge 

database for classification to analogically associate shapes and 

groups of points with similar features. This association through 

analogy “is carried out by rational thinking and focuses on 

structural/functional similarities between two things and hence 

their differences. Thus, analogy helps us understand the unknown 

through the known and bridge gap between an image and a 

logical model” (Nonaka et al., 1996). This introduces the concept 

of data association for data mining, and relationships between 

seemingly unrelated data in a relational database or other 

information repositories. Enabling the use and analysis of domain 

knowledge through explicit domain assumptions while 

separating domain knowledge from operational knowledge refers 

to domain ontologies. This shares interoperability notions with 

our proposed SPC structure; while one domain meta-model 

formalization is suited for some applications, another can be 

more adapted for others and create different results that will be 

used differently. These will dictates how the final point cloud 

data model should be used (for which application). 

Figure 4 Level-1 Connection-layer meta-model. It is directly linked to the Level-0: semantic patches constitute connectedElements. 

aggregatedElements and topological notions gives flexibility to the deepness of an element characterization. ConnectedElements can 

relate to one or multiple spaces defined by their dimensions. These are subsequently divided in subspaces regarding a concept from a 

domain knowledge characterization, similarly to the world objects (being a specialization of connectedElements).  
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Therefore, the level-2 meta-model is directly linked to different 

knowledge sources, which are specified in the level-1(-2) meta-

model interfaces: “subSpace” and “worldObject”. Their 

conceptual abstraction in between pure spatial data (point clouds) 

and specific domain-verse data constitute a generic door for the 

potential connection to many level-2 domain specialization. This 

allows a great flexibility and a context adaptation to a very wide 

range of application, limited only by the underlying domain 

ontology. In fine, the domain meta-model attached to the 

connection-layer meta-model, and indirectly to the generalization 

meta-model constitute the SPC model. 

In a simple example (Figure 5), we illustrate over a basic indoor 

ontology the connection of a level-2 meta-model to the 

connection-layer meta-model. It contains 2 class elements 

(separatorElement and internalElement) specialized in 8 classes 

(transitionSeparator, verticalSeparator, horizontalSeparator, 

livingElement, mepElement, madeMadeStructElement, 

moveableElement, noise) which can also be specialized in a 

refinement process to get as close possible from the abstract idea 

that the human mind has of a concrete or abstract object of 

thought. This crude example is inspired by already established 

BIM standards and is used on a simple test case to enable rapid 

perception of natural language requests. As such, one selected 

“worldObject” can be specialized and identified as an 

internalElement, a mepElement (Mechanical, Engineering, 

Plumbing), specifically a duct of the “subspace” room 4 in the 

higher LoD level “subspace” building 7, and attached by an 

“externalFixture” next to the exit “door”. The possibility to play 

on all possible scales is therefore an opening on a flexible system 

that can be adapted to many real-world applications. 

4. PROTOTYPE & DISCUSSIONS

Any modeling choice is arbitrary and depends on the conscious 

or unconscious aspirations of the designer. Although our work 

responds to a concern for generalization at a spatio-semantic 

level, it nevertheless remains that it is not totally independent of 

a certain context. It is for this reason that we wanted to clearly 

illustrate a privileged domain of application, indoor 

environments (for BIM, emergency response, inventory 

management, UAV collision detection …). This choice permits 

to explore different scales and configurations for deeply and 

entirely testing our developments. It is also ideal for the 

definition of new virtual spaces, and the GIS demand associated 

to such environment is ever increasing. Therefore, as the 

formalization of domain constantly evolve, modelisation and 

direct integrations of level-2 domain meta-models will be 

explored in future research. 

A first prototype is implemented that addresses level-0 and level-

1 SPC conceptual model. The implementation was developed 

under Linux (Ubuntu), using several python, C++ and SQL 

libraries including psycopg, pdal, gdal, pcl, CCLib, 

pgpointcloud, postGIS. We integrated the results in the open 

source DBMS PostgreSQL. Different informations (spatial and 

radiometric) were fused regarding (Poux et al., 2016b), and a 

multi-scale voxel structure is computed to enable recognition of 

independent spatial entities by voxel adjacency-study. While the 

SPC model at Level-0 doesn’t necessitate any semantics to 

function (spatial attributes {X, Y, Z} only), their pertinence to 

domain applications greatly orient the creation of patches. 

Therefore, point grouping rules influence the performances of 

information extractions. While this is done spatially in the 

prototype via a voxel-based topological analysis as in (Poux et 

al., 2017), other criteria will be explored. Each detected element 

is parsed in semantic patches arbitrary subdivided based on a 

point maximum number of 800 points and directly integrated in 

PostgreSQL. The database is populated and we obtain semantic 

patches that constitute connectedElements, retaining both spatial 

and semantic information. Using PostGIS and SQL statements 

(i.e Table 1), information extraction is possible.  

Abs. 

level 

Goal SQL Statement 

0 I want to select the 

‘semanticpatches’ 

which intersects a 

defined polygon 

SELECT pa FROM 

semanticpatch WHERE 

ST_INTERSECT(pa::geo

metry) = TRUE 

0 I want to select all 

‘semanticpatches’ that 

have been classified  

SELECT pa FROM 

semanticpatch WHERE 

spclassifstatus = 1 

1 I want to select the 

connected element 

CC0065 

SELECT pa FROM 

semanticpatch WHERE 

connectedelement_id = 65 

Table 1 Basic SQL statements for level-0/1 abstraction 

The integration of semantics to create a more intelligent structure 

such as “The connected element CC0065 is a chair named 

‘rocking_chair’ made in 1962 for relaxing” as SQL statements 

(INSERT INTO moveableelement  connectedelement_id, type, 

title, date_prod, kind) VALUES ('65', ‘chair’, 'rocking_chair', 

'1990-07-13', 'relaxing');) is also taking advantage of the SPC 

structuration. Then, dual spatio-semantic queries leveraging the 

linked domain concepts from a level-2 meta-model mirror our 

real world information gathering (i.e. natural language query: “I 

want to locate all cypress in the garden, calculate the min. 

Figure 5 Level-2 meta-model example. separatorElement and internalElement are connected to the Level-1 meta-model 

directly through “worldObject” and “subSpace”. It is a succession of specialization describing an indoor environment. 
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distance to surrounding buildings and if the distance to buildings 

is inferior to their height, then I want to calculate how much 

length I can cut if they are not protected” illustrated in Figure 6). 

 
Figure 6 Example of a point cloud spatio-semantic query 

While 3-dimensional spaces are strongly inferred in the SPC 

model, 4-dimension spaces integrating time or by extension n-

dimensional spaces are possible characterizations for greater 

interoperability. Tests were conducted with static point data only, 

but varying positions in space and time present additional 

problematics that will be investigated. While our present paper is 

a proof of concept that provide direct integration of hard-coded 

or computed domain knowledge, our next work will include the 

extensibility of the proposed model to other data types, as well as 

a better integration of learning routines and ontologies as 

knowledge sources. A direct workflow to bring intelligence in 

real-time is currently investigated. 

 

5. CONCLUSION 

Through the definition of articulated meta-models, we propose a 

new data model giving point clouds the possibility to retain 

semantic concepts. Considering the variability in their definition 

due to heterogeneous knowledge sources, we proposed an all-

round solution to semantic injection and spatio-semantic queries. 

Its conception through different conceptual levels allows to better 

integrate point clouds in existing workflows, retaining a high 

interoperability potential with existing and future standards. 

While our proposed approach is illustrated on point cloud data, it 

can be extended to all kind of complex data that represent 

physical components. A special focus was laid on the dual 

aggregation hierarchies of semantic feature types and geometric 

decompositions. Future work will include the integration of the 

multi-level meta-model with point cloud processing frameworks 

for knowledge discovery. 
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