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ABSTRACT:

3D city and building models according to CityGML encode the geometry, represent the structure and model semantically relevant
building parts such as doors, windows and balconies. Building information models support the building design, construction and
the facility management. In contrast to CityGML, they include also objects which cannot be observed from the outside. The three
dimensional indoor models characterize a missing link between both worlds. Their derivation, however, is expensive. The semantic
automatic interpretation of 3D point clouds of indoor environments is a methodically demanding task. The data acquisition is costly
and difficult. The laser scanners and image-based methods require the access to every room. Based on an approach which does not
require an additional geometry acquisition of building indoors, we propose an attempt for filling the gaps between 3D building models
and building information models. Based on sparse observations such as the building footprint and room areas, 3D indoor models are
generated using combinatorial and stochastic reasoning. The derived models are expanded by a-priori not observable structures such as
electric installation. Gaussian mixtures, linear and bi-linear constraints are used to represent the background knowledge and structural
regularities. The derivation of hypothesised models is performed by stochastic reasoning using graphical models, Gauss-Markov models
and MAP-estimators.

1 MOTIVATION AND CONTEXT

Building information models (BIMs) are widely used for building
design, preconstruction analysis and construction planing. How-
ever, such models for as-built state are needed for a wide range of
buildings. They are important and have widespread benefits for
many tasks such as facility management. While BIMs for new
constructions are manually designed based on various software,
BIMs for existing buildings have to be derived from observations
like 3D point clouds from laserscanners or range cameras. For the
derivation of such models, especially for indoor environments,
the necessary measurements are both cost and time extensive. In
comparison to outdoor models where mainly airborne or terres-
trial platforms are used for capturing data, the derivation of obser-
vations for indoor models is rather different. Every single room
must be entered and scanned. Besides, the modelling of wall el-
ements, doors, windows and ceilings turns out to be a difficult
task, since they are often concealed by different kinds of furni-
ture. Hence, it is necessary to identify and eliminate them from
the model.

A BIM contains both semantically and geometrically rich infor-
mation for the representation of the physical and functional fea-
tures of a facility, however, surrounding information is not in-
cluded (Rafiee et al., 2014). In contrast to BIM, a Geographic
Information System (GIS) enables to perform spatial analysis in-
corporating the outdoor environment’s functional and physical
spatial relationships. Nevertheless, the contained building infor-
mation is not rich enough for tasks such as building construction
planning or facility management. In this context, the integration
of building information and geospatial city models gains more
and more attention. The goal is to benefit from the strengths of
the two distinct worlds. In this manner, the monitoring and man-
agement of the progress in different levels of projects is enabled
which supports decision making processes. Simultaneously, a spa-
tio-temporal analysis can be performed in a wide range with re-
spect to the project life cycle. (Liu et al., 2017). Especially, due
to the increasing demand of digitalized models of existing build-

ings, as-built building information modelling becomes an essen-
tial task. However, this task is facing various challenges such
as the transition from observed building data to BIM objects as
well as dealing with uncertainties characterising the data and the
bilateral relations between the BIM substructures.

BIMs are further characterized by elements and substructures whi-
ch cannot be observed from outside. This is, for example, the case
of electric installations within the walls. For such objects, survey-
based approaches do not constitute a relevant support. In this con-
text, our motivation is to propose a concept and a method for de-
riving BIMs from sparse observations. In this paper, we demon-
strate that 3D indoor models are derivable without the need of
dense 3D observations. Especially geometric and stochastic rea-
soning are used in order to model regularities in building models
taking the uncertainty of the underlying structures into account.
In previous works, we derived successfully 2D (Loch-Dehbi and
Plümer, 2011) and 3D (Dehbi et al., 2017a) façade models as well
as 3D indoor models from sparse observations (Loch-Dehbi et al.,
2017; Dehbi et al., 2017b). We believe that our methods can be
transferred for the modelling of latent and not observable struc-
tures such as electric installations to enrich 3D building models
by BIM relevant structures.

The remainder of this paper is structured as follows: Section 2
shows an overview on the related work. Section 3 gives insight
into our previous works in the context of façade and indoor model
generation. Building upon these methods, Section 4 presents a
concept for the generation of BIMs using geometric and stochas-
tic reasoning based on sparse observations. The paper is dis-
cussed and concluded in section 5.

2 RELATED WORK

The creation of BIMs for new buildings during the planning and
construction stage is a straightforward manual process. The deriva-
tion of as-built BIMs from surveying is however a still investi-
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gated research field. Nagel et al. (2009) analysed the require-
ments and the difficulties which an automatic reconstruction pro-
cess is facing. They proposed a two-staged approach for BIM
model reconstruction using CityGML (Gröger and Plümer, 2012)
as an interface between 3D graphics models and BIM models. In
this context, many works showed how to derive CityGML mod-
els from IFC models. Isikdag and Zlatanova (2009) proposed a
formal framework for a semantic mapping between both models
allowing for an automatic transformation. They showed that IFC
models contain all necessary information to generate CityGML
models in different levels of detail.

Conversely, the acquisition of BIMs from geospatial building mod-
els is a more demanding task. To this aim, surveying methods
are needed for capturing 3D observations in a time consuming
and expensive process. In this context, Xiong et al. (2013) pre-
sented an approach for the conversion of a 3D point cloud from
a laser scanner for the creation of semantically rich 3D building
models. To this end, the laser scanner has to be positioned at
multiple locations for covering the whole targeted objects. The
strengths of both BIM and GIS and especially the mutual benefits
from their cooperation are described by De Laat and Van Berlo
(2011). BIMs can serve as input for urban GIS models, in turn
GIS can used for the design and integration of new buildings from
a geospatial point of view. A literature review of works on BIM
for existing buildings and future needs in this field is provided by
Volk et al. (2014). Liu et al. (2017) categorized previous works
on the integration of BIM and GIS into three levels consisting
of data level, process level and application level and presented a
state-of-the-art review on integrating both models.

3 GENERATION OF FAÇADE AND INDOOR MODELS

For the generation of building models, in previous works we fol-
low a top-down approach believing that it is easier to verify or
falsify hypotheses than to reconstruct models from observations
in a bottom-up way. Therefore, different methods and structures
for geometric and stochastic reasoning have been applied. We
are confident that our paradigm is well-suited for enriching 3D
(interior) building models with BIM structures. To this end, this
section gives a short overview on these approaches in different
applications.

For the derivation of 3D façade models, we used statistical rela-
tional learning, namely Markov Logic Networks (MLNs) (Richard-
son and Domingos, 2006) together with specific Support Vec-
tor Machines (SVMs) (Tsochantaridis et al., 2004) to learn and
generate a weighted attributed context-free grammar (WACFG).
MLNs enforce the topological and geometric constraints and ad-
dress uncertainty explicitly providing probabilistic inference. Fur-
ther, they are able to deal with partial observations, for exam-
ple caused by occlusions. Besides, uncertain projective geometry
(Heuel, 2004) is used to deal with the uncertainty of the obser-
vations. The learned grammar has been applied to reconstruct
façades from 3D point clouds. Figure 1 illustrates the model
based reconstruction using the WACFG. For more details, the
reader is referred to Dehbi et al. (2017a).

In another context, we proposed an approach which does not rely
on 3D dense observations. In this work, we used constraint sat-
isfaction methods, namely Constraint Logic Programming (CLP)
(Gavanelli and Rossi, 2010) for solving a multi-linear problem.
The constraints have been formulated as logical relations. The
hypotheses search space is structured based on an appropriate
representation of background knowledge, the definition of do-
mains and constraints on façade model parameters and an intel-
ligent combination of constraint propagation and stochastic rea-

Figure 1: 3D façade reconstruction based on statistical relational
learning (SRL) (Dehbi et al., 2017a).

soning yielding to solutions in a rather efficient way. The stochas-
tic reasoning draws upon the combinatorial constraint satisfaction
using special graphical models. Figure 2 shows some resulting
ranked hypotheses based on an MAP-estimation. It should be
noted that the observations consist only of the façade width and a
single window embrasure. This approach makes use of an exten-
sive data analysis leading to probability density functions (PDFs)
of the related model parameters. PDFs of model parameters such
as the distance between windows are represented by kernel den-
sity estimations (Wand and Jones, 1994) or Gaussian mixtures
as good approximations to model skew symmetric or multimodal
distributions as illustrated by Figure 3. This enabled using well
established reasoning algorithms. As stated in McLachlan and
Peel (2000) each arbitrary probability density function can be ap-
proximated by Gaussian mixture models. More details to the ap-
plied method are provided by Loch-Dehbi and Plümer (2015).

Inspired by the method followed to predict façade models, Loch-
Dehbi et al. (2017) outlined an approach for the prediction of
floorplans and indoor models without the need of indoor mea-
surements. The algorithm profits from an extensive data analy-
sis of shape and location parameters such as width and depth of
rooms. This leads to a prior knowledge represented by architec-
tural constraints and probability density functions. In turn, the
considered constraints together with the PDFs approximated by
Gaussian mixtures reduce the search space and enable to recon-
struct floorplans based on otherwise insufficient data. In order
to cope with the problem of exact inference in complex mod-
els, we combined Constraint Logic Programming with graphical
models. The combinatorial problem of assigning each window to
a room and determining the bilateral relations between rooms is
solved by constraint propagation leading to preliminary topolog-
ical models. This intermediate result is adjusted by a statistical
component that aligns rooms along corridors where possible and
estimates walls completing the floorplan model. Figure 4 gives an

Figure 2: Ranked façade hyptheses derived using constraint
propagations and stochastic reasoning (Loch-Dehbi and Plümer,
2015).
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Figure 3: Gaussian mixture (blue) and kernel density estimation
(red) for distance between two neighboring windows, mixture
models good approximation with five means (gray vertical lines)
and extremely small variances (gray horizontal lines). (Loch-
Dehbi and Plümer, 2015)

overview on this approach and depicts the output and a resulting
floorplan.

In Dehbi et al. (2017b), we focused on the improvement of model
parameters in an a-priori estimated topological model that was
generated by the use of Constraint Logic Programming as de-
scribed in the last paragraph. Our approach makes use of a linear
and non-linear Gauss-Markov model which incorporates not only
probability density functions but also observations such as win-
dow locations or room areas. In order to achieve better accura-
cies, available symmetries have been exploited and their impact
on the estimation has been investigated. Further symmetries in
the known exterior model can be identified based on a classifica-
tion task and subsequently modelled by formal grammars (Dehbi
et al., 2016). Bayesian model selection is based on the informa-
tion criteria AIC and BIC and incorporates observations in order
to choose the hypotheses that best fit the scenario. Errors in the
preliminary topological model are detected and corrected using a
likelihood-based method. For more details the method is elabo-
rated by Dehbi et al. (2017b). The 2D floorplans shown in Figure
5 represent different models derived taking different aspects such
as symmetries into account.

Figure 4: Automatic derivation of floor plans (bottom right) from
sparse observations like window locations from possibly LoD3
exterior models, footprint and room information such as room
areas (top). No additional indoor measurements are needed. For
the comparison, a reference floor plan is depicted (bottom left).
(Loch-Dehbi et al., 2017)

4 GEOMETRIC AND STOCHASTIC REASONING FOR
BIM MODELS

The previous section demonstrated methods and approaches for
the 3D building modelling and the automatic generation of se-
mantic building models. In a similar spirit we are confident that
the gaps between outdoor as well as indoor semantic modelling
and building information modelling can be bridged. Especially,
we believe that methods such as statistical relational learning, ge-
ometric and stochastic reasoning are adequate to tackle this task.

Figure 5: Floorplan estimation using a Gauss-Markov model.
Model selection is performed based on linear (top) and bi-linear
(bottom) constraints. Symmetries and repetitive patterns (fixed
room widths, fixed window distances) are considered. The
zoomed part on the right shows that the estimated (orange) and
the ground truth model (black) are almost identical (Dehbi et al.,
2017b)

Exemplarily, we discuss how to apply this mixture of methods to
enrich 3D building models by further infrastructural information
such as electric installations within existing buildings. Figure 6
represents a survey of our proposed concept illustrating the work-
flow of the different methods leading to a building model in LoD
4 which includes 3D indoor models and electric installations. In
this context, we start from a 3D indoor model as shown in Figure
7 which has been derived by the reasoning process as described
in section 3. We understand that man-made objects are charac-
terized by a number of regularities. On the one hand, geometric
relations such as parallelity and orthogonality are dominant in
buildings. For instance, Steadman (2006) explained the predom-
inance of the right angle in architectural plans. Loch-Dehbi and
Plümer (2011) studied the geometric rules that can be found in
man-made objects and presented an approach for deducing geo-
metric relations in 3D building models. On the other hand, build-
ings can be described by functional and statistical dependencies
between model parameters.

Likewise, regularities occur in non visible building elements. For
example, in Germany the location of electric lines should follow
some recommendations and have to respect underlying norms.
There are two kinds of installation zones: vertical and horizon-
tal zones. In order to avoid damaging of hidden lines, the lo-
cations of such lines are regulated. The horizontal installation
zones are depicted in Figure 9 in blue colour. For the sake of
safety, electric lines within this kind of zones have to be 30 cm
away from the ceiling surfaces and likewise from the ground sur-
face. This distance varies depending on the functional use of the
according room. In rooms with working surfaces like countertops
in kitchens, the distance amounts to 100 cm. Power sockets are
usually installed in the lower horizontal zones. Vertical installa-
tion zones highlighted in green colour are usually laid in a range
of 15 cm from the windows (VZ-W), doors (VZ-d) and room
edges (VZ-e). The recommended height for light switches is 105
cm from the ground surface. However, in special rooms such as
kitchens this distance becomes 115 cm. Otherwise, if the sockets
or switches have to be inevitably installed outside the mentioned
zones, the lines have to be laid in a vertical way from the next
horizontal zone.

Background knowledge consisting of regularities and rules which
characterize and regulate the electric infrastructures is analysed
and exploited. The structure of the electric line network can
be automatically learned from labelled data using statistical re-
lational learning frameworks. Especially MLNs can be used in
order to learn and model the geometric entities and the constraints
among them. To this aim, logical facts as training data are derived
from the spatial relational database (cf. Figure 8) for an MLN-
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Figure 6: A survey of our concept for expanding 3D building
models by electric installations for BIM.

based supervised learning task. The propagation of the constraints,
especially between not neighboured objects, is ensured by statis-
tical and relational inference as performed by Dehbi et al. (2017a).
Inferred constraints and entities represent the input of a constraint
satisfaction problem (CSP). In this manner, the rules can be for-
mulated as constraints within a CSP. Besides, the background
knowledge is expanded by probability density functions of lo-
cation parameters. The latter depend on the building type and
time. This reduces the hypotheses space. For the improvement of
the hypotheses, Gauss-Markov models with a subsequent model
selection can be used. Based on few additional observations, a
transition from hypotheses into concrete models is achieved. The
verification or falsification of such models can be performed with
a low expense using appropriate sensors.

Despite the regularities derived from the recommendations, de-
viations from these expectations are not excluded. For this rea-
son, an extensive data acquisition and a subsequent analysis is
required. This enables the derivation of statistical knowledge in
the form of probability density functions which can be approxi-
mated using Gaussian mixtures. Exemplarily, for façades, Figure
3 shows that the search space is structured by few peaks. The
same paradigm has been also applied in Section 3 for the estima-
tion of shape parameters of rooms. The probability distributions
depend on the building style and building construction era. These
parameters are incorporated in a conditional statistical reasoning
process. Furthermore, the data analysis gives insight into the vari-
ous location configurations of electric lines, switches and sockets
independent from the mentioned recommendations.

Figure 7: 3D indoor model resulting from an estimation process
based on constraint propagation and stochastic reasoning (Loch-
Dehbi et al., 2017).

The data analysis and pattern recognition benefit from statistical
and structural prior knowledge that is derived from a relational
database from a previous project of about 1600 rooms with dif-
ferent functional uses. In order to model electrical infrastructure,
the database is being extended by spatial information and new
relevant objects and their relationships. Figure 8 shows a relevant
excerpt of the underlying expanded database model. The relation
room is still central to our analysis with shape and location pa-
rameters of each room as well as its functional use. Rooms refer-
ence their corresponding flats, which enables access to available
footprints from several floors belonging to a given building. The
relation building gives insight into information such as construc-
tion year and building style, which provides a beneficial prior
for detecting contextual patterns. The location of windows and
doors are modelled using the relations window and door respec-
tively. The latter relation reveals information about accessibility
between rooms. The neighbourhood of rooms is annotated in or-
der to analyse the bilateral locations e.g., with respect to the func-
tional use of rooms enabling to model and detect possible shared
infrastructures. The relation devicetype refers to different types of
electrical devices such as switches, sockets or intercoms. Devices
themselves are modelled by the relation device. Mutual relations
between devices are captured in order to detect possible symme-
tries and regularities supporting the prediction of occluded ob-
jects later on. The devices are associated to vertices that are end
or intersection points using the relation vertex. Electric lines con-
necting vertices are represented by the relation powerline. This
structure enables an eventual topological and geometrical analy-
sis.

Note that this data does not serve as direct input for the reasoning
process but is a representative basis for the derivation of probabil-
ity distributions and structural constraints for the spatial enriched
BIM model and its prediction. For the annotation of the electric
lines we are testing the usefulness of thermography for the de-
tection of not visible lines. In this context, the infra-red camera
VarioCAM HD research 90 is used as sensor with a measurement
accuracy of ±1◦C and a temperature resolution of 0.02 K.

Inspired by the approaches for façade as well as indoor model
prediction, geometric and stochastic reasoning can be used to pre-
dict switches occluded by furnitures. Symmetry information and
statistical inference turn out to be an adequate tool to deal with
this issue. Single observations can be added to assess the quality
of hypotheses. Figure 10 illustrates likewise the impact of a fur-
ther observed embrasure on the certainty of façade hypotheses. In
this context, another interesting question is to guess which kind
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Figure 8: Excerpt from the relational database schema. Spatial objects, e.g. power line, reveal location and shape parameters. The
database is used for training and evaluation.

Figure 10: The impact of additional observations on the certainty
of model hypotheses. Certainty is increased by considering a sin-
gle observed embrasure (Loch-Dehbi and Plümer, 2015). This
approach can be adapted for assessing and improving the quality
of electric line hypotheses.

of additional observations can be taken into consideration for the
validation of hypotheses.

As stated, the installation paths of the electric lines are usually
following some regular patterns. In analogy to regularities such
as parallelities, orthogonalities and symmetries characterising build-
ing models, the structure of these installations can be modelled as
a graph G = (V,E) consisting of vertices V (switches, sockets
and intersection points) and edges E (line segments). In order
to ensure a valid structure, a constraint satisfaction problem can
be solved (Dechter, 2003) similar to the approaches described in
Loch-Dehbi and Plümer (2015) and Loch-Dehbi et al. (2017) for

the prediction of façade and indoor models (cf. Section 3). In
order to deal with uncertain observations and perform geometric
reasoning over imprecise objects such electric lines and their mu-
tual relations, uncertain projective geometry (Heuel, 2004) turns
out to be an adequate tool. According to Figure 9, geometric re-
lations consist mainly of orthogonality and parallelity of lines.
In this context, geometric entities like lines are augmented by co-
variance matrices enabling to make decisions about bilateral rela-
tions between these entities using a hypothesis test as performed
in Dehbi and Plümer (2011) and Dehbi et al. (2017a).

To sum up, we have shown how to automatically derive 3D build-
ing models from observations such as 3D point clouds and also
merely based on sparse observations. The combination of Gaus-
sian mixtures, bi-linear constraints, constraint propagation, stochas-
tic and relational reasoning turns out to be a powerful tool with
regard to 3D building models. We have discussed how to apply
this mixture of methods to enrich 3D building models by addi-
tional BIM related information. We have demonstrated the feasi-
bility in a use case for the generation of hypotheses to localize the
electric installations. The hypotheses are derived based on statis-
tical inference by the use of Gaussian mixtures, Gauss-Markov
models and an MAP-estimation.

5 CONCLUSION

This paper gave insight into successfully applied methods for
the automatic derivation of 3D building models, especially based
on weak observations. In this work, we have demonstrated that
building upon these methods and previous experiences for the
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Figure 9: Recommended zones for electric lines according to the standard DIN 18015-3 in Germany. Horizontal zones (HZ) are
highlighted in blue and vertical zones (VZ) in green colour. Electric leads are depicted as dotted lines. Preferred locations of power
sockets and light switches are graphically depicted.

automatic derivation of 3D building models, building informa-
tion modelling (BIM) can be performed to derive as-built mod-
els without the need of dense 3D observations. Methods such as
Gaussian mixtures, bi-linear constraints, constraint propagation,
stochastic and relational reasoning turn out to be powerful tools
for dealing with this issue.

Exemplarily, we discuss how to apply this mixture of methods
to enrich 3D building models by further infrastructural informa-
tion such as electric installations within existing buildings. In
this context, background knowledge consisting of regularities and
rules which characterize and regulate these infrastructures is anal-
ysed and exploited. The rules can be formulated as constraints
within a constraint satisfaction problem. Besides, the background
knowledge is expanded by probability density functions of lo-
cation parameters. The latter depend on the building type and
time. This reduces the hypotheses space and enables the tran-
sition from hypotheses into concrete models based on few ad-
ditional observations. The verification or falsification of such
models is performed with a low expense using appropriate sen-
sors. Hypotheses for the location of electric installation are de-
rived based on statistical inference using Gaussian mixtures and
an MAP-estimation.

The presented concept is not restricted to electrical lines. It can be
extended in order to predict other types of infrastructure such as
communication and water facilities. This is a first step in a large
project for enriching 3D building models leading to expanded
building information models.

ACKNOWLEDGEMENTS

We thank Sandra Loch-Dehbi for the valuable cooperation. The
authors are grateful to Stefan Teutsch for his assistance in prepar-
ing the illustrations.

REFERENCES

De Laat, R. and Van Berlo, L., 2011. Integration of BIM and GIS:
The development of the CityGML GeoBIM extension. In: Ad-
vances in 3D geo-information sciences, Springer, pp. 211–225.

Dechter, R., 2003. Constraint processing. Elsevier Morgan Kauf-
mann.
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