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ABSTRACT:

A city may have multiple CityGML documents recorded at different times or surveyed by different users. To analyse the city’s evolution
over a given period of time, as well as to update or edit the city model without negating modifications made by other users, it is of utmost
importance to first compare, detect and locate spatio-semantic changes between CityGML datasets. This is however difficult due to the
fact that CityGML elements belong to a complex hierarchical structure containing multi-level deep associations, which can basically
be considered as a graph. Moreover, CityGML allows multiple syntactic ways to define an object leading to syntactic ambiguities in
the exchange format. Furthermore, CityGML is capable of including not only 3D urban objects’ graphical appearances but also their
semantic properties. Since to date, no known algorithm is capable of detecting spatio-semantic changes in CityGML documents, a
frequent approach is to replace the older models completely with the newer ones, which not only costs computational resources, but also
loses track of collaborative and chronological changes. Thus, this research proposes an approach capable of comparing two arbitrarily
large-sized CityGML documents on both semantic and geometric level. Detected deviations are then attached to their respective sources
and can easily be retrieved on demand. As a result, updating a 3D city model using this approach is much more efficient as only real
changes are committed. To achieve this, the research employs a graph database as the main data structure for storing and processing
CityGML datasets in three major steps: mapping, matching and updating. The mapping process transforms input CityGML documents
into respective graph representations. The matching process compares these graphs and attaches edit operations on the fly. Found changes
can then be executed using the Web Feature Service (WFS), the standard interface for updating geographical features across the web.

1. INTRODUCTION

As an official OGC standard for encoding virtual 3D city mod-
els, CityGML opens up opportunities for applications in a broad
range of areas such as urban planning, facility management, en-
vironmental simulations and thematic inquiries. One of the main
factors contributing to this success is CityGML’s capability of in-
cluding not only 3D urban objects’ graphical appearances, but also
their semantic properties (e.g. relationships between objects). This
ensures CityGML documents can be shared over various applica-
tions that make use of the model’s common semantic information,
which is “especially important with respect to the cost-effective
sustainable maintenance of 3D city models” (Gröger et al., 2012).

However, although the increasing number of CityGML datasets
in recent years indicates a positive sign of the open standard’s
steady growth, it has also been a great challenge to maintain sus-
tainable 3D city models. One prominent example is the difficulty
of handling undocumented collaborative as well as chronological
changes of an existing city model, which is currently unavoidable
due to the fact that as cities grow over time, so does the need to ad-
just their models accordingly (Navratil et al., 2010). Furthermore,
because the current state of CityGML does not store these changes
in its instances, multiple model documents of the same city may
accumulate over time. As a result, during the maintenance phase,
old city datasets are overwritten completely by newer ones, which
not only costs a large amount of time and computational resources,
but also loses track of collaborative changes and neglects the city’s
progress recorded during the given time period. Moreover, replac-
ing entire large datasets due to only some small changes would
cause an unnecessarily huge volume of transactions, especially if
the database is managed via the Web Feature Service (WFS).

Therefore, instead of replacing older records, an ideal alternative
should first compare the models, then attach edit operations to
detected deviations, based on which only real changes are commit-
ted. This way, older datasets can both be updated and still retain
their respective core structure, including own rules of syntax and
internal object references. This plays a key role in enabling a
version control system for collaborative work in modelling and
storing digital 3D city models (Chaturvedi et al., 2015). Moreover,
the number of transactions required for a WFS-enabled database
is also reduced significantly.

In order to achieve this, the first task is to determine key aspects,
based on which CityGML models should be compared. Since
“one of the most important design principles for CityGML is the
coherent modelling of semantics and geometrical/topological prop-
erties” (Gröger et al., 2012), a comparison between two CityGML
instances should take into account both their geometrical and
semantic aspects to ensure reliable results. For example, wall sur-
faces can be defined in-line or referenced to other existing walls
of surrounding buildings via the XML Linking Language (XLink).
Thus, the further question arises as to how geometrical and se-
mantic information of CityGML documents can be compared.
Considering the facts that CityGML elements belong to a complex
graph-like structure, syntactic ambiguities (such as between XLink
and in-line objects) can be disambiguated using a graph. Since
CityGML documents can be very large in size, an approach to
detect spatio-semantic changes in arbitrarily large-sized CityGML
datasets utilizing a graph database is proposed.

In Section 2, some related tools and algorithms are discussed.
Then, the implementation of this research is explained, which
consists of three main parts: mapping CityGML datasets onto a
graph database (Section 3), matching mapped graphs (Sections 4
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and 5) and updating an existing CityGML database based on
detected deviations (Section 6). An example of the proposed
approach is introduced in Section 7. Section 8 further presents
the results of some experiments conducted in this research. At the
end, Section 9 summarizes and concludes the paper.

2. RELATED WORK

Conventional diff tools, such as the Hunt–McIlroy algorithm
(Hunt and McIlroy, 1976), are only able to find deviations in pure
texts and thus not compatible with highly structured data models
employed in Geographic Information System (GIS). Bakillah et al.,
2009 proposed a conceptual basis for a semantic similarity model
(Sim-Net) for ad hoc network based on the multi-view paradigm.
Olteanu et al., 2006 addressed the automatic matching of imper-
fect geospatial data during database integration. However, since
each of these researches mainly focused on either the semantic or
geometrical aspect of city objects, they are not fully applicable to
CityGML, which provides an integrated view of both aspects.

Later, Redweik and Becker, 2015 presented a concept for detect-
ing semantic and geometrical changes in CityGML documents.
Since CityGML is an application schema of XML, which is a tree
data structure, by assuming that CityGML instances can also be
represented as trees, they extended the algorithm “X-Diff” (Wang
et al., 2003) that considers tree equivalence as isomorphism. How-
ever, in contrast to XML, CityGML is not a tree but a graph data
structure by definition, as it may contain cycles and nodes linked
by multiple parents (e.g. due to XLinks). Therefore, this approach
is generally not expressive enough regarding CityGML’s graph
data structure. Moreover, the methods proposed by Redweik and
Becker, 2015 are not yet evaluated against massive input datasets.

To deal with large input datasets, the ability to efficiently preselect
potential matching candidates based on their spatial properties is
of advantage. Topologically relative allocations of objects can be
expressed by the “4” or “9-intersection model” (“4-IM” or “9-IM”)
(Egenhofer and Franzosa, 1991; Egenhofer and Herring, 1991).
Moreover, an object can be localized by recursively dividing its
parent graph into quadtrees (2D) or octrees (3D) and colouring
their interior as well as exterior (Berg et al., 2008). Alternatively,
an R-tree can be applied to spatial objects grouped in regions
based on their topological properties (Guttman, 1984). Since R-
trees are balanced, their query response time in logarithmic time
complexity O(logM n) is very efficient in large databases, where
M is the maximum number of entries allowed per internal node.

Old

CityGML

dataset

New

CityGML

dataset

map
Graph Graph

match

update

Graph database

map

Figure 1. An overview of three major steps mapping, matching
and updating of 3D city models using a graph database.

3. MAPPING 3D CITY MODELS ONTO A GRAPH
DATABASE

The overall implementation consists of three major parts as shown
in Figure 1, in all of which the graph database Neo4j is employed.
In Neo4j, each city object is stored as a graph node, while the rela-
tionships between these objects are represented as edges between

nodes. In other words, nodes are connected directly to each other.
This is particularly useful in data models that have a complex
and multi-level deep hierarchical structure like CityGML. In this
section, the mapping of city objects onto Neo4j graphs shall be
explained in several smaller steps.

3.1 Reading CityGML Datasets in Java

CityGML documents can be processed with the help of various
XML parsing APIs in Java such as the Document Object Model
(DOM), Simple API for XML (SAX), Streaming API for XML
(StAX) or Java Architecture for XML Binding (JAXB). Each API
comes with their own advantages and disadvantages depending
on the application domain. Considering the fact that CityGML
datasets can grow quickly in size, the library citygml4j employs a
combination of JAXB and SAX (Nagel, 2017), which allows par-
tial unmarshalling (or deserialization) of CityGML elements into
Java objects with efficient memory consumption (see Figures 2
and 3a). Moreover, this approach provides an object-oriented view
of read CityGML data, which facilitates the transformation of
unmarshalled Java objects to graph entities in the next step.

XML 

schema

XML 

document

JAXB

mapped

classes

Java

objects
marshal

unmarshal

follows

bind

instances of

Figure 2. The JAXB binding process. Adapted from Oracle
Corporation, 2015.

3.2 Converting Java Objects to Graph Entities

To transform previously unmarshalled Java objects to correspond-
ing graph entities in Neo4j conserving as much data as possible
(see Figure 3a), the Neo4j Java Core API is employed. Concep-
tually however, two major challenges arise. Firstly, unmarshalled
Java instances belong to a complex class hierarchy defined by
the XML schema of CityGML. This poses the difficulty in de-
signing suitable graph structures, such as how to efficiently rep-
resent different instances of the same class. Secondly, Neo4j is a
value-based graph database, which means that no explicit schema
modelling is possible. As a result, compared to XML-structure, it
is difficult to map Java objects onto graph entities without losing
any information, especially their hierarchical inheritance relations.

To resolve these challenges, an approach capable of creating graph
representations of given Java objects using their hierarchical in-
formation is proposed, which is described in Algorithm 1. The
key concept is the use of a central expandable container node,
where all (i.e. own and inherited) attributes and references of the
respective Java object can be stored successively for each super-
class. Algorithm 1 produces compact but expressive graphs while
still maintaining a robust and efficient implementation, as most
functions can be recycled due to the use of hierarchical modelling.
Moreover, this method is capable of capturing almost all infor-
mation available in given Java objects with the only exception of
explicit hierarchical relations, since the graph database is value-
based. This however does not play a role in the matching process
between mapped graphs. An illustration can be found in Figure 4.
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(a) Unmarshalling CityGML documents and mapping Java objects onto graphs.
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(b) Resolving XLinks and computing minimum bounding boxes (as a preparation for the matching process).

Figure 3. An overview of the mapping process.

Algorithm 1: map(instance, container)
Input : A Java instance
Output : Created node in a graph database

1 if container is null then
2 create a node in graph database;
3 set node .label equal to instance .className ;
4 set container equal to this node ;
5 end

6 initialize attributes as a set of local attributes and
references of instance ;

7 foreach attribute of attributes do
8 if attribute can be stored as simple texts then
9 store attribute as a property in container ;

10 else
11 create a child node via map (attribute , null );
12 create a relationship from container to child ;
13 end
14 end

15 if instance inherits SuperClass then
16 call map ((SuperClass ) instance , container );
17 end

18 return container ;

3.3 Connecting Mapped City Objects using XLinks

Section 3.1 addresses the problems of parsing large CityGML
documents concerning memory consumption and proposes an ap-
proach dividing them into smaller feature chunks. Each chunk
is then separately unmarshalled and consequently mapped onto
sub-graphs in Neo4j as described in Section 3.2. As a result, the
explicit connections between split features and their respective par-
ent elements are lost during the process (see Figure 3b). To allow
the subsequent recovery of severed connections, before splitting,
the library citygml4j stores IDs of affected features in XLinks (or
hrefs) and attaches them to respective parent elements. XLink
is a simple yet practical means to referencing or reusing existing
elements without having to define them “in-line” repeatedly and
thus essentially reduces redundancies in XML documents (Bray
et al., 2008; DeRose et al., 2010). However, despite their syntactic
differences, both XLink and in-line declaration are often used to
effectively define the same objects.

Therefore, the reconstruction of lost connections between features
and their respective parents as well as the syntactic disambiguation
between objects defined in-line or by hyperlinks can be achieved
by resolving XLink nodes in a graph database. This can be real-
ized in two different approaches using internal hash maps held in
memory or Neo4j’s indices stored on disk. Each time a node con-
taining an ID or href is encountered during the mapping process,
a corresponding entry is stored in the respective index structure on
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Figure 4. An example of a graph representing a Grid object.
Rounded rectangles represent nodes. Node properties are

displayed below nodes’ label. The colours indicate the originating
classes, in which nodes and properties are defined. The container

GRID node is expanded successively for each superclass.

the fly. Then, XLinks can be resolved by linking indexed hrefs

and IDs. Internal hash maps offer fast response time but come at
the cost of memory consumption. On the contrary, Neo4j indices
require less memory but may slow down the mapping process
due to costly disk read and write operations. Moreover, sufficient
additional storage space must also be reserved beforehand.

3.4 Calculating Minimum Bounding Boxes of Buildings

Ideally, in citygml4j, the minimum bounding box of a spatial Java
city object (e.g. Building) can be computed by a built-in func-
tion that considers all of its geometric contents (e.g. boundary
surfaces). However, this method has some limitations. Firstly,
input Java objects must be completely available in memory as a
whole, which is not always the case, since Section 3.1 shows that
large city objects are to be split into features. Secondly, if Java
objects have unresolvable XLinks (such as those contained in not
yet loaded features), the function may fail. Thus, to overcome
these limitations, graph representations, which are now connected
and syntactically disambiguated as a result of Section 3.3, are
reversely transformed to Java objects, from which respective mini-
mum bounding boxes are calculated using the built-in function.

4. MATCHING 3D CITY MODELS USING GRAPH
DATABASE

Since nodes play a central role in graphs, the matching process is
based around the concept of their structure. In other words, two
graphs can be matched by recursively comparing the properties
and relationships of all of their respective nodes.

4.1 Comparing Node Properties

Actual data are mostly stored in node properties. Thus, differences
found in node properties indicate possible deviations of respec-
tive data sources. Values from the same unique property name are
compared with one another potentially followed by an update oper-
ation. Unmatched properties from the older and newer city model
shall be attached with delete and insert operations respectively.
An overview of all edit operations is shown in Section 6.1.

4.2 Matching Node Relationships

Matching relationships between two given nodes is complex con-
sidering the fact that relationships in Neo4j can be processed in
both directions, namely OUTGOING and INCOMING. The matching
process must however remain consistent in one specific traversing
direction, so that no node is processed twice. The chosen direction
is OUTGOING, as the matching process starts with root nodes. In
contrast to node properties, a relationship may occur multiple
times for a given node (i.e. 1 to n, n to 1 and n to n relationships).

Taking these into account, Algorithm 2 describes the main concept
of matching relationships of two given nodes, where the function
find_candidate in Line 5 plays a decisive role in terms of both
efficiency and correctness of the whole matching process, as it
dictates which object pairs should be compared to one another
based on their specific characteristics. In CityGML, the most
important aspect that can be used as a matching pattern among
objects is their geometrical properties as well as spatial extents.

Algorithm 2: match_relationships(node1, node2)

Input : node1 and node2 of graphs representing nodes of
old and new city model respectively

1 foreach matched rel_type of node1 and node2 do
2 chdr1 ← node1 .get_children (rel_type );
3 chdr2 ← node2 .get_children (rel_type );
4 foreach child1 of chdr1 do
5 child2 ← chdr2 .find_candidate (child1 );
6 if child2 is not empty then
7 match_node (child1 , child2 );
8 end
9 end

10 foreach unmatched child1 of chdr1 do
11 create a DELETE operation;
12 end
13 foreach unmatched child2 of chdr2 do
14 create an INSERT operation;
15 end
16 end

17 foreach unprocessed rel_type of node1 do
18 chdr1 ← node1 .get_children (rel_type );
19 foreach child1 of chdr1 do
20 create a DELETE operation;
21 end
22 end

23 foreach unprocessed rel_type of node2 do
24 chdr2 ← node2 .get_children (rel_type );
25 foreach child2 of chdr2 do
26 create an INSERT operation;
27 end
28 end

4.2.1 Matching Geometry of Points Points are a primitive
notion, upon which all other geometric objects are built. Since
points do not have length, area or volume, the only property em-
ployed to distinguish them from others is their coordinates. In
practice, however, real-world coordinates of the same point lo-
cation may differ if they are given in different Spatial Reference
Systems (SRS). Therefore, input CityGML instance documents
should first be provided in the same spatial reference system.

On the other hand, even provided in one reference system, coordi-
nates of two representations of the same point may still differ due
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to numerical (such as rounding) and instrument errors. Such minor
deviations should be tolerated. Thus, for a reference point P1 as
centre, depending on the chosen distance indicator, a neighbour-
hood N(ε) is constructed, where ε is the maximum empirically
predetermined allowed distance tolerance. For example, if the
Euclidean distance indicator is chosen, N(ε) shall be a circle (2D)
or a sphere (3D). However, to calculate this distance, expensive
operations such as square roots and multiplications are required.
Since the research focuses on matching 3D objects of massive
datasets, for a small ε, it is often sufficient to compare coordinates
in each dimension, which requires only subtractions. In this case,
N(ε) shall be a square (2D) or a cube (3D) (see Figure 5). A point
P2 is geometrically matched with point P1 if, and only if, P2 is
located inside of N(ε) of P1. Two geometrically matched points
are equal and thus no further comparison is needed.

ϵ
ϵ

P1

P2

P3

x3x1x2

y1
y2

y3

x

y

O

(a) N(ε) as a square in 2D.

ϵ
ϵ
ϵ

P1

P2

P3

x

z y

O

(b) N(ε) as a cube in 3D.

Figure 5. An illustration of the neighbourhood N(ε) of point P1
in 2D (5a) and 3D (5b). P1 is matched with P2.

4.2.2 Matching Geometry of Line Segments Since line seg-
ments (or LineStrings) are composed of points, they can be
geometrically matched by iterating over all control points and ex-
amining their spatial similarities successively with error tolerance
ε taken into account (see Figure 6). Consecutive collinear line
segments (given an empirically predetermined distance tolerance)
can be merged together and thus treated as a single segment dur-
ing matching. Alternatively, two LineStrings can be matched
using the Buffer Overlay Statistics (BOS) methods (Tveite, 1999).
Geometrically matched LineStrings are considered equal.

Figure 6. An example of two geometrically matched
LineStrings considering error tolerances.

A more general concept of LineStrings is curves, each of whose
curve segments may have a different interpolation method. A
curve has a positive orientation. However, as long as such curves
are composed of points, the same approach can be applied.

4.2.3 Matching Geometry of 3D Rings A ring in CityGML
can be thought of as a closed LineString described in Sec-
tion 4.2.2. Buildings in CityGML make extensive use of poly-
gons (Section 4.2.4), whose boundaries are often represented as
LinearRings (Cox et al., 2004; Gröger et al., 2012; Gröger,
2010). Although a LinearRing can theoretically consist of non-
planar points, only planar LinearRings are considered.

The geometric comparisons of rings can be performed with the
help of the libraries Abstract Window Toolkit (AWT) or Java
Topology Suite (JTS). However, both of them are only applicable
in two-dimensional space. Therefore, normal vectors (or orienta-
tions) of 3D rings are first computed and compared. Only rings
that have similar orientations (given an empirically predetermined
angle tolerance) are rotated to a plane parallel to a predefined
reference one using a rotation matrix as illustrated in Figure 7.
Then, their shapes are compared regardless of numbers or orders
of contained points. Two shapes are geometrically equal if they
“fuzzily” contain each other’s points considering error tolerance ε.

Rotation matrix

Figure 7. Rotating 3D (planar) ring.

4.2.4 Matching Geometry of 3D Polygons Polygons are ex-
tensively used in CityGML as a means to describe surfaces of
buildings and building parts. A polygon consists of exactly one
exterior and an arbitrary number of interiors, all of which are
rings and must be on the same plane. While an exterior defines
the outline, interiors define holes in a polygon (Cox et al., 2004;
Gröger et al., 2012; Gröger, 2010).

Therefore, a polygon can be thought of as a shape bounded by
an exterior with all interiors subtracted from its inner area. The
geometric comparison of two polygons is then performed in the
same manner as in Section 4.2.3. This can also be extended for the
comparison of Surface, OrientableSurface, MultiSurface
and CompositeSurface objects.

4.2.5 Matching Geometry of Solids A solid is bounded by a
set of connected polygons, whose intersections are either empty or
an edge shared by both respective polygons. A matching candidate
of a given solid can be determined by using its footprint (as a
polygon) or minimum bounding box (see Section 4.2.6). However,
in contrast to previously discussed geometric entities, matched
solid candidates may still be unequal since different solids can
have the same footprint or minimum bounding box. Therefore,
found candidates are further compared by successively matching
their boundary polygons as described in Section 4.2.4.

4.2.6 Matching Geometry of Minimum Bounding Boxes
The minimum bounding box of a building is calculated by all
its contained geometries, such as ground, wall and roof surfaces
(Section 3.4). To make full use of information available in all
dimensions and thus increase the probability of finding correct
matching candidates, minimum bounding boxes are compared
based on their shared volume.

Given two arbitrary minimum bounding boxes represented by
lower corner points P, R and upper corner points Q, S respectively,
their own and shared volume are denoted by VPQ, VRS and Vshared
respectively. For a given threshold H ∈ (0, 1], the following
applies:

Minimum bounding boxes (P, Q) and (R, S) are matched

⇐⇒ Vshared
VPQ

≥ H ∧ Vshared
VRS

≥ H.
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5. SPATIAL MATCHING USING AN R-TREE

Section 4.2, particularly Section 4.2.6, determines whether two ge-
ometric entities are equivalent and thus can be matched. However,
repeatedly comparing all possible pairs of said objects results in a
quadratic time complexity O(n2). Thus, to enable more efficient
object retrieval and querying based on their spatial properties, two
matching strategies organizing buildings in an R-tree and a grid
layout are employed in the course of this research, the former
of which shall be explained in the following sections. For more
details on the grid layout, please refer to (Nguyen, 2017).

5.1 Constructing the R-tree

R-trees are constructed using the plug-in Neo4j Spatial. Coordi-
nates of lower and upper corner point of city models are not needed
beforehand, since an R-tree automatically expands its envelope
on the fly. Building footprints (or minimum bounding rectangles)
are however required. While iterating, each building footprint is
extracted or computed if not available (as described in Section 3.4).
Splitting and merging nodes in an R-tree are handled by Neo4j
Spatial, which ensures the tree structure is always balanced.

5.2 Assigning Buildings to the R-tree

The most important task while expanding an R-tree is to link
spatial information to data sources it represents. For this purpose,
a suitable adapter is needed (see Figure 8), where a connection
between an R-tree node and the minimum bounding box of the
respective building is established. Buildings are assigned to an
R-tree on the fly. Note that a building is assigned to exactly one
R-tree node.

…

…

…

…

…

…

…

…

…

…

R-tree IndexAdapterNeo4j Data

Figure 8. Illustration of an adapter (middle) connecting spatial
indices in Neo4j Spatial (right) with data stored in Neo4j (left).

5.3 Matching Buildings using the R-tree

For each building of the older city model, a query containing its
footprint is sent to the R-tree index layer stored in Neo4j Spatial.
There, from the R-tree’s root node, a corresponding internal node
is reached, where the intersection tests take place. Leaf nodes,
whose rectangles intersect with the queried footprint, are then re-
turned together with respective linked buildings using constructed
adapter. If no candidate is found, a delete operation shall be cre-
ated for the current building. Otherwise, the best candidate among
returned buildings is determined as described in Section 4.2.6. Fi-
nally, an insert operation is created for each remaining unmatched
building in the newer city model.

The most important advantage of using an R-tree is the logarithmic
time complexityO(logM n) on search operations. Moreover, with
the help of Neo4j Spatial, employing an R-tree while matching is
simple and straightforward.

6. UPDATING 3D CITY MODELS USING GRAPH
DATABASE

The matching process in Sections 4 and 5 attaches edit operations
to deviation sources on the fly while keeping the actual data un-
touched. These edit operations can then be executed accordingly
in the updating process in this section.

6.1 Edit Operations

The general model of edit operations is shown in Figure 9. Edit-
Operation is the superclass of all edit operations. It defines a
targetNode, to which the edit operation is attached, and a flag
isOptional indicating whether said operation should be exe-
cuted. Such flag is mainly used for geometrically matched objects
that are defined by different syntactic methods. The class Edit-
PropertyOperation defines all edit operations created on node
properties (i.e. object attributes), while EditNodeOperation

defines edit operations on the node level (i.e. geo-objects).
class EditOperationBig

EditOperation

+ isOptional: boolean
+ targetNode: Node

EditPropertyOperation

+ propertyName: String

EditNodeOperation

InsertPropertyOperation

+ insertValue: Object

UpdatePropertyOperation

+ newValue: Object
+ oldValue: Object

DeletePropertyOperation

InsertNodeOperation

+ insertNode: Node
+ insertRelType: RelationshipType

DeleteNodeOperation

Figure 9. A UML class diagram of edit operations.

6.2 Updating Buildings using Web Feature Service (WFS)

EditPropertyOperation objects can be transformed to corre-
sponding WFS transactions using their respective stored informa-
tion. The same applies for EditNodeOperation with the only
exception of InsertNodeOperation, which requires a payload
(or content) encoded in XML (Vretanos, 2014). XML contents of
affected entities can be retrieved by using a Graph-to-CityGML
parser, which basically is the reverse of the mapping process
introduced in Section 3 as described in Figure 10. For a more
comprehensive look at the specifications of WFS requests and
responses, please refer to (Vretanos, 2014) and (Nguyen, 2017).

WFS-

T

HTTP-POST

XML Content

Graph
Parser

update content

parsecontent

Old CityGML

DB on Server

GraphDB

Figure 10. Retrieving XML contents of a CityGML object using a
Graph-to-CityGML parser.
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7. EXAMPLE

In this section, two syntactically different but geometrically equiv-
alent polygons shall be compared (Figure 11). Both polygons
contain one exterior LinearRing ABCD. However, the hole
in the first polygon is represented by an interior LinearRing
E1F1G1H1 I1 J1, while that of the second polygon is composed of
two adjacent interiors, namely E2F2G2K2 and K2H2 I2 J2. Each
LinearRing can be defined by either a gml:posList or a set of
gml:pos or gml:pointProperty elements. The declared order
and number of vertices (e.g. E2F2G2K2 or G2H2K2E2F2) are
insignificant. In addition, distance deviations within allowed error
tolerances are detected between the interiors of both polygons.

A B

CD

E1

E2

F1

F2

G1

G2

H1

H2

I1

I2

J1

J2

K2

Figure 11. An example of two geometrically matched polygons
(considering error tolerances) that are syntactically different.

The application returns a list of edit operations, which can be
executed to make the first polygon identical to the second one.
However, all of these operations are flagged as optional indicat-
ing that both polygons are correctly matched considering their
equivalent geometry and error tolerances among coordinates.

8. APPLICATION RESULTS

8.1 Test Setup

All experiments in this research are performed on a dedicated
server-class machine running SUSE Linux Enterprise Server 12
SP1 (64 bit) and equipped with Intel® Xeon® CPU E5-2667 v3
@3.20GHz (16 CPUs + Hyper-threading), a Solid-state Drive
Array (SSD) connected via PCIe as well as 1 TB of main memory.

The tests use an input dataset of the 3D city model of Berlin. The
dataset is encoded in CityGML v2.0.0, contains LOD2 information
of 539,182 buildings and occupies 15.5 GB in physical storage.1

The new dataset contains changes added manually to the old one.

8.2 Test Configurations

Both the testing system and Neo4j share the same Java Virtual
Machine (JVM), which is provided with an initial and maximum
heap space of 30 GB. The concurrent garbage collector G1GC is
employed. The application configurations for the mapping and
matching process are empirically determined to ensure a stable
testing environment and optimum throughput. Namely, by de-
fault (unless specified otherwise), the following configurations
are applied: multi-threading with 1 producer and 15 consumers,
splitting CityGML elements per collection member (top-level fea-
ture), indexing using hash maps stored in memory while mapping,
matching buildings using an R-tree with M = 10, batch size of
10 buildings and 5000 operations per database transaction.

1The CityGML datasets of Berlin are available under http://www.
businesslocationcenter.de/en/downloadportal.

8.3 Experiment Results

8.3.1 Statistics of Mapped Graph Database A total number
of 321,142,046 nodes representing 1,078,364 buildings, including
e.g. 12,928,580 polygons and 5,864,792 boundary surfaces are
created after the mapping process of two 3D city models of Berlin
is complete. The graph database allocates 126 GB of disk storage
in total (excluding test and indexed data).

8.3.2 Multi-threading Performance The multi-threading im-
plementation of the mapping and matching process employs the
well-known producer-consumer design pattern. The differences in
performance between some combinations of numbers of produc-
ers and consumers are shown in Figure 12. The results show that
the matching process generally benefits more from the number of
concurrent threads than mapping. However, diminishing returns
are observed where the total number of producers and consumers
exceeds that of the testing system’s physical CPU cores.

0 50 100 150

1P1C

1P7C

1P15C

1P31C

146.1

26.4

15.7

13.5

107.5

58.8

63.7

82.6
minutes

Runtime of Mapping
Runtime of Matching

Figure 12. Differences in multi-threading performance. P and C
denote the number of producers and consumers respectively.

8.3.3 Indexing Performance while Resolving XLinks The
impact of storing indices on disk (using Neo4j legacy indices) and
in memory (using self-developed internal hash maps) on perfor-
mance is shown in Figure 13. Indexing using internal hash maps
results in a much better overall performance but requires a large
amount of memory. On the other hand, Neo4j indices stored on
disk do not require as much main memory but are significantly
slower due to expensive disk read and write operations.

0 50 100 150 200 250 300
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indexing
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indexing

15.7

13.6

9.9

9.7

9.2

53.3

44.1

271.2

minutes

Runtime of Mapping (Creating feature graphs)
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Figure 13. The performance of storing indices on disk (using
Neo4j built-in indices) and in memory (using internal hash maps).
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9. CONCLUSION AND FUTURE WORK

Overall, the mapping process developed in this research is capable
of handling arbitrarily large-sized CityGML documents given a
reasonable amount of memory and storage allocation. It facili-
tates the seamless interaction between unmarshalling CityGML
elements to Java objects with the help of citygml4j and mapping
Java objects to graph entities using Neo4j’s Java Core API.

The matching process can disambiguate the common syntactic
ambiguities existing in GML between XLink and in-line object
declarations. All changes made to the old city model in Section 8
were identified correctly. In addition, although LOD2 data were
used in the test scenarios, changes in other LODs can also be
detected. Moreover, geometric objects such as points, line seg-
ments, polygons, surfaces, etc. can be matched correctly even with
altered identifiers. Furthermore, buildings can be organized in a
grid layout or an R-tree based on their spatial allocations. These
strategies offer a noticeable boost in overall performance.

Found deviations are attached to their respective sources in the
graph database and can be transformed to WFS requests comply-
ing with the official OGC standards. In case of complex XML
properties, such as CityGML generic attributes and external refer-
ences, although the update procedures can be formally represented
by graphs, the ordinary WFS is not expressive enough in such
scenarios. Thus, vendor-specific extensions allowed by the WFS
standard, such as defined by the virtualcityWFS, can be employed.

Some improvements and extensions are possible in the near fu-
ture. For instance, momentarily, only the modules Building and
Appearance are implemented. Other CityGML modules, like
CityFurniture, Transportation, Bridge, Tunnel, etc. can
be included in the future. Moreover, it is previously assumed
that both CityGML input documents are provided in the same
spatial reference system, which is not always the case in practice.
Therefore, one future task is to integrate the transformation be-
tween different spatial reference systems in the implementation.
In addition, more thorough tests are required to evaluate applica-
tion outputs against all different types of geometrical deviations.
Finally, the methods and algorithms proposed in this research can
be extended and applied to enable a version control system for
collaborative work in modelling and storing digital 3D city models
in the future (Chaturvedi et al., 2015).
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