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ABSTRACT:

In recent years, growing public interest in three-dimensional technology has led to the emergence of affordable platforms that can
capture 3D scenes for use in a wide range of consumer applications. These platforms are often widely available, inexpensive, and
can potentially find dual use in taking measurements of indoor spaces for creating indoor maps. Their affordability, however, usually
comes at the cost of reduced accuracy and precision, which becomes more apparent when these instruments are pushed to their limits
to scan an entire room. The point cloud measurements they produce often exhibit systematic drift and random noise that can make
performing comparisons with accurate data difficult, akin to trying to compare a fuzzy trapezoid to a perfect square with sharp edges.
This paper outlines a process for assessing the accuracy and precision of these imperfect point clouds in the context of indoor mapping
by integrating techniques such as the extended Gaussian image, iterative closest point registration, and histogram thresholding. A case
study is provided at the end to demonstrate use of this process for evaluating the performance of the Scanse Sweep 3D, an ultra-low
cost panoramic laser scanner.

1. INTRODUCTION

Measurements serve as the basic building blocks of maps and
models, and as the relevance of indoor maps continues to grow, so
will the demand for fast and affordable techniques for measuring
indoor spaces. For many years, professional laser scanning1 pro-
vided the only practical way to measure these spaces on a large
scale. However, their high costs limited their use to organizations
with large budgets and made them out-of-reach for everyone else.

More recently, a number of low cost alternatives have emerged
that make close-range 3D reality capture available to anyone with
a modest budget or a digital camera. One popular approach uses
photogrammetry based on structure-from-motion with multi-view
stereo (SfM-MVS) (Smith et al., 2016), e.g., Agisoft PhotoScan,
Autodesk ReCap, and Bentley ContextCapture, while another em-
ploys structured light (Khoshelham and Elberink, 2012), e.g., Mi-
crosoft Kinect, Google Tango, and Matterport. Other methods
include low-cost panoramic LiDAR, calibrated stereo vision, and
deriving indoor structure from single images using artificial intel-
ligence (Zou et al., 2018). Their lower prices, however, come at
the cost of lower accuracy and precision, which can influence the
final quality of a map and its derived information.

All of these approaches present 3D measurements in the form
of point clouds, or collections of xyz coordinate values that can
number from thousands to millions of points. Four factors com-
plicate the quality assessment of these point clouds. First, the
concepts of error and accuracy assume a known ground truth
(GT) or baseline from which to compare measurements, but es-
tablishing this ground truth is often difficult without expensive in-
struments, especially in non-lab environments. Second, the corre-
spondence between a point in the point cloud and its exact ground
truth location is often unknown. Point cloud distortions (such as

1Also referred to as light detection and ranging or LiDAR

from ranging errors and scanner drift) and use of different coor-
dinate reference systems (such as datums and units of measure-
ment) can further add to this uncertainty. Third, errors in point
cloud geometry, e.g., global scale, can bias statistical results at
a local level when comparisons are directly made using features
that do not line up. Finally, non-uniform point cloud densities
can distort alignments with GT when some areas have high clus-
tering of points while others have none. Figure 1 provides 2D
illustrations of some of these challenges.

(a) Different datums,
orientations, and units

(b) Global versus
local alignment

(c) Mismatched
local features

Figure 1. Challenges in assessing low quality point cloud data

This paper presents a robust process for assessing indoor point
cloud quality based on two measures: global accuracy at the level
of a room and local out-of-plane accuracy and precision at the
level of a flat surface. This process addresses the latter three of
the four challenges mentioned earlier (unknown point correspon-
dences with unmatched coordinate reference systems, geometric
errors, and non-uniform point densities) and assumes the exis-
tence of a ground truth data set. In practice, the ground truth may
simply come from a high precision scanner that may or may not
have been calibrated to standard distances. A case study is pro-
vided at the end of this paper to demonstrate use of this process.
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2. RELATED WORK

2.1 Accuracy and precision

While the terms accuracy and precision are often confused in
casual use, they have important and distinctly different meanings
when used in a technical context. As used in this paper, accuracy
describes the closeness of a measurement from its “true” value
and precision as the closeness of repeated measurements of the
same object (Zhang and Goodchild, 2002; Mason, 2006).

2.2 General approaches

Habib (2008) classified approaches to assessing point cloud qual-
ity as being either external or internal, with the former using
control data that exist independently of a measured point cloud
and the latter checking for relative consistency between differ-
ent scans. For external assessments, LiDAR point clouds seldom
have exact correspondences between measured points and con-
trol points due to sampling limitations, which means that con-
trol point correspondences will always have some level of uncer-
tainty. On the other hand, SfM-MVS can directly derive control
point correspondences from source images, although in practice
artifacts from unfavorable scenes (e.g., low texture, reflective,
etc.) can render some of these points useless (Bolognesi et al.,
2014).

Internal assessments, in theory, measure the consistency between
different scans by examining what Habib called the “coincidence
of conjugate features” or, simply stated, the level of overlap be-
tween identical features in different point clouds. In practice, get-
ting two point clouds to correctly overlap or register is difficult
due to noise, geometric distortions, and the fact that point clouds
in their raw state have no high level semantic information, i.e.,
points are simply xyz coordinate tuples with no spatial context.
Noting that incorrect registration could be misinterpreted as error,
Khoshelham and Elberink (2012) proposed using two variations
of the iterative closest point (ICP) approach (Besl and McKay,
1992) for minimizing registration errors, with the first minimiz-
ing distances between points and the second between extracted
planar patches. Habib (2008) proposed similar ICP and non-ICP
approaches using point-to-patch and patch-to-patch registration.
In their studies, Khoshelham and Elberink (2012) and Bolognesi
et al. (2014) used summary statistics to characterize the accuracy
and precision along each of the three Cartesian coordinate axes.

2.3 Room-based approaches

Another way to evaluate the accuracy of indoor point clouds in-
volves comparing the derived dimensions of a room. Budroni and
Böhm (2009) and Okorn et al. (2010) developed a simple and ef-
fective method for deriving the coordinates of a room’s boundary
surfaces by searching for peaks in axes-aligned histograms of the
point clouds, where the salient peaks corresponded to boundary
surfaces, e.g., floor, ceiling, and walls. Khoshelham and Dı́az-
Vilariño (2014) and Dı́az-Vilariño et al. (2015) enhanced this
method by aligning the point clouds of cuboid-shaped rooms with
the xyz axes using the extended Gaussian image (EGI) (Ikeuchi,
1981), a spherical point plot of the unit normal vector for every
point, as illustrated in Fig. 2. Notably, they oriented all unit nor-
mal vectors in the positive xyz directions (Fig. 2c), resulting in
three clusters that pointed in quasi-orthogonal directions. They
then used the mean value of each cluster to estimate the normal
vectors for the room’s orthogonal walls, i.e., vectors uvw, and
calculated the uvw-to-xyz transformation using a direct change
of basis, i.e., direct projection.

(a) Point cloud
with normals

(b) Centroid-oriented
EGI

(c) +xyz oriented
EGI

Figure 2. Extended Gaussian image of a cuboid shaped room

3. METHODOLOGY

This paper proposes a method for evaluating low cost 3D reality
capture systems in measuring the structure of a room, at both the
scale of a room and a local flat surface, such as a wall. Since it
assumes a Manhattan world scene, it can only work with scans
of cuboid-shaped rooms that have solid surfaces. Additionally,
it assumes the availability of accurate ground truth data in point
cloud form, either previously collected or obtained alongside the
test data.

3.1 Global room level analysis

Global analysis looks at data quality at the scale of the room and
involves aligning the test and ground truth point clouds, deriving
the room dimensions, and comparing the results, as illustrated in
Fig. 3. However, before starting this analysis, excessively dense
data should be subsampled to a more manageable size, noting that
subsampling preserves the original coordinates while resampling
produces new data points using aggregated data properties, e.g.,
centroids (Héno and Chandelier, 2014).

3.1.1 Rough alignment Since the ground truth and test data
can exist anywhere in space and have potentially different units
of measurement (Fig. 3a), the first step of the process involves
scaling the data to a common unit of measurement and manually
aligning them with the xyz axes (and with one another) using
any number of techniques (Fig. 3b). This rough alignment sets
the initial point cloud orientation and prepares both data sets for
fine registration.

(a) Unaligned data (b) Rough alignment (c) Align GT w/ EGI

(d) Align Test Data to
GT using ICP

(e) Find coords & dimensions using
histogram thresholds

Figure 3. General overview of global analysis
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3.1.2 Axis alignment of GT using the EGI Next, fine regis-
tration of GT with the xyz axes is performed using the extended
Gaussian image. This step involves estimating the unit normal
vectors2 for every point in the GT point cloud—making sure to
orient them away from the point cloud’s centroid, plotting them
from a (0, 0, 0) origin to produce the EGI (as illustrated in Figs.
2 and 3c), finding the center of each EGI cluster to form the local
uvw axes, and finding the optimal rotation to match uvw with
xyz. The EGI will show six clusters corresponding to each of
the cuboid’s six walls, with the central location in each cluster
corresponding to each wall’s normal vector. A cuboid will there-
fore have a total of six vectors denoted ±u, ±v, and ±w that
correspond with the ±x, ±y, and ±z axes.

Finding the central location While Dı́az-Vilariño et al. (2015)
and Khoshelham and Dı́az-Vilariño (2014) used the cluster mean
for the central location, this paper recommends using the mode,
which can provide a better measure for clean, dense, and high
quality data.3 Rather than build a complicated spherical histogram
to find the mode, a more practical approach involves simply pro-
jecting each cluster on to its tangent coordinate plane and finding
the coordinates to the location with the highest concentration of
points (i.e., the mode) using a 2D histogram, as illustrated in Fig.
4. The third coordinate can then be derived using the Pythagorean
theorem.

(a) 2D histogram of an EGI
cluster, x-axis

(b) Zoomed in view showing
mode (square bar), mean (red

column), median (black column)

Figure 4. EGI cluster along the x-axis for high quality data set

Determining the optimal rotation The six ±uvw vectors that
EGI analysis produces will not be truly orthogonal since they
come directly from the data. As a result, performing a direct
change of basis from uvw to xyz can skew the ground truth data.
Instead, a best fit approach should be used that preserves the orig-
inal shape of the point cloud. This paper uses singular value de-
composition, with the “scaling” matrix set to identity, to find the
pure rotation matrix that provides the best least squares fit of uvw
to xyz (Umeyama, 1991).

3.1.3 Aligning the test data with GT The next step uses the
iterative closest point (ICP) technique to optimally register the
test data with the axis-aligned GT, which effectively aligns the
test data with xyz as illustrated in Fig. 3d. Any number of ICP
implementations can be used, such as the one built into Cloud-
Compare (https://www.danielgm.net/cc/). Finding the actual trans-
formation matrix involved selecting three widely spaced points

2Unit normals can be computed using any number of meth-
ods such as the “Compute normals for point sets” tool in Meshlab
(http://www.meshlab.net/).

3This is due to the fact that the majority of normal vectors on a flat sur-
face will point in the same direction while the (erroneously) angled edge
and corner normals will add no value to the data—they can be discarded.
Other erroneous normals from furnishings and clutter can be mitigated
by cropping out those features prior to plotting the EGI. Nonetheless, the
mean and median can perform better than the mode with noisy data.

and finding the transformation required to move those points from
their original locations to their new ones after ICP.

To ensure optimal registration, all furnishings, clutter, and minor
features should be removed from the point cloud, leaving only
large flat surfaces (e.g., floor, ceiling, and bare walls). Addition-
ally, the GT data should have a higher point density than the test
data and cover a larger area to prevent many-to-one registrations
as shown in Fig. 5.

Figure 5. Point density and coverage

3.1.4 Deriving and comparing room dimensions After align-
ing the GT and test data with the xyz axes, finding coordinates
for the surface boundaries simply involves projecting each point
cloud on to the coordinate planes (i.e., xy, yx, zy), binning the
data, and finding the two histogram peaks along each axis/abscissa.
For example, Fig. 6 shows two peaks corresponding to walls at
both ends of the y-axis for the given data. Performing this along
all three axes results in three min-max pairs that can be used to
find the room dimensions.

Figure 6. Histogram along y-axis

3.2 Local flat surface analysis

As noted earlier, global alignment does not always result in align-
ment of local surfaces, making it impossible to directly assess
their quality without further processing. For instance, Fig. 7a
shows the global alignment of a test data set with ground truth,
but the wall of interest, circled in red, does not match its counter-
part in the ground truth data. Therefore, preparing local surface
for analysis involves two general steps: local alignment via ICP
and local adjustments along the plane of the wall.

(a) Select flat surface
for alignment

(b) ICP align all data to
flat plane @ x = 0
(or any other plane)

(c) Trim side surfaces,
leaving enough to find
edges with histogram

(d) Laterally scale to
match GT dimensions

(e) Translate to align
point clouds

Figure 7. General overview of local flat plane analysis
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3.2.1 Local alignment Local alignment involves using ICP
to register or “snap” the the test and GT point clouds to an ar-
tificially generated plane, as illustrated in Fig. 7b. To ensure
the best possible fit, the point cloud “surface” must form a flat
plane and be free of all furnishings and other protrusions (e.g.,
white boards, electrical outlets, picture frames, etc.), which can
be cropped out. Once registered, flat surfaces in both data sets
will rest on the same plane, although they may not line up later-
ally due to measurement errors or the natural shifting from ICP
transformations.

3.2.2 Lateral matching Lateral matching of the data will en-
sure that the analysis compares like items in both point clouds.
For instance, directly analyzing the unadjusted walls in Fig. 7c
will incorrectly register the two pairs of protrusions (one gray,
one black) as measurement errors, when in fact they both cor-
rectly measure the same things. After lateral matching, the two
pairs will line up as shown in Fig. 7e and the out-of-plane devia-
tions should disappear.

Trimming and scaling The first step in performing lateral ad-
justment involves laterally scaling the test data to match GT based
on their side-to-side dimensions, which can be derived using his-
togram analysis. However, instead of using the entire length of
the adjacent surfaces, this process only uses the portion closest
to the wall to prevent errors and imperfections further down from
biasing the results. Here, histogram analysis produces two pairs
of min-max coordinate values that can be used to calculate the
width and height (or depth) of the surfaces; these can then be
used to scale the test data to match GT, as shown in Fig. 7d.

Lateral translation Since scaling shifts all coordinates relative
to an arbitrary datum, histogram analysis is performed a second
time to re-establish the new boundary coordinates of the test sur-
face. Final alignment involves selecting an arbitrary corner of the
GT surface and translating the same point on the test surface to
match.

3.2.3 Assessing out-of-plane performance Assessing out-of-
plane performance involves looking at the accuracy of the test
data compared to ground truth and examining its precision. This
requires first partitioning the data into equally sized grids and
then computing statistics on a cell-by-cell basis. For accuracy,
this involves calculating each cell’s mean out-of-plane value for
both GT and the test data and then finding the difference between
the test data and GT. These cell values can be further aggregated
and analyzed in rows, columns, or as a whole, as demonstrated in
the later case study.

Precision involves looking at the scanner’s ability to make con-
sistent measurements, which involves comparing the data with it-
self. The measure of precision used here is the mean absolute de-
viation (MAD), which can be found by first calculating the mean
out-of-plane value for each cell and then finding the mean value
of the absolute differences of all points in the cell. These MAD
values can then be aggregated to provide summary statistics for
the entire surface.

4. CASE STUDY

A case study was performed to evaluate the performance of an
ultra-low cost panoramic LiDAR scanner using the quality as-
sessment process proposed in this paper. This study used the
US$750 Scanse Sweep 3D LiDAR scanner (http://scanse.io/3d-
scanning-kit/) to scan a mid-sized conference room that measured

6.4 m x 2.8 m x 8.5 m and met the process’s requirements, e.g.,
cuboid shape, solid walls, and relatively clutter free. Ground truth
was provided by a high precision Trimble TX8 LiDAR scanner.

4.1 Data collection

Each scanner made full 360° spherical scans along the center of
the room at 6 m, 4 m, and 2 m distances from the wall that was
selected for local assessment. These six scans are denoted as
Scanse 1, 2, and 3 and Trimble 1, 2, and 3, with the first station
at 6 m and third at 2 m from the wall. Instruments were visually
centered over the station points without the use of a sighting tool
nor a plumb bob.

All three Scanse scans used the highest quality setting of a 1 Hz
vertical rotation rate and a 500 Hz sampling rate, while the Trim-
ble used the highest quality setting for the middle station (Trimble
2) and a slightly lower quality setting for the other two. These
produced the six data sets shown in Table 1. The Scanse pro-
duced data in units of centimeters while the Trimble delivered
data in meters. Trimble 2 was selected as the ground truth scan
since it was collected at the highest quality setting. The remain-
ing five point clouds constituted the test data, with Trimbles 1 and
3 providing internal quality checks for Trimble 2.

Scanse Trimble
Station⇒ 1 2 3 1 2 3

# of points 150K 130K 115K 118M 474M 119M
File size 2MB 2MB 2MB 3GB 12GB 3GB

PLY format LAS format

Table 1. Data sets and point counts

4.2 Subsampling and rough alignment

The extremely large sizes of the Trimble data made it necessary to
reduce them via subsampling, which was performed using Cloud-
Compare to point spacings of 1 mm, 2mm, and 5 mm. However,
the Scanse data was unmodified due to their small sizes. Af-
ter subsampling, all six point clouds were roughly registered to-
gether at three common anchor points, converted to units of mil-
limeters, and rotated into an xzy orientation, with the +y-axis
pointing up and the +z-axis pointing into the test wall and away
from the center of the room.

4.3 Global room-level analysis

4.3.1 EGI alignment Although the conference room was rel-
atively free of clutter, it still had several large tables at one end
of the room. For EGI alignment, the occupied half of the room
was completely removed from the ground truth data, leaving five
clean and unobstructed surfaces, as shown in Fig. 8 with normal
vectors.

Figure 8. Cropped Trimble 2 point cloud used for EGI analysis,
with normal vectors displayed as blue lines
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Plotting the surface normals resulted in the EGI shown in Fig. 9b,
which had five clusters along the ±x, ±y, and +z axes. Extract-
ing the mode from each cluster (e.g., in Fig. 9c) produced the
±u, ±v, and +w vectors, which were then used in SVD to find
the rotation matrix needed to align the point cloud with the xyz
axes. The resulting rotation matrix was then applied to the entire
ground truth data set, not the cropped version.

(a) Point cloud
with normals

(b) Extended
Gaussian image

(c) Histogram
z-cluster

Figure 9. Normals, EGI, and z-axis histogram for Trimble 2.
Removing half of the room resulted in five clusters in the EGI.

4.3.2 Alignment of test data After aligning ground truth with
the xyz axes, all test data (i.e., all Scanse data and Trimbles 1 and
3) were aligned with ground truth using a simple brute force ICP
process that used an unconstrained nearest neighbor (NN) search
and termination criteria of 200 iterations or convergence over 20
iterations at 0.01 mm. Preparing the test data for ICP involved
subsampling to a uniform density—the sampling distance varied
for each point cloud—and removing all points associated with
furnishings as illustrated in Fig. 10. As with EGI, the resulting
transformation matrix was applied to the entire point cloud, not
the cropped version.

(a) Scanse 1 (b) Trimble 1

Figure 10. Test data prepared for ICP

4.3.3 Histogram analysis Finding the room’s boundary co-
ordinates involved collapsing each point cloud on to two coordi-
nate planes (e.g., Fig. 11), plotting the points in the order xy,
yx, and zy, and performing histogram analysis on those plotted
points. Table 2 shows the room dimensions derived from these
coordinates.

Figure 11. Projections of Scanse 2 point cloud along the three
coordinate planes. Only two were used for histogram analysis,

shown in black.

Trimble Scanse
GT 1 3 1 2 3

x 6449 6448 6449 6627 6616 6602
%∆ ⇒ -0.01% 0.00% 2.76% 2.60% 2.38%

y 2745 2738 2744 2852 2883 2891
%∆ ⇒ -0.26% -0.02% 3.92% 5.05% 5.32%

z 8765 8764 8765 8910 8908 8897
%∆ ⇒ -0.02% 0.00% 1.65% 1.63% 1.51%

Table 2. Comparison of derived room dimensions,
in units of millimeter

4.4 Local flat surface analysis

4.4.1 Plane alignment To perform local analysis, all six point
clouds (both GT and test data) had to be aligned with an artificial
xy reference plane that was placed at z = 0. This required re-
moving all out-of-plane features (e.g., side walls, white board,
projection screen holder, fire alarm, electrical outlet, etc.) from
the point clouds prior to ICP, as illustrated in Fig. 12. It also re-
quired subsampling the points to a uniform density, as shown in
Fig. 13, to prevent point clusters from biasing the resulting trans-
formation. As before, the resulting transformation matrices were
applied to the entire point cloud, not the cropped version.

(a) Point cloud (b) Trimmed
wall surface

(c) Aligned with
xy plane

Figure 12. Aligning test wall with xy plane at z = 0

(a) Before (b) After

Figure 13. Subsampling of Scanse 3 data

4.4.2 Lateral scaling and alignment With all six wall seg-
ments resting on the same xy plane, the next step involved scaling
laterally (i.e., only in the xy direction) to match the dimensions
of GT. This involved trimming each adjacent surface to within
1 meter of the test wall (similar to Fig. 12a; also see Fig. 14),
performing histogram analysis to find the min-max coordinates
of the wall, and using the derived distances for scaling. Scaling
was applied to the cropped point clouds, not the entire room.

Figure 14. Profile view of a side wall showing deviations in the
Scanse data. Using only the closest 1 m of adjacent surface

avoided the influence of errors contained in the remainder of the
surface.

Histogram analysis was then performed a second time to re-determine
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wall boundary coordinates and all point clouds were then trans-
lated to a new datum corresponding to an arbitrarily selected cor-
ner points, as shown in Fig. 15.

Figure 15. New datum after lateral alignment

4.4.3 Analyzing out-of-plane performance After final align-
ment, the point cloud was cleaned up and segmented into regular
grids for statistical analysis. Cleaning up the data involved re-
moving areas that potentially contained artifacts (i.e., random er-
rors), which included the edge of the whiteboard, fire alarm, out-
let, overhead projection screen case and cord, and an unscanned
area of the whiteboard. The data was then partitioned into 20 cm
cells for performing accuracy and precision analysis.

Accuracy Accuracy analysis involved calculating the mean z
value for each cell in both the ground truth and test data sets
and then performing cell-by-cell comparisons of the test data with
ground truth. Table 3 and Fig. 16 show the accuracy results using
200 mm grids.

Units in Trimble Scanse
mm 1 3 1 2 3

mean -0.07 -0.10 -0.88 4.04 -4.81
median -0.06 -0.05 0.40 3.87 1.05
std. dev. 0.15 0.36 13.60 10.90 20.32

Table 3. Flat surface accuracy @ 200 mm grids

Precision Precision analysis used the same 200 mm cells, but
instead of comparing mean cell values to ground truth, it looked
at the mean absolute deviation (MAD) of individual point val-
ues from each cell’s mean value. Table 4 and Fig. 17 show the
precision results using 200 mm grids.

Units in Trimble Scanse
mm GT 1 3 1 2 3

mean 0.99 0.96 0.98 12.31 16.33 13.28
median 0.96 0.92 0.94 12.47 16.57 13.26
std. dev. 0.14 0.12 0.22 5.49 5.68 3.99

Table 4. Flat surface precision based on mean absolute deviation
@ 200 mm grids

4.5 Summary

This case study demonstrated the effectiveness of the proposed
process in assessing the quality of the Scanse data. Internal qual-
ity checks using Trimbles 1 and 3 showed 1 mm errors at the level
of the room and sub-millimeter errors and precision for the flat
surface, validating the ground truth measurements and providing
a strong indication that the EGI and ICP registration successfully
aligned Trimbles 1 and 3 with ground truth.

Comparing the Scanse data to ground truth revealed several in-
teresting observations. First, the Scanse consistently overesti-

(a) Trimble Station 1

(b) Trimble Station 3

(c) Scanse Station 1

(d) Scanse Station 2

(e) Scanse Station 3

Figure 16. Flat surface accuracy at 200 mm grids
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(a) Trimble Station 1

(b) Trimble Station 3

(c) Scanse Station 1

(d) Scanse Station 2

(e) Scanse Station 3

Figure 17. Flat surface precision at 200 mm grids

mated distances, indicating a systematic error that can be cor-
rected through calibration. Second, it appears that the Scanse
performs better at longer ranges than closer. Evidence for this
comes from the increasing values of mean and median errors as
the scanner moved closer to the wall from Stations 1 to 3 (Table
3) as well as increasing errors in room measurements from the
largest dimension (z axis) to the smallest (y axis) (Table 2). This
may have been caused by progressive difficulties faced by the Li-
DAR’s timing mechanism to capture very small time differences.
Finally, the scanner maintained consistent precision as it swept
across the wall in all three scans, although its value bottoms out
at the second station. Combining the uniform precision with the
high standard deviation in errors seems to indicate a tendency for
the scanner to drift, as shown by the undulating profile of the wall
in Fig. 14.

5. CONCLUSION

A growing demand for indoor maps will not only drive a growing
need for indoor measurement capabilities, it will also generate an
accompanying desire to know about the quality of the data they
produce. The quality assessment process outlined in this paper
can help meet this need by providing a way quantify the accu-
racy and precision of this data and to characterize their measure-
ment devices, especially those of low accuracy and low precision.
These quality measures may also be used to select measurement
devices that can support creating maps at certain levels of detail
and to assign weights to data sources when the crowdsourcing of
indoor map data becomes a reality some day in the future.

However, this process has several limitations including the need
for a cuboid-shaped room and the need for ground truth data,
which usually implies having access to expensive high-precision
equipment. Additionally, many aspects require exercising human
judgment, such as in the selection of subsampling distances and
grid sizes and the removal of features from the point cloud to op-
timize EGI and ICP alignment. Suggested improvements include
expanding the use of this technique beyond the cuboid, provid-
ing more rigorous approaches to quantifying quality beyond the
simple statistics used here, and accounting spatial variations ac-
curacy and precision.
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Budroni, A. and Böhm, J., 2009. Toward automatic reconstruc-
tion of interiors from laser data. Proceedings of Virtual Recon-
struction and Visualization of Complex Architectures (3D-Arch)
p. 36.

Dı́az-Vilariño, L., Khoshelham, K., Martı́nez-Sánchez, J. and
Arias, P., 2015. 3D Modeling of Building Indoor Spaces and
Closed Doors from Imagery and Point Clouds. Sensors 15(2),
pp. 3491–3512.

Habib, A., 2008. Accuracy, Quality Assurance, and Quality Con-
trol of LiDAR Data. In: Topographic Laser Ranging and Scan-
ning, CRC Press, pp. 269–294.
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