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ABSTRACT: 

Building models represented in CityGML Level of Detail 0 to 2 were used to calculate urban morphological parameters to test their 

effectiveness of correlation with measured total number concentration of fine dust in Berlin. Land use regression modelling as an 

alternative to physical based models explains the distribution of urban fine and ultrafine particles applying a multi linear regression 

model. Descriptive parameters are identified by high correlations with measured fine dust values. Here, different height information 

and geometry representations from LoD0-LoD2 were used to calculate six parameters associated with the ventilation and advection 

capacity of an urban environment (‘averaged heights of buildings’, ‘height-width ratio’, ‘porosity’, ‘frontal area index’, and 

‘building surfaces’ for wall surfaces and for wall and roof surfaces). Parameters were correlated with measurements of the total 

number concentration of fine dust in the city of Berlin. Initial results show ambivalent correlations for both, different buffer sizes and 

implementation of the parameters with building representations in different levels of detail.  
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1. INTRODUCTION 

Exposure to traffic generated fine and ultrafine particles (UFP) 

has been proven to significantly increase health risks in urban 

areas (WHO, 2013). Daily UFP concentrations are associated 

with morbidity, cardiovascular diseases, hospital admissions, 

and respiratory symptoms (Stolzel et al., 2007). This subject 

was recently brought to the focus of public attention by the so-

called Volkswagen emissions scandal (germ.: Dieselaffäre). 

UFP mitigation measures range from vehicle software updates 

to comprehensive traffic bans that have been demanded by the 

Deutsche Umwelthilfe (DUH - German Environmental Relief). 

The latter, however, would have tremendous negative economic 

impacts on diesel vehicle owners and the automobile industry. 

Therefore, locally differentiated optimization strategies for the 

reduction of emissions are necessary calling for a fast modelling 

of fine dust distributions. 

Land Use Regression Models (LUR) for the distribution 

modelling of fine and ultrafine particle distribution offer a 

practicable alternative to scientific, physical based aerosol 

models. While the latter need complex input data and 

reasonable computing time, LUR are multi linear regression 

models that use spatial explanatory parameters to calculate 

pollutant concentrations at specific locations (Hoek et al., 2008; 

Mercer et al., 2011). They may explain the small-scale variation 

of air pollutants equally well as dispersion models (Marshall et 

al., 2008; Beelen et al., 2010). With the advantage of limited 

needs for explanatory parameters and a short computing time, 

LUR is also able to explain the spatial distributions of urban 

UFP concentrations for entire cities (Wolf et al., 2017; 

Abernethy et al., 2013). On the other hand one may analyze 

intra-urban variation of UFP concentrations (Henderson et al., 

2007) or variation in particle number size distributions 

(Ghassoun et al., 2015b). 

LUR model output quality strongly depends on the relationship 

of each explanatory variable with the response variable, i.e. the 

UFP concentration at a certain point. Different 2D, 3D, 

semantic, and wind parameters were used to develop LUR 

models (e.g. Ghassoun et al. 2015a, Ghassoun and Löwner, 

2017a; Shi et al., 2017). The spatial parameters are extracted 

using different buffer sizes around each site (Hoek et al., 2008; 

Vienneau et al., 2010). 

Ghassoun et al. (2015b) presented a further improved LUR 

approach. They decomposed the analysis of particle 

concentrations into a ‘process chain’ of particle emission, 

dilution and deposition. Therefore, they classified the most 

relevant explanatory parameters into the specific process 

domain. The emission process is related to the emission of UFP, 

e.g. by traffic, while the deposition process represents removal 

of UFP on respective areas like green areas or the area of wall 

surfaces within a buffer. The process of dilution is related to the 

ventilation capacity of a city determined by the interaction of 

wind direction, wind speed, and urban morphology (Hang et al., 

2009; Edussuriya et al., 2014). These interactions will lead to 

specific spatial distribution patterns of urban UFP 

concentrations.  

Dilution parameters, next to explanatory variables of emission, 

seem to be the most important descriptive parameters for the 

development of LUR models in an urban area (Ghassoun et al, 

submitted). Therefore, urban morphological parameters, i.e. 

geometry should be explored in greater depth to determine the 

effectiveness of descriptive parameters including their spatial 

reach and their parameterization. However, parameterization of 

a specific descriptive concept may be performed in different 

ways. These include first, dimension and second, the level of 

detail (LoD) of analyzed geometries, i.e. ground surface 

representations, blocks models or building models with 

modelled roof structures. Therefore, a data structure 

representing an urban area in different LoDs has to be utilized 

for such an investigation. 

The City Geography Markup Language (CityGML) is an open 

application model for the representation, storage, and exchange 
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of virtual 3D city models. It has been published as an Open 

Geospatial Consortium (OGC) encoding standard as version 2.0 

in March 2012 (Gröger et al. 2012). CityGML is implemented 

as an application schema of the extensible Geography Markup 

Language (GML 3.1.1) (Cox et al. 2004). Until now, CityGML 

has been used in a wide range of applications (Biljecki et al., 

2015; Löwner et al. 2013b), e.g. energy estimation (Kaden and 

Kolbe, 2013; Bruse et al. 2016) or fine dust distribution 

modelling (Ghassoun and Löwner, 2017).  

A main quality of CityGML is its Level of Detail concept (LoD) 

offering the possibility to generalize CityGML features from 

very detailed description (LoD4) including indoor features to a 

less detailed representation of a building by a planar ground 

surface (LoD0). It is well described in Löwner et al. (2013a). 

The most important changes are an increase of dimension from 

two to three from LoD0 (ground surface representation) to 

LoD1 (blocks model) and the change of shape and, therefore, 

surface area of a building from LoD1 to LoD2 and LoD3, 

respectively. As well as the parametrization of descriptive 

parameters, these specific changes in the representation of 

buildings could directly influence the correlation between 

measurements and descriptive parameters. However, the amount 

of influence from LoD representations on the result of fine dust 

distribution modelling has never been investigated. The same 

accounts for the change of influence of a certain parameter 

within different buffer sizes. 

Here we present first analysis results of the influence of the 

level of detail of CityGML building representations on selected 

parameters in different buffer sizes for the modelling of fine 

dust distribution in urban environments.  

 

2. PARAMETER DESCRIPTION AND DATA 

ANALYSIS 

2.1 Data basis 

Two kinds of datasets, a measurement dataset of fine and 

ultrafine particle concentration and a CityGML2.0 3D-City 

model were used to analyse the influence of the Level of Detail 

and the buffer size on fine dust distribution modelling.  

 

 

Figure 1. Research area in the middle of Berlin. Black dots 

indicate measurement sites and buffer centres, respectively 

(adopted from Ghassoun and Löwner (2017b)). 

Mobile measurements of particulate air pollutants were 

conducted on 25 sites in an area of 1×2 km in the City of Berlin, 

almost characterized by office buildings and residential area (rf. 

Fig. 1). At each site, the average of the total number 

concentration was calculated over 1 minute. Measurements 

were carried out during six campaigns in winter (January 2015) 

during stable weather conditions without rain and wind speed 

below < 4 ms-1 (Ghassoun and Löwner, 2017b). Total number 

concentrations (TNC) were measured with a hand-held particle 

counter device (TSI 3007) detecting particles ranging in size 

from 10 to about 1000 nm with a range between particle per 

cm3 0 to 100,000. 

For the research area, LoD1 and LoD2 CityGML data was 

acquired from the open data portal of the city of Berlin 

(https://fbinter.stadt-berlin.de/fb/index.jsp) to analyse the 

descriptive variables. LoD0 representation was extracted from 

LoD1 data. 

 

2.2 General data analysis 

Data extraction was performed directly from CityGML files on 

pure Python scripting with no interconnected database or spatial 

packages but applying the xml.etree package. Parameter 

calculation was performed either in ArcGIS for LoD0 and LoD1 

representations or with self-programmed Python Scripts for 

LoD1 and LoD2 representations.  

Different height information was gathered to reconstruct LoD1 

building representations from ground surfaces. These are first, 

the ‘measured height’ taken from the CityGML LoD1 dataset 

(LoD1_meas) representing the highest point of the real world 

building, second, the ‘envelope height’, calculated from the 

building's LoD1 envelope by subtracting the z-value of the 

lower corner from the z-value of the upper corner (LoD1_env). 

According to metadata, the latter is expected to represent the 

median of photogrammetrically derived height points of the 

building’s roof structure. Third, a ‘LoD2 calculated’ value from 

the LoD2 dataset (LoD2_calc) was calculated by identifying the 

highest and lowest z-value of all related surfaces of a building 

and subtracting them. Although these different height values are 

expected to be highly correlated, all of them had been analysed 

if reasonable. 

Except the height information analysis in sec. 3.1 and the 

‘frontal area index’ in sec. 2.3.4, all parameters were analysed 

in buffer sizes of 50 m and 100 m-1000 m (steps of 100 m) and, 

correlated with measurements of the total number concentration 

from Ghassoun and Löwner (2017b). Hereby measurement sites 

represented the buffer centres.  

 

2.3 Parameter description and analysis 

2.3.1 ‘Averaged heights of buildings’: ‘Averaged height of 

buildings’ near a measurement site are used as a simple 

description for the dilution capacity of an area. Averaged 

heights coming from different height information (LoD1_meas, 

Lod1_env, and LoD2_calc) of all buildings in a respective 

buffer were correlated with the measured TNC values in the 

research area.  

2.3.2 ‘Height-width ratio’: The ‘height-width ratio’ 

represents a further descriptive value for the ventilation 

potential of a street canyon (Oke, 1987).  

It is the averaged quotient of the heights of buildings enclosing 

a respective street and the width of this street for all buildings 

within a buffer. Following Ghassoun et al. (submitted), this 

parameter is strongly dependent on the wind direction (east, 

here) that influences the width of the street measurement.  
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The calculation of the height-width ratio was performed for all 

buildings within a respective buffer using a fishnet (parallel 

lines within the buffer) with an resolution of 2m. The fishnet 

was deployed parallel to the wind direction and intersected it 

with the corresponding buildings. Calculation was performed in 

ArcGIS for the LoD1 representation of buildings with different 

height information (LoD1_meas, Lod1_env, and LoD2_calc). 

2.3.3 ‘Porosity’: ‘Porosity’ can be viewed as a measure of 

how penetrable the area is for the airflow (Gàl and Unger, 2009) 

in a certain buffer. It represents the relation between the 

penetrable and impenetrable parts of an urban environment. 

For 2D data, it is calculated from the total area of ground 

surfaces within a corresponding buffer divided by the area of 

this buffer. 

In 3D space a 3-dimensional buffer was calculated with the 

height of the highest building within the 2D buffer. ‘Porosity’ 

then was calculated as the quotient of the cumulated building 

volume and the volume of the 3D buffer (rf. Fig. 2).  

‘Porosity’ was calculated for different buffer sizes for LoD1 

data, only. Different height measures were used to calculate 

building volumes and the height of the 3D buffer (i.e. 

LoD1_meas, LoD1_env and LoD2_calc).  

 

 

Figure 2. 3D buffer and corresponding buildings for the 

calculation of the ‘porosity’. 

 

2.3.4 ‘Frontal area index’: ‘Frontal area index’ (also called 

frontal area density) is a descriptive concept to describe the 

effect of buildings shielding the wind. Therefore, it can be 

utilized as descriptive parameters for the dilution capacity of an 

urban area. The higher it is the less the wind is expected to pass 

through the buffer’s area. As a result, less fine dust is expected 

to be removed by the wind. It was calculated in 2D as well as in 

3D using LoD1 with different height measures (i.e. 

LoD1_meas, LoD1_env, and LoD2_calc) and LoD2 data. 

In 2D (i.e. for LoD0 data) a ‘frontal area surface’ represents the 

sum of all non-overlapping projection lines of all buildings 

within a buffer. Projection is performed to a line perpendicular 

to the wind direction with a length of the respective buffer (rf. 

Fig 3). ‘Frontal area index’ was then calculated as the quotient 

of this line with the respective buffer diameter.  

In 3D the ‘frontal area surface’ represents the non-overlapping 

projected area of building surfaces, which are exposed 

perpendicular to the wind direction related to a vertical surface 

perpendicular to the wind direction with the width of a given 

buffer and the height of the highest building within this buffer 

(rf. Fig. 4). 

 

 
 

Figure 3. ‘Frontal area surface’ calculations with the green lines 

representing building surfaces blocking the wind. The red line 

represents the projected frontal area surface of the buildings 

considered in the calculation of the ‘frontal area index’. The 

dashed green line represents the unblocked part of the buffer 

diameter. 

 

 

Figure 4. ‘Frontal area index’ calculation (FAILoD2_real) 

within a buffer using LoD2 data. 

 

The ‘frontal area index’, then is the same projected area of 

buildings related to the buffer area (Grimmond et al., 1999; 

Burian and Ching, 2009).  

 

 
 

Figure 5. ‘Frontal area index’ calculation within a buffer using 

LoD1 data. 

 

For LoD1 data, an Urban Roughness Toolbox developed by 

René Burghardt that is designed for ArcGIS 10.5 in 2018 was 

used to estimate the total frontal area in the projected plane 

normal to the wind direction within the buffer. The program 

generated parallel lines to the wind direction with 2m 

increment, horizontally. Only the frontal areas that intersected 
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with the line first were calculated. Hence, blocking areas 

perpendicular to the wind direction on blocked building did not 

account for the calculations (rf. Fig. 5). Finally, the ‘frontal area 

index’ was calculated by dividing the frontal area by the buffer 

area. Again, different height measures (LoD1_meas, LoD1_env 

and LoD2_calc) were used to generate LoD1 blocks models. 

For the LoD2 dataset, a 3-dimensional point array was 

generated with a resolution of 1 meter to analyse the ‘frontal 

area’ and the ‘frontal area index’. Width was taken from the 

buffer size, height from the spread of the respectively lowest 

and highest z-coordinate of all buildings within the buffer. 

Finally, the point array was moved to the edge of the buffer 

parallel to the wind direction (rf. Fig. 4). Shadowed points were 

identified by applying a brute-force algorithm, identifying all 

buildings within the specific buffer, getting all the surfaces from 

those buildings and cutting them into triangles applying a fan 

triangulation. After that, every point in the point array was 

completed with a direction vector towards the wind direction. 

The revealing half ray line was computed against every triangle 

applying the Möller-Trumbore intersection algorithm (Möller 

and Trumbore, 1997). 

 

2.3.5 ‘Building surfaces’: Since fine dust particles are 

expected to adhere to surfaces, ‘building surfaces’ as other 

surfaces are regarded as sinks for fine dust and, therefore, serve 

as a parameter for the deposition process.  

Surfaces were calculated for 3D data only. Distinction was 

made between the calculation of all wall surfaces and the total 

surface area as the sum of all wall and roof surfaces within a 

buffer. 

For LoD1 data, ‘building surfaces’ were calculated for all 

height measures (LoD1_meas, LoD1_env, and LoD1_calc). The 

wall surfaces calculations were simply performed by 

multiplying the perimeter of the buildings with the respective 

heights. The footprint area of the buildings was added as roof 

surfaces to calculate the total surface area of the buildings. 

For LoD2 data, all IDs of buildings within corresponding 

buffers were identified. For the selected buildings wall resp. 

roof surfaces were collected by tag identification. Area of 

polygons was calculated applying the Stoke’s theorem and 

using an implementation of (Bull, 2012). However, some of the 

polygons did not enter the cumulated area calculation because 

of errors when calculating its determinants (i.e. NaN results 

caused by a division by zero). Apparently corrupted polygons 

were not inspected any further. 

 

3. RESULTS 

 

3.1 Comparison of different height information 

4132 buildings that occur in the research area were analysed 

concerning their measured height (LoD1_meas), their envelope 

height (Lod1_env) taken from the LoD1 dataset, and their 

calculated height (LoD2_calc) taken from LoD2 dataset.  

Correlation of height information was relatively high (rf. Table 

1)  

 

Height Values LoD1_meas LoD1_env LoD2_calc 

LoD1_env 0.588 1 0.832 

LoD2_calc 0.785 0.832 1 

Table 1. Correlation of three different height measures from 

LoD1 and LoD2 datasets for 4132 buildings within the research 

area. 

+ 

 

 
Figure 6. LoD1_meas height information plotted against 

LoD1_env height information. 

 

Correlation of LoD1_env and LoD2_calc revealed the highest 

value of 0.83 (rf. Fig. 7). Again, higher values of the LoD2_calc 

height information was interpreted as an effect of protruding 

building parts not represented in the LoD1 dataset (rf. Fig 7). 

 

 

 
Figure 7. LoD1_env height information plotted against 

LoD2_calc height information. 

 

 

 
Figure 8. LoD1_meas height information plotted against 

LoD2_calc height information. 

 

Correlation of LoD1_meas and LoD2_calc revealed a high 

value of 0.785 (rf. Fig. 8). However, according to meta data 

description the measured height in LoD1 represents the highest 

point of a building’s roof construction. Deviations of measured 

height (LoD1) and analysed height (LoD2) imply more an error 

in geometry reconstruction than a weakness of LoD2 

representation possibilities.  
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3.2 ‘Averaged height of buildings’ calculated from LoD1 

‘Averaged height of buildings’ coming from different height 

information (LoD1_meas, Lod1_env, and LoD2_calc) of all 

buildings in a respective buffer are correlated with the measured 

TNC values in the research area (rf. Fig. 9). 

 

 
 

Figure 9. Correlation coefficients of the ‘averaged height of 

building’ from LoD1 with different measures and measured 

TNC values in different buffer sizes. 

 

Results show that the average height values from the building 

LoD1 envelope have the highest correlation with the measured 

TNC values. That means that high buildings support higher 

TNC values in a specific buffer. Highest correlations of about 

0.46 was detected in buffer of 400-600 m in size. However, 

averaged building sizes derived from LoD1 measured height 

and from LoD2 calculated height show negative to weak 

correlations. As the two latter height values are expected to be 

dominated by protruding building parts, main parts of a 

building and its respective heights seem to be more relevant. 

 

3.3 ‘Height-width ratio’ calculated from LoD1 

A more effective parameter for the empirical modelling of fine 

dust distribution is the ‘height-width ratio’ (Ghassoun and 

Löwner, 2017b), reflecting the proportion of the width of a 

street and the height of its surrounding buildings. The ‘height-

width ratio’ is also referred to as the street canyon.  

 

Figure 10 depicts the correlation coefficients of the ‘height-

width ratio’ derived from different height information with the 

measured TNC values for different buffer sizes. It can clearly be 

seen that correlation coefficients are higher in comparison to the 

average height of buildings (sec. 3.2) reaching their peak of 

0.658 at a buffer size of 700 m for the LoD2_calc height 

information. That reflects the fact that a narrow street canyon 

leads to decreased ventilation capacity. Next to the different 

correlation coefficient in different buffer sizes, different height 

information seems not to influence this positive correlation.  

 

 
 

Figure 10. Correlation coefficients of the ‘height-width ratio’ 

from LoD1 with different measures and measured TNC values 

in different buffer sizes. 

 

 

3.4 ‘Porosity’ calculated from LoD0 and LoD1 

‘Porosity’ as a value of how penetrable for the wind an urban 

area is was expected to have a negative correlation with high 

fine dust values.  

 

 
 

Figure 11. Correlation coefficients of the ‘porosity’ from LoD0 

and LoD1 with different measures and measured TNC values in 

different buffer sizes. 

 

Figure 11 depicts the correlation coefficients of ‘porosity’ 

values calculated first, with one LoD0 representation and, 

second, with LoD1 representations using different height 

measures. LoD0 representation seemed to be best performing at 

a buffer width of 700 m with a correlation of 0.322. However, 

this representation showed positive correlation on buffers of 

300 m-600 m in diameter and of 900 m-1000 m in diameter. 

‘Porosity’ calculated for LoD1 blocks models applying the 

measured height (LoD1_meas) and the calculated height from 

LoD2 (LoD2_calc) data showed comparable results with a high 
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negative correlation in buffer 200 m and 400 m with a maximal 

negative correlation of 0.435. However, correlation of 

calculations of LoD1 buildings created from the envelope 

height measure (LoD1_env) revealed different behaviour with a 

maximum negative correlation of -0.485 in buffer 1000 m. 

Again, missing building parts may be responsible for this 

different behaviour but seem to be compensated in wider 

buffers. 

 

3.5 ‘Frontal area index’ calculated from LoD0, LoD1 and 

LoD2 

The ‘frontal area index’ was evaluated as a very effective 

parameter in Ghassoun et al. (submitted). In this context it is 

important to note that negative correlations are the anticipated 

results. Because height values for the ‘frontal area index’ 

represent wind protection, less dilution and therefore, higher 

fine dust value are expected. 

 

 
 

Figure 12. Correlation coefficient of the ‘frontal area index’ 

from LoD0 (FAILoD0), LoD1 with different height measures 

(FAILoD1_meas, FAILoD1_env, FAILoD2_calc) and LoD2 

(FAILoD2_real) with measured TNC values in different buffer 

sizes. 

 

The FAILoD0 revealed high negative correlation of -0.45 for 

the 50 m buffer but increased in the 100 m buffer and continued 

to show bad correlations in the greater buffers (rf. Fig 12). 

However, for the smallest buffer of 50 m, an LoD0 

parameterization of the ‘frontal area index’ seems to be 

reasonable. 

Correlations of FAILoD1_meas and FAI_LoD2_calc generated 

blocks models with measured TNC values in different buffers 

revealed similar behaviour. The best (negative) correlation for 

this height information was -0.56 for the FAILoD1_meas in the 

300 m buffer and -0.49 for the FAILoD2_calc, both in the 

300 m buffers. Remarkable low negative correlations were 

observed for the LoD1 blocks models with envelope heights. 

Missing protruding building parts seem to have a major 

influence on the results. 

Correlations of the ‘frontal area index’ calculated with the 

LoD2 geometry information (FAILoD2_real) showed lower 

performance than expected. They reached their highest negative 

correlation in the 300 m buffer with a correlation coefficient of 

-0.32. Due to the simple algorithm applied, computing time was 

very high. As a result, only buffers with a diameter of up to 

500 m were analysed, here. However, bad performance of the 

FAI with the best geometry information calls for further 

investigation on this parameter at all. 

 

3.6 ‘Building surfaces’ calculated from LoD1 and LoD2 

‘Building surfaces’ were calculated according to sec. 2.3.5 for 

buffer sizes of 50 m and 100 m-1000 m (steps of 100 m). 

Correlations of measurements and respective building surface 

were performed and synoptically plotted in Figure 13. Surface 

area and fine dust concentration are expected to be correlated in 

a negative way. 

 

 
 

Figure 13. Correlation coefficient of different wall surface 

calculations with the measured TNC values in different buffer 

sizes. 

 

Figure 13 depicts correlation coefficients of different wall 

surface calculations (i.e. extruded ground surfaces with different 

height information and the calculated sum of all wall surfaces 

from the LoD2 dataset) with the measured total number 

concentration of fine dust.  

Correlation of surface calculations using LoD1 data with the 

measured height (LoD1_meas) and the envelope height 

(LoD1_env) reveal high positive values at the 100 m buffer and 

the 700 m buffer. At all, these two curves show similar 

behaviour. However, wall surface calculation from extruded 

ground surfaces with the calculated height from LoD2 

(LoD2_calc) shows better (negative) correlations with the TNC 

measurements. This is, however not the case for buffer sizes of 

700 m. At this point correlation coefficient reaches nearly 0.5 

like the other two wall surface calculation values. 

Correlation coefficients of the WallSurfeceLoD2_real values 

with the TNC values, however, followed the curve of the 

correlation with the WallSurfaceLoD2_culc values but revealed 

not such a peak correlation at buffer sizes of 300 m and 400 m. 

This finding may be explained by the existence of apparently 

corrupt surfaces in the LoD2 dataset (rf. sec. 2.3.5). 

 

All visible enveloping surface, i.e. wall and roof surfaces were 

calculated and correlated with the measured TNC data for 

different buffer sizes (rf. Fig. 14). Although being slightly 

different in total numbers, courses of the curves are comparative 

to those of the wall surface calculations. A remarkable negative 
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peak and therefore a good performance of this parameter can be 

observed for the correlation of the AllSurfaceLoDs_real 

calculation. However, absolute correlation is slightly lower 

including roof surface calculations. That reflects that adhesion 

of fine dust takes place at street level altitudes. Addition of roof 

surfaces seems to blur the correlation. At all, since the existence 

of surfaces is expected to lower the TNC values by adhesion, it 

also stands for the existence of buildings serving as obstacles 

for the wind. Comparing those two parameters, blocking the 

wind, expressed by the parameters of ‘porosity’ and ‘frontal 

area index’ seemed to be the more effective parameters. 

 

 
 

Figure 14. Correlation coefficient of different wall and roof 

surface calculations with the measured TNC values in different 

buffer sizes. 

 

4. DISCUSSION 

Different height information and geometry representations from 

LoD0-LoD2 were used to calculate six parameters that are used 

in empirical fine dust distribution modelling applying the Land 

use regression method. These were the ‘averaged heights of 

buildings’, the ‘height-width ratio’, the ‘porosity’, the ‘frontal 

area index’, as well as ‘building surfaces’ for wall surfaces and 

for wall and roof surfaces. All parameters were calculated 

applying different height measures on LoD1 ground surfaces. 

The ‘frontal area index’ and the ‘porosity’ were additionally 

calculated for LoD0 data representation. Ancillary calculations 

of the ‘frontal area index’ and both building surface calculations 

from an LoD2 dataset were performed and analysed.  

No clear conclusion can be drawn concerning a dimension or 

level of detail representation for 3D data that reveal constantly 

height, either negative or positive, correlations with a dataset of 

measured total number concentrations of fine and ultrafine 

particles in Berlin. While on the one hand the LoD1 

representation with calculated height information of the LoD2 

dataset performed very well for the parameter of wall surfaces 

in the 200 m and 300 m buffer, on the other hand, the parameter 

of all, the wall and the roof surfaces from the LoD2 dataset 

showed very good results for the 700 m buffer. The same 

accounts for different buffer sizes. The LoD0 representation of 

the ‘frontal area index’ showed a high negative correlation in 

the 50 m buffer while LoD1 representation with different height 

information exhibited better results in larger buffers. 

However, these preliminary results show that in some cases 

lower dimensional representations of parameters may serve as 

good as parameters derived from data of higher dimension, i.e. 

one 2D vs. 3D or higher level of detail (LoD0 vs. LoD1 or 

LoD2). That is somehow promising when searching for the 

most effective way to calculate parameters for now casting in 

real time.  

In general, it has to be noted that strength and foresing of 

correlations of discussed parameters and measured TNC values 

do not depend on the way of parameterization, dimension or 

geometrical representation of input data, only. Still, we are 

dealing with a highly complex system of fine dust emission, 

dilution and deposition that also includes physical or chemical 

conversion and further on that geostatistical analysis seeks to 

explain. Therefore, analyses carried out serve rather as 

operation procedures for practitioners in the field of fine dust 

distribution modelling than to evaluate the quality of geometric 

references of 3D city models (r.f. Biljecki et al., 2016). 

However, more investigation needs to be performed to confirm 

our preliminary results. Work has to be extended concerning 

first, more parameters since only few relevant for the fine dust 

modelling approach could be tested here. Second, more urban 

environmental related measurements like temperature or noise 

should be investigated. Third, more variability concerning the 

urban morphology should be taken into account. The latter 

refers to a limited research area that does not exhibit all the 

variation of a full city. 
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