
CITYGML RESTFUL WEB SERVICE: AUTOMATIC RETRIEVAL OF CITYGML DATA

BASED ON THEIR SEMANTICS. PRINCIPLES, GUIDELINES AND BLDG

CONCEPTUAL DESIGN

I. Pispidikis *, E. Dimopoulou

School of Rural and Surveying Engineering, National Technical University of Athens, 9 Iroon Polytechneiou str, 15780 Zografou,

Greece (pispidikisj@yahoo.gr; efi@survey.ntua.gr)

KEY WORDS: Web Services, CityGML, REST, SOAP, RESTful

ABSTRACT:

CityGML is considered an optimal standard for the representation of 3D city models. However, due to its complex structure, easy-to–

use data retrieval is important, in terms of interoperability. This implies choosing the implementation of Web Service Technologies

and in particular the WFS, as the most suitable OGC standard for retrieving the real geometry data. Nevertheless, this standard serves

data mainly based on their geometry, while CityGML also covers topology and more importantly semantic aspects of 3D city models.

Therefore, this paper examines and presents the new CityGML RESTful Web service, instead of the OGC WFS. This Web Service is

conceptually designed to achieve CityGML data retrieval based on their semantics characteristics. In this context, several principles

and guidelines of the new CityGML RESTful Web service are described and the “CityModels” resource is presented. Additionally,

the conceptual design of the bldg resource and its child resources based on the level of details is also presented.

1. INTRODUCTION

The Web Services technology has dramatically affected the

development of WebGIS products. A variety of organization

publish data and functions via Web Services (Newcomer &

Lomow, 2005). Web Services are key components of web

applications and represent an important evolution of distributed

computing. The main idea of a web service is a collection of

smaller programs distributed across the Web, running on

different servers, but still communicating with each other and

functioning together as a whole (Fu & Sun, 2010). Therefore,

Web Services can be published, found and used on the Web

(W3Schools, 1999-2016). The development of effective

techniques is very important for the management of the modern

cities, since it is estimated that in the near future half of the

world’s population will live in cities (Prandi et al., 2015).

Therefore, the proper organization of the city data is considered

vital in compliance with the international standard CityGML.

CityGML is a common semantic information model for the

representation of 3D urban objects that can be shared over

different applications. This capability is especially important

regarding a cost-effective sustainable maintenance of 3D city

models, enabling the same data to be provided to customers from

different application fields (Groger, et al., 2012). However,

although it is considered as the most appropriate model for the

representation of 3D city models, it is quite difficult to manage,

modify and retrieve CityGML data based on their semantic,

geometric and descriptive features. Taking into account the

complex structure of CityGML and the need to retrieve data from

distributed sources addressing interoperability problems, the

adoption of appropriate Web Service is required. The adoption

of Web Services leads to the implementation of WOA (Web -

Oriented Architecture) which is a specialization of SOA

(Service-Oriented Architecture), utilizing RESTful Web services

and lightweight mashups (Thies & Vossen, 2008). Using WOA

a full utilization of Web capacity was achieved and hence, the

development of reliable, flexible application was facilitated in an

easiest and economical way (Kralidis, 2007). The Open

* Corresponding author

Geospatial Consortium (OGC) developed and implemented

several Geospatial Web services among which the Web Map

Service (WMS), the Web Feature Service (WFS), the Web

Coverage Service (WCS) and the Catalogue Service for the Web

(CSW). In the context of 3D there are two 3D portrayal services:

Web 3D Service (W3DS) (Quadt & Kolbe 2005; Schilling &

Kolbe 2010) and Web View Service (WVS) (Benjarmin, 2010).

Nevertheless, these services were developed in terms of data

visualization mainly based on geometric features. On the other

hand, taking into consideration the semantic structure of

CityGML and the need for retrieving CityGML data based on

their semantics characteristics, the aforementioned OGC

Services are not considered important for the purpose of this

paper.

The aim of this paper is to provide a new approach for retrieving

CityGML data based on their semantic characteristics. To this

purpose, the SOAP and REST Web Services are further studied

and compared. Thereafter, several principles and guideline are

addressed with regard to the new approach on the automatic

retrieval of CityGML Data and finally, the conceptual design of

the resource and child resources regarding the building module

of CityGML is presented.

This paper is structured as follows. Section 2 describes the

available Web services, the related work and the reasoning of the

REST-style architecture approach. In Section 3 several principles

and guidelines of the aforementioned approach are presented and

the “CityModels” resource is introduced. Section 4 describes the

conceptual design of bldg resource and its respective child

resources based on the LoD of the data. Moreover, several case

studies of semantics requests are presented. Section 5 concludes

the findings and discusses suggestions for future research work.

2. WEB TECHNOLOGIES AND RELATED WORK

2.1 Web Services

The interest in Web services has rapidly increased from the very

start. The main goal of web services is to exchange information

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

49

mailto:pispidikisj@yahoo.gr
mailto:efi@survey.ntua.gr

among applications in the standard way (Mumbaikar & Padiya,

2013). Their exploitation provides a new approach in terms of

system interoperability. Namely, it overcomes the complexity of

the need to convert data and install the appropriate programs,

allowing systems to work at a Web Service level (Fu & Sun,

2010). The clients normally do not have any prior knowledge of

web services before using them, and therefore, Web Services are

actually platform independent and loosely coupled.

There are two types of Web Services based on SOAP and REST

principle: SOAP-based Web Services and REST-style Web

Services

2.1.1 SOAP Vs REST: REST has gained widespread

acceptance across the Web as a simpler alternative to SOAP-

based Web services. Key evidence of this shift in interface design

is the adoption of REST by mainstream Web 2.0 service

providers-including Yahoo, Google, and Facebook -who have

deprecated or passed on SOAP-based interfaces in favor of an

easier-to-use, resource-oriented model to expose their services

(Rodriguez, 2008). It should be noted that in 2002 Amazon aware

of the “REST versus SOAP” debate provides both SOAP and

REST interface to its Web Services. As a result, in 2004, 80

percent of the calls to Amazon’s Web Services were REST-based

(Greenfield and Dornan, 2004). Additionally, the REST language

is based on the use of nouns (resources) and verbs (HTTP

methods) and hence, they do not require message format like

XML envelope which is required in SOAP messages

(Mumbaikar & Padiya, 2013). In many cases, the simplicity and

efficiency of using REST outweighs the rigorous discipline of

SOAP and the complexity in introducing SOAP-based Web

Services (Fu & Sun, 2010). Additionally, Mulligan et al. (2009)

presented a comparison of SOAP and REST implementations of

a service-based interaction independence middleware

framework. The results of their tests have shown that the REST

implementation of the data transmission component proved to be

more efficient in terms of both the network bandwidth and the

round-trip latency incurred during these requests. Accordingly,

Mumbaikar & Padiya (2013) concluded that SOAP based web

services produce considerable network traffic, whereas the

RESTful web services are lightweight, easy and Self-descriptive

with higher flexibility and lower overhead. Fu & Sun (2010)

compared SOAP and REST and referred that the use of REST

instead of SOAP brings several advantages to producers, users

and managers respectively. More specifically, for producers the

cost of creating, hosting and supporting services is lowered. For

users the learning curve is reduced and hence, the time and

money needed to build GIS applications is also reduced. Finally,

for manager the highly desirable architecture properties such as

scalability, performance, reliability, and extensibility are

provided. However, Kumari (2015) comparing the two protocol

concluded that SOAP is preferable for financial, banking,

telecommunication services, and REST for Social interaction,

Web chat, and mobile services. As a result, SOAP and REST are

two different approaches, with different architectural styles,

providing several advantages and disadvantages when compared.

So, the architectural decision mostly depends on the specific

application. It should be noted that SOAP Web Services are

robust and comprehensive but complicated. Whilst, REST Web

Services are simple and efficient, but may not have all the

capabilities of SOAP services. In this paper, after the two

protocols are evaluated in relation to the complexity of the

CityGML structure, the REST-based architecture style is

implemented.

2.1.2 Principles of RESTful Web Services: The evolution of

the Web 2.0 phenomenon has led to the increased adoption of the

RESTful services paradigm (Lathem et al., 2007). RESTful Web

services work on the Web, taking full advantage and making

correct use of the HTTP protocol (Webber, 2010). The

implementation of the RESTful Web Services must follow the

ROA (Resource-Oriented Architecture). Hence, everything that

a service provides has to be a resource (Mohedano, Troyano,

2010). The main design constrains of the REST architecture style

can be summarized as follows (Webber, 2010):

- Addressability: all resources that are published by a Web

Service should be given a unique and stable identifier, a URI

(Nielsen, 1999). The relationship between URIs and resources is

many-to-one. A URI identifies only one resource, but a resource

can have more than one URIs (Webber, 2010).

- Uniform Interface: all resources are managed via a uniform

interface. In HTTP, the actual Web protocol, the uniform

interface comprises the methods (HTTP GET, HTTP POST,

HTTP PUT and HTTP DELETE) that can be applied to all Web

resource identifier.

- Statelessness: Every HTTP request happens in complete

isolation (Mohedano Troyano, 2010). Consequently, REST

makes the system really scalable since servers do not keep any

information from clients.

-Self-Describing Messages: Services interact by exchanging

request and response messages, which contain both the

representations of resources and the corresponding meta-data.

- HATEOAS (Hypermedia as the Engine of Application State):

The ability of a service to change the set of links that are given to

a client, based on the current state of a resource.

However, the main design constraints of the REST architectural

style can be adopted incrementally, leading to the definition of

the Richardson maturity model for RESTful Web services

(Fowler, 2010). Namely, this model breaks down the principal

elements of a REST approach into four levels (Figure 1).

Figure 1. Maturity model for RESTful Web services

 (Fowler, 2010)

2.2 Related Work

CityGML standard is considered optimal for the presentation of

3D city models. However, because of the complexity of its

structure, easy-to–use data retrieval is significant. Several OGC

Web Services are currently used to retrieve and portray the

CityGML Data, such as W3DS, WVS and WFS. However, the

W3DS and WVS are portrayal services, which means that they

retrieve a representation of these data (images or scenes) and not

real data. Therefore, the most suitable OGC geospatial service is

WFS. However, serving CityGML via a WFS presents a number

of technical problems relating to the characteristics of the

CityGML models and the fact that CityGML schema is much

more complex than those usually deployed in WFS.

Consequently, the OGC WFS has to be extended so that the

retrieval of CityGML data is achieved. Curtis (2008) presented

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

50

the Snowflake CityGML WFS (Snowflake’s GO Publisher)

which allows the requests DescribeFeatureType, GetCapabilities

and GetFeature, while it supports the following feature of

CityGML: Building, CityObjectGroup, GenericCityObject,

ReliefFeature and CityFurniture in all LoDs. Within the same

research context Kolbe et al. (2015) implemented the OGC WFS

in conjunction with 3DcityDB schema, which supports

multiscale and rich semantic structure of CityGML (Kolbe et al.,

2009), thus developing the 3D City Database WFS. The current

WFS version implements the Simple WFS conformance classes

and therefore, the 3D city Database WFS handles

GetFeatureById queries, not supporting ad-hoc queries or

semantic retrieval of available features. The advanced version of

the WFS includes more WFS operations and is commercially

available (SYSTEMS GmbH Berlin) (Kolbe et al., 2015).

Additionally, Zhu, et al. (2016) are investigating for an open

source solution to serve CityGML via a WFS with advanced

functionality. Such a solution that was tested is GeoServer,

combined with its “Application Schema” extension. GeoServer

supports the OGC WFS standard and provides full-fledged WFS

functionality including discovery, query, locking, transaction and

stored query operations (Open Source Geospatial Foundation,

2017). Similarly, a Geoserver approach was implemented by

Pispidikis et al. (2016) for the visualization of CityGML data via

the WFS standard. Extending WFS to support the retrieval of

CityGML data is considered very important. However, the OGC

WFS is a geospatial service which means that it is developed with

the aim of retrieving, visualizing and modifying data based on

Geometry. On the other hand, CityGML’s structure is more

semantic rather than geometric and therefore the retrieval of the

data has to be achieved mainly in compliance with the semantic

information. In the context of the aforementioned approach

Pispidikis et al. (2016) developed a PHP class which utilize

AJAX (Asynchronous JavaScript and XML) techniques with a

view to dynamically retrieve CityGML data in JSON format and

based on specific semantic characteristics. However, the

implementation of this class is not suitable in terms of

interoperability. For that, the technology of Web Services are

chosen in this paper, and two types of web services (SOAP and

REST) are investigated. Thereafter, the REST-style architecture

is chosen so that a conceptual model of RESTful Web services is

structured and the retrieval of the CityGML data is achieved

based on its semantics characteristics.

3. GENERAL OVERVIEW AND PRINCIPLES OF

CITYGML RESTFUL WEB SERVICE

The CityGML schema was designed in a way that can be

structured according to each application, avoiding the creation of

complex files that cannot be checked for their validity (Groger,

Kolbe, Nagel, & Hafele, 2012). Consequently, the architecture of

the CityGML is shaped via five key components (Figure 2).

Figure 2. CityGML architecture

 The first is the CityGML Core, which defines all the basic

classes for CityGML’s operation which are inherited by all the

CityGML’s features (Gröger & Plümer, 2012). The second one,

contains the ten thematic modules that define the semantic

features of the basic objects of a 3D city model. Worth noting

that the implementation of the aforementioned thematic modules

is not mandatory but they can be used selectively depending on

the application’s needs. The third component is the geometric-

topological model, which is structured in compliance with the

GML3. The fourth component is the appearance module, which

defines the observable properties of CityGML’s surface objects.

Finally, the last component contains the two possible ways that

CityGML’s scalability is achieved and hence the semantic and

descriptive features that are not supported by the current version

of CityGML can be added. These ways refer to Generic and ADE

(Application Domain Extensions) modules (Groger, Kolbe,

Nagel, & Hafele, 2012).

3.1 Principles and Guidelines

There are several guidelines and principles that need to be

implemented so that the conceptual design of the CityGML

RESTful Web Services can be achieved. Initially, the name of

every resource has to be noun and not verb according to the

RESTful Web Service guidelines. For instance, a good resource

name is the “CityModels” and not the “GetCityModels”. The

action type of the request is defined by HTTP method. Hence, the

RESTful Web service have to be designed in compliance with

HTTP specification. So, for the retrieval of the data the HTTP

GET method is implemented. Moreover, considering the

Richardson maturity model, a good RESTful Web Service has to

be in level 3 (see Figure 1). So, every response has to contain

links URI to the respectively associate resource.

3.1.1 Geometry implementation: The CityGML data which is

retrieved implementing CityGML RESTful Web Service and

contains Geometry information is structured in compliance with

the geometry object of GeoJSON specification (Gillies et al.,

2016) (Figure 3) and not the GML.

Figure 3. Geometry object based on GeoJSON specification

The "type" member of a geometry object could be Point,

MultiPoint, LineString, MultiLineStrings, Polygon, and

MultiPolygon. Moreover, the "coordinates" property is

composed of one position (in the case of a Point geometry), an

array of positions (LineString or MultiPoint geometries), an array

of arrays of positions (Polygons, MultiLineStrings), or a

multidimensional array of positions (MultiPolygon).

3.1.2 HATEOAS implementation: The implementation of

HATEOAS (Hypermedia As the Engine of Application State), an

essential part of REST, is considered vital for the CityGML Web

Service to be RESTful. As a result, each resource must contain

information regarding links to other available resources.

Consequently, the available links of a resource of CityGML

RESTful Web Service contain links to itself, to all parents’

resources and to a child resource. For instance, a wallsurface

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

51

resource contains the following links: itself, its building resource

and available windows and doors resources.

3.2 CityModels Resource

CityGML RESTful Web Services should enable users to have an

overview of the available thematic models. Hence, the original

resource is called “CityModels”. The said resource retrieves the

total number of the available thematic models grouped by

thematic category model. Moreover, in each group category, the

corresponding resource link of the specific main thematic

resource (see table 1) will also be retrieved. Additionally, every

resource should have link to itself. Hence, the basic schema of

the retrieval data from “CityModels” Resource in JSON format

is shown in Figure 4.

Figure 4. CityModels Resource Schema

3.2.1 Filter parameters for “CityModels” resource: The

“CityModels” resource retrieves information regarding the

available CityGML thematic modules. Therefore, the definition

of some parameters is considered necessary so that the filtering

of the retrieval result can be achieved. As a result, a new filter

parameter called “Thematics” is defined. The values of this filter

are based on the respective namespace prefix of the thematic

modules of CityGML specification. It should be noted that multi

thematic values can be used simultaneously by separating them

using comma punctuation. For instance, the following request

retrieves only the available buildings and bridges of CityGML.

../CityModels?Thematics= bldg,brid

Moreover, the filter BBox is defined. The value of the specified

filter is a geometry rectangle in a specific reference system which

limits the retrieval result according to the rectangle. The

aforementioned filters can be implemented simultaneously.

3.3 Main Thematic Resources

Taking into consideration the five components of the CityGML’s

architecture (see Figure 2), only the second one (the ten thematic

modules) defines the semantic features of CityGML. Therefore,

these thematic modules should be the main resources of the

CityGML RESTful Web Service. The names of the available

main resources of the CityGML RESTful Web service are based

on the namespace prefix of CityGML specification and they are

shown in table 1.

Resource Name URI CityGML Modules

bldg ../ bldg Buildings

wtr ../ wtr Waterbodies

dems ../ dem reliefs

veg ../ veg Vegetation

luse ../ luse LandUses

frn ../ frn CityFurniture

tran ../ tran Transportations

brids ../ brid Bridges

tun ../ tun Tunnels

grp ../ grp CityObjectGroups

Table 1. Name of the main resources

The response of a request implementing the main thematic

resources is mainly a list of the available thematic modules

respectively. Each thematic module of list contains general

information in compliance with CityGML specification.

3.3.1 General filters: The common attributes that are supported

by all thematic modules of CityGML are function, usage and

class. As a result, these attributes are use d as filter parameters of

Main Thematic resources and their values are defined by

CityGML specification. Additionally, BBox filter parameters is

vital to be defined so that the retrieval data to be filtered based on

spatial queries. Moreover, CityGML supports multi-scale

modelling with five different LοDs (levels of detail). In a

CityGML data set, the same object can be represented at different

levels of detail simultaneously, thereby allowing the analysis and

visualization of the latter to varying degrees of spatial analysis

(Groger, Kolbe, Nagel, & Hafele, 2012). However, LoD is

considered vital not only in the geometric determination of the

level of detail but also in the semantic. By increasing the LoD,

the semantic richness of CityGML increases respectively. Hence,

LoD is implemented as filter parameter by all main thematic

resources of CityGML RESTful Web Service so that the

semantic information results are limited based on level of detail.

Consequently, the values of the LoD filter parameter are 0 to 4.

The set of the available general filter of the main thematic

resource is shown in table 2. The available filters can be

implemented simultaneously.

Filter URI (Example for bldg resource)

Function ../bldg?function=3020

Usage ../ bldg?usage=1010

Class ../ bldg?class =1000

BBox ../ bldg?BBox=

334433.0,4455667.0,445677.0,5566556.0

Lod /bldg?lod=2

Table 2. General filters of Main Thematic resources

4. CONCEPTUAL DESIGN OF BLDG RESOURCE

The building module is considered as one of the most detailed

thematic concepts of CityGML, allowing the representation of

thematic and spatial parameters of buildings and building

sections at different levels of detail (Groger, Kolbe, Nagel, &

Hafele, 2012). The transition from one level to another imposes

and allows different semantic and geometric details both on the

outside and inside.

4.1 Bldg Resource

The main thematic resource regarding building module of

CityGML is the bldg resource. It is quite important that the said

resource of CityGML RESTful Web Service enables the users to

retrieve any of the available semantic features of the respective

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

52

building. Thus, the bldg resource retrieves a list of the available

buildings and buildingParts respectively. This list can be limited

implementing several filters. Except for the general filters (see

3.3.1) which are used in all main thematic resources, the bldgPart

filter must be implemented. The value of this filter is Boolean

and provides information about whether the building is

BuildingPart or not. The retrieval of a specific building can be

achieved implementing the following resource:

../bldg/{gmlid}

The gmlid in the brackets is the unique id for each building

according to CityGML. The available information of this

resource is shown in table 3.

Information Type Description

lod Number LoD value

bldgPart Boolean True or False

bldgInfomation Object List of key value pairs based

on building module

geometry Object Geometry object based on

GeoJSON specification

generic Object Ad hoc list of key value pairs

based on generic module

address Object List of key value pairs based

on xAL specification

links Object List of key value pairs

regarding links to the parent

and child resources

gmlid String Gmlid value

terrain String

Table 3. Available information of bldg resource

However, the building module is enriched by semantics

characteristics from LoD2. Hence, the child resources of bldg

resource are based on semantic data of building module from

LoD2 to LoD4.

4.1.1 LoD2 bldg sub-resources: The supported semantic

characteristics of the LoD2 building are the exterior boundary

surface (WallSurface, RoofSurface, GroundSurface,

OuterCeilingSurface and OuterFloorSurface) and the exterior

building installation. As a result, these semantic features are the

LoD2 child resources of the bldg resource. The URI resources

regarding boundary surfaces are walls, roofs, grounds, ceilings

and floors respectively. These resources retrieve a list of the

corresponding thematic surfaces and this list can be filtered

implemented lod filter parameter. Additionally, the exterior

building installation resource is called “installations”. This

resource retrieves a list of the exterior building installations and

can be filtered using several filters such as usage, function, class

and type. It should be noted that the ”installations” resource

refers both for interior and exterior building installations. The

separation of the latter is achieved via the “type” property.

Thereby, the defined values of this property are interior or

exterior respectively. However, the interior building installations

are semantic features available in LoD4. Hence, the

“installations” resource defined as a child sub-resource regarding

LoD4 as well. Additionally, the retrieval of a specific resource

can be achieved using the corresponding gmlid. An instance of a

specific wall request is the following:

../bldg/ {gmlid}/walls/{gmlid}

The available information of each semantic surface of LoD2 bldg

sub-resources is shown in table 4. Moreover, the conceptual

design of the bldg resource with available properties and filters

according to LoD2 is shown in Figure 5.

Information Type Resource Description

lod Number Installations,

Exterior

boundaries*

LoD value

appearance Object Installations,

Exterior

boundaries*

List of key value

pairs based on

appearance module

geometry Object Installations,

Exterior

boundaries*

Geometry object

based on GeoJSON

specification

generic Object Installations,

Exterior

boundaries*

Ad hoc list of key

value pairs based

on generic module

Figure 5. LoD2 conceptual design

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

53

links Object Installations,

Exterior

boundaries*

List of key value

pairs regarding

links to the parent

and child resources

gmlid String Installations,

Exterior

boundaries*

gmlid value

usage Number installations LoD value

function String installations function value

class String installations class value

type String installations exterior or interior

Exterior boundaries*: walls, roofs, grounds, ceilings and floors

Table 4. Available information of LoD2 bldg sub-resources

4.1.2 LoD3 bldg sub-resources: The additional semantic

features of the LoD3 building module are the opening features

(windows and doors). Consequently, the respective resources of

the aforesaid features are considered vital to be defined. Hence,

the URI of these resources are windows and doors. The retrieval

of specific data regarding the aforementioned resources is

achieved implementing the corresponding gmlid as a sub-

resource.

Information Type Description

generic Object Ad hoc list of key value pairs based

on generic module

Appearance Object List of key value pairs based on

appearance module

Geometry Object Geometry object based on GeoJSON

specification

Links Object List of key value pairs regarding

links to the parent and child

resources

address* Object List of key value pairs based on xAL

specification

gmlid String gmlid string

Address*: available for ‘doors’ sub-resource

Table 5. Available information of windows and doors sub-

resources

Additionally, each specific “doors” sub-resource should contain

information regarding the address and hence, the object address

is defined.

The conceptual design of the bldg child resources regarding LoD

3 is shown in figure 6 while the respective retrieval information

from the windows and doors resources of LoD3 are described in

table 5.

4.1.3 LoD4 bldg sub-resources: Except for installations

resource which retrieves interior building installations of

building, there is the “rooms” child resource regarding LoD4 as

well. Therefore, this resource retrieves the list of the available

rooms of a building. Similarly, the retrieval of specific room is

achieved implementing the respective gmlid. Moreover, the

available information of each room is class, usage, function,

gmlid, links and generic. The filtering of this resource is

implemented using the class, function, usage and BBox filter

parameters respectively. Thereafter, each room provides several

links for child resources such as furniture, installations, walls,

floors and ceiling. The first one retrieves a list of furniture that

are located in a specific room. The accessible information of this

resource is class, usage, function, gmlid, generic, appearance,

geometry and links. Additionally, the available filter parameters

of the furniture resource are class, usage and function. In this

context, the rest child resources (installations, walls, floors and

ceilings) retrieve a list of the respective available semantic

features. The accessible retrieval information and the

corresponding filters are shown in figure 7. Generally, the

retrieval of a specific semantic feature is achieved using the

gmlid. It should be noted that in the LoD4 there are two sub

resources with the same name but different URIs. The name of

these resources is named “installations”. The first one is child

resource of bldg resource and retrieve a list of interior

installations in a specific building, while the second one is the

child resource of the “rooms” resource and retrieve the respective

installations that are located in a specific room. Similar to the

LoD3, the interior boundary resources (walls, floors and ceilings)

provide the windows and doors child resources. The aforesaid

resources have similar properties and filters like LoD3 opening

resources (see table 5). The conceptual design of LoD4 bldg sub

resources are shown in Figure 7.

4.2 Case Studies of Semantic Requests

In this section, several requests are presented using the

conceptual design of the CityGML RESTful Web Service

regarding the bldg resource. Initially, it should be noted that the

code list values of function, usage and class regarding the

buildings, interior/exterior installations, rooms and furniture is

specified in the XML file CityGML_ExternalCodeLists.xml,

according to the dictionary concept of GML 3.

4.2.1. Basic requests:
- Overview of the available buildings in LoD2:

../CityModels?Thematics= bldg&lod=2

Figure 6. LoD3 conceptual design

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

54

- The buildings with function hostel and residential in specific

boundary area (e.g. 334433.0,4455667.0,445677.0,5566556.0)

../bldg?function=1000,1020&BBox=334433.0,4455667.0,4

45677.0,5566556.0

- The walls of building 2

../bldg/2/walls

- The windows of the wall with gmlid 2 for building 1

../bldg/1/walls/2/windows

- The Light switches in building 2

../bldg/2/installations?function=3020

- The radiators of room 3 for building 2

../bldg/2/rooms/3/installations?usage=1010

- The living room in building 3

../bldg/3/rooms?function=1000

- The windows of room 2 for building 3

../bldg/3/rooms/2/windows

- The furniture of room 3 for building 4

../bldg/4/rooms/3/furniture

- The lamps of room 2 for building 3

../bldg/3/rooms/2/installations?function=3010

4.2.2. Advanced requests: Initially, each HTTP request should

happen in complete isolation (stateless interaction). As a result,

when the retrieval information is complex and need more than

one request to be used then these requests have to be

implemented sequentially. Hence, the result of each request can

be used as input value for the next request. However, taking into

consideration that the CityGML RESTful Web service is

designed in compliance with HATEOAS constrain then the URI

of every next request can be retrieved from the “links” object of

the current request.

- The doors of the toilet for building 2

.../bldg/2/rooms?function=1050

Second request using the retrieval gmlid (e.g. 2):

.../bldg/2/rooms/2/doors

4.2.3. Requests using simple JavaScript code:
- The number of burned out lamps in the living room for the

building with gmld2. Noted that the information about whether

the lamps are burned out or not is specified as a generic attribute

with the following key value pair: burned: Boolean.

The implementation of the first request retrieves the gmlid of the

living room:

.../bldg/2/rooms?function=1000

The second request is implemented utilizing the retrieval gmlid

(e,g, 3) in conjunction with the respective filter regarding the

installation function type:

.../bldg/2/rooms/3/installations?function=3010

Thereafter, the retrieval result is implemented as JSON input in

JavaScript code:

var Count=0;

responce.forEach(function(installations){

If(installations.generic.burned==true) {

 Count++; }})

Count;

5. CONCLUSION

In this paper, a new approach regarding the automatic retrieval of

CityGML data, based on their semantic characteristic is

presented. This approach is the CityGML RESTful Web service.

To this purpose, the two types of web services based on SOAP

and REST principle are thoroughly studied and compared. As a

result, the REST-style Web Service is chosen. The aforesaid

choice is considered more appropriate in comparison to the OGC

WFS, since the OGC WFS is a geospatial service developed with

the aim of retrieving, visualizing and modifying data based on

their geometry characteristics. Whereas, CityGML RESTful

Web service retrieves CityGML data according to semantic

features. Thereafter, several principles and guidelines are

addressed and the CityModel resource is introduced. Finally,

taking into account that the building module is one of the most

detailed thematic concepts of CityGML, the conceptual design of

bldg resource and the respective child resources regarding LoD2

to LoD4 are described and presented. However, only the first of

the ten main thematic resources is conceptually designed, while

the conceptual design of the rest main resources for all LoDs

needs to be further examined. It should be noted that this

approach focuses on the retrieval of the CityGML data and not

on the management of data (update and edit). Finally, when the

conceptual design is accomplished the logical and physical

design of this approach may be implemented and Cross-Domain

issues to be examined.

Result

1st request

2nd request

1st request

Figure 7. LoD4 conceptual design

2nd request

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

55

ACKNOWLEDGEMENTS

The Scholarship from the Onassis Foundation for this research is

gratefully acknowledged.

REFERENCES

Benjarmin, H. (2010). Web View Service Discussion Paper. ver

0.3.0. OpenGIS Discussion Paper.

Curtis, E. (2008). Serving CityGML via web feature services in

the OGC web services-phase 4 testbeds. Journal of Advances in

3D geoinformation systems, 331-340

Fowler, M. (2010). Richardson Maturity Model: steps toward the

glory of REST. Online at http://martinfowler.

com/articles/richardsonMaturityModel. Html.

Fu, P., & Sun, J. (2010). Web GIS: principles and applications.

USA: Esri Press.

Gillies, S., Butler, H., Daly, M., Doyle, A., & Schaub, T. (2016).

The GeoJSON Format. coordinates, 102, 0-5.

Greenfield, D., & Dornan, A. (2004). Amazon: Web Site to Web

Services. Network Magazine, 19(10), 58-60.

Groger, G., Kolbe, T., Nagel, C., & Hafele, K.-H. (2012). OGC

City Geography Markup Language (CItyGML) Encoding

Standard. Retrieved from Open Geospatial Consortium Inc

(2017): www.opengis.net/spec/citygml/2.0

Gröger, G., & Plümer, L. (2012). CityGML – Interoperable

semantic 3D city models. ISPRS Journal of Photogrammetry and

Remote Sensing (71), pp. 12–33.

Kolbe, T H., Zhihang Y., Nagel, C., Felix Kunde, Philipp

Willkomm, György Hudra, Arda Müftüoglu & Javier Herreruela.

(2015). 3D-City Database for CityGML. Institute for Geodesy

and Geoinformation Science, Technische Universität Berlin, 3.

Kolbe, T. H., König, G., Nagel, C., & Stadler, A. (2009). 3D-

Geo-Database for CityGML. Institute for Geodesy and

Geoinformation Science, Technische Universität Berlin, 2(1).

Kralidis, T. A. (2007). Geospatial web services: the evolution of

geospatial data infrastructure. Springer London

Kumari, V. (2015). Web Services Protocol: SOAP vs

REST. International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), 4(5), 2467-2469.

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). Sa-rest and (s)

mashups: Adding semantics to restful services. In Semantic

Computing, 2007. ICSC 2007. International Conference IEEE.

pp. 469-476.

Mohedano Troyano, N. (2010). The design of a RESTful web-

service (Master's thesis, Universitat Politècnica de Catalunya).

Mueller, J. (2013). Understanding SOAP and REST Basics And

Differences. Retrieved from SMARTBEAR (2016):

http://blog.smartbear.com/apis/understanding-soap-and-rest-

basics/

Mulligan, G., & Gračanin, D. (2009, December). A comparison

of SOAP and REST implementations of a service-based

interaction independence middleware framework. In Winter

Simulation Conference pp. 1423-1432

Mumbaikar, S., & Padiya, P. (2013). Web services based on soap

and rest principles. International Journal of Scientific and

Research Publications, 3(5), 1-4.

Newcomer, E., & Lomow, G. (2005). Understanding SOA with

Web services. Addison-Wesley

Nielsen, J. (1999). User interface directions for the

web. Communications of the ACM, 42(1), 65-72.

Open Source Geospatial Foundation. (2017). GeoServer User

Manual, 2.12.x. Retrieved from GeoServer (2017):

http://docs.geoserver.org/latest/en/user/

Pispidikis, I., & Dimopoulou, E. (2016). Development of a 3D

WebGIS system for retrieving and visualizing CityGML data

based on their geometric and semantic characteristics by using

free and open source technology. ISPRS Annals of

Photogrammetry, Remote Sensing & Spatial Information

Sciences, 4(2).

Potociar, M. (2011). When to use SOAP and when REST.

In International Conference on the Modern Art of Software, 5 th

Annual.

Prandi, F., Devigili, F., Soave, M., Di Staso, U., & De Amicis, R.

(2015). 3D web visualization of huge CityGML models. The

International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, 40(3), 601.

Quadt, U., & Kolbe, T. (2005, Febrouary 2). Web 3D Service.

Richardson, L., & Ruby, S. (2007). RESTful web services. USA:

O'Reilly Media, Inc

Rodriguez, A. (2008). Restful web services: The basics. IBM

developerWorks.

Schilling, A., & Kolbe, T. H. (2010). Draft for Candidate

OpenGIS Web 3D Service Interface Standard. ver. 0.4.0.

OpenGIS Discussion Paper

Thies, G., & Vossen, G. (2008). Web-oriented architectures: On

the impact of Web 2.0 on service-oriented architectures. IEEE

Asian-Pacific Services Computing Conference, (pp. 1075-82).

Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in

practice: Hypermedia and systems architecture. O'Reilly Media,

Inc.".

Zhu, W., Simons, A., Wursthorn, S., & Nichersu, A. (2016).

Integration of CityGML and Air Quality Spatio-Temporal Data

Series via OGC SOS. In Conference proceedings Geospatial

Sensor Web Conference.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W6-49-2018 | © Authors 2018. CC BY 4.0 License.

56

