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ABSTRACT:

According to the advances in Information & Communication Technology (ICT) , nowadays, the use of Internet of Things (IoT) has
become a normal part of daily life. It allows interconnections among a wide variety of devices and sensors such as smartphones,
smartwatches, automobiles, or any object with a built-in sensor. However, these devices and sensors are developed by numerous
different manufacturers which leads to technology lock-in in terms of data formats and protocols. In order of address this heterogeneity,
an interoperable sensor protocol is the need of the hour. To address this, we propose a sensor data management system for monitoring
pedelec usage and user fitness level. Using a proof-of-concept prototype the study is carried out in downtown of Stuttgart city. The
result of the integrated analyzed data is visualized in 3D digital globe CESIUM.

1. INTRODUCTION

The digital transformation does not only concern companies and
organizations, but indeed, entire cities. This has resulted in ur-
ban data becoming a resource. Hence it used as a corner stone
in different applications targeting unique test case scenarios. Re-
cent examples include urban mobility for public transport, car
sharing-concepts, autonomous driving vehicles, waste manage-
ment, energy efficient usage of resources as well as the provi-
sion of services of metropolitan administrations (Albakour et al.,
2014). The fundamental idea behind smart cities is that ICT can
be used for a sustainable, social and ecological design of the ur-
ban space. To realize this idea, a large collection of urban data
needs to be integrated and analyzed.

Figure 1: Pedelec with 10T sensors

In many city administrations, there exists a large pool of urban
data. This data is generally offered (at least partly) via geo data
infrastructure initiatives. Additionally, a plethora of sensors data
is provided under the overarching term “Internet Of Things” (IoT)
which provide a perpetual stream of urban data. The study “Smart
Cities Measure in Europe” has identified the crucial success fac-
tor for smart cities to be @ management of knowledge and @
access to data: “...access to the relevant data...” is as important
as the guarantee of data privacy and data protection (Manville et
al., 2014). Furthermore, a recent study (Kukka et al., 2013) has
identified emerging information needs citizens often have in their

public urban spaces. These information needs might be complex
and are often not served by existing systems such as traditional
web search engines. For example, these needs may include ob-
taining real-time information about events in the city or finding
free parking spaces or the best bike rout for ones fitness level
(Albakour et al., 2014).

An exceptional example to this is the city of Glasgow which has
been awarded the “Excellent Award for Application of GeoSpa-
tial Technology” for their project “Future City Glasgow” (Glas-
gowCityCouncil, 2018) as well as for their strategy for geo data
acquisition, usage and processing. Another notable example is
the Smart City Santander (Sanchez et al., 2014) which is a testbed
with around 3000 WiFi capable devices on stationary and mobile
platforms (e.g. on buses or a bike as in Fig. 1). They perform
measurements of the environment using over 2000 IoT devices
for measuring e.g. light, sound and CO2 concentration. Further-
more, a parking management and traffic monitoring system in-
forms about current traffic and availability of parking spaces (due
to build in sensors under the parking lots). These are just few of
the many examples how smart geo data can be used to enhance
and evolve our live in (smart) cities.

Although data is available, access and integration is completely
a different story. Different protocol, data formats and irregu-
lar time-series data streams are just some of the issues facing
data integration. In order to address this heterogeneity, an uni-
fied urban information model is necessary. One such concept is
the Open Urban Platform (OUP) which is a project lead by the
Open Geospatial Consortium (OGC) named “SystEmic Standard-
isation apPRoach to Empower Smart citieS and cOmmunities
(ESPRESSO-Consortium, 2018). The main goal of this project
is to sustain the interoperability of smart cities solutions in order
to integrate new ICT in an adequate way. In the first instance,
this is happening by the development of a Smart City Informa-
tion framework based on open standards such as CityGML and
Sensor Things.

Since the IoT technology has improved over the decades, its ad-
vancement allows sensors to be controlled through a remote net-
work, leading to the realization of a “Smart Cities concept (Con-
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Table 1: Sensor protocol features comparison.

Features \Protocols OGC SensorThings API OGC SOS ASDDS
Encoding JSON XML + (JSON in 52° North JSON
SOS 4.4)
Architectural Style Resource Oriented Service Oriented Architecture Resource Oriented
Architecture Architecture
Binding REST SOAP REST
Insert new Sensors HTTP POST SOS specific interface: HTTP POST

and Observation
results

InsertSensor() /
InsertResultTemplate() /
InsertResult() /

3D Location of a
Moving Sensor

Supported directly through
[Location and Historical

Location] Entities

Supported by SOS specific
interface: Spatial observation()

Not supported directly. [Input
as 3 Observation Values :
Lat/Long/Height]

Deleting existing HTTP DELETE OGC SOS Specific interface: Not supported. DeleterSensor()
sensors
Deleting existing HTTP DELETE Not supported Not supported
Observation
Pagination $top, $skip, $nextLink Not Supported Not Supported
Pub/Sub Support MQTT Not Supported Not Supported
Sensor Metadata Supported. (OGC O&M Supported. (OGC O&M Supported. (Name and Unit)
specification) specification)
Updating properties HTTP PATCH and JSON Supported Not Supported
of existing sensors or PATCH
observations
Linked data support JSON-LD Not Supported Not Supported
Request multiple Using $expand. Not Supported Not Supported
O&M Entities *
Aggregation Function Not Supported Not Supported Supported. (Only mean value

over the request

possible in this version)

The * referres to, for example, FeatureOf Interest and Observations in one request/response.

sortium, 2017). To apply this concept to monitoring a pedelec in
near real-time, integration of other dynamic sensors such as wear-
able sensor devices, smartphones, etc. becomes necessary. This
integration allows researchers and developers to access various
types of data. A recent study (Kohn, 2017) on the emotion anal-
ysis during pedelec usage found that, data from different sources
provided by the pedelec sensors and smart wearable devices were
difficult to integrate and aggregate due to a lack of a sensor net-
work. In fact, different types of sensors provide different data for-
mats, Application Programming Interface (API), and data model
structures. This controversy leads to the interoperability problem
(Jazayeri et al., 2015). In order to solve this issue, proper ways of
communicating sensor locations, sensor and data parameters, and
sensor instruction sets need to be addressed (Jo and Jang, 2016).

In this paper, we aim to study and compare existing sensor pro-
tocols. We target sensor protocols capability to integrate hetero-
geneous sensor systems together and provide their data in an ef-
ficient way. The challenge of this work is to maintain interop-
erability among different development layers, for example, the
communication protocols and data models. Additionally, in or-
der to solve issues related to irregular time-series data streams
from numerous IoT devices, sensor networks must provide the
capability to aggregate or interpolate the data over time. The rest
of the paper is organized as follow: Section 2. discusses related
works. Section 3. presents the proposed architecture. Section 4.
details our prototype implementation and discusses sensor proto-

col evalation. And finally, Section 5. concludes this paper with
pointers for future works.

2. RELATED WORK

Managing sensor data is a tedious task. This task becomes even
more complicated when we need to integrate heterogeneous sen-
sor systems. To address this issue, industry and academia have
proposed several standards using web services. Advanced Sensor
Data Delivery Service (ASDDS) is part of a student project (Storz
and Dastageeri, 2017) that support aggregated results of sensor
data. The main advantage of the proposed solution is to enable
user to query for mean or average value of a sensed data over a
specific period of time. Sensor Observation Service (SOS) (Na
and Priest, 2007) is part of OGC Sensor Web Enablement (SWE)
standard. It provides a standardised interface for accessing sen-
sor data. SOS supports data access operations for retrieving both
observation data GetObservation and sensor metadata
DescribeSensor. Besides these data access operations, the SOS
also offers a transactional interface which allows the inser-
tion of sensors InsertSensor and their observed data
InsertObservation. SensorThings (Liang et al., 2016) is an-
other standard proposed by OGC targeting resource-constrained
devices. It provides an open and unified framework to intercon-
nect [oT devices. The framework provides an efficient API that
enable resource-constrained IoT devices to share data among dif-
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ferent applications. The Standard provides the following ben-
efits, @ it permits the proliferation of new high-value services
with lower overhead of development and wider reach. @ It low-
ers the risks, time and cost across a full IoT product cycle. © it
simplifies the connections between device-to-device and device-
to-applications. Furthermore, it has a comprehensive support for
location information. Moreover, it supports publish and subscribe
mechanism using MQTT (Banks and Gupta, 2014) and linked
data using JSON-LD (Sporny et al., 2014). Table 1 shows detail
comparison of the three protocols. Due to these inherent advan-
tages we choose to use SensorThings.

3. SYSTEM ARCHITECTURE

This section explains the overall system architecture. As depicted
in Figure 2 it consists of four main steps, namely; Data Source,
Data preprocessing and Cleaning, Data Integration and User
Application. The functionality of each step is explained below.

O Data Source: Data is acquired from two sources. The first
source, Sensor or IoT Data Source @ shows the three main
data sources, namely; pedelec, smart-watch, and weather
data. The pedelec and smart-watch data is collected from
E-bike driven by volunteers from the Business Psychology
department, HFT Stuttgart (Kohn, 2017). The study used a
group of twelve female students aged 20 to 25 years. All
participants were asked to take the same 10-kilometer bike
route around Stuttgart city. To account for weather changes,
open-source weather data for the Stuttgart city from Open-
WeatherData was used.

The second source, 3D City Model Data Source B) shows
the 3D city model data of the Stuttgart city in CityGML for-
mat.

® Data preprocessing and Cleaning: The Sensor/IoT Data
Preparation © part is the intermediate processing for the
pedelec, smart-watch data, and Open Weather Data. For the
pedelec Transmission Control Unit (TCU) server, to set up
the sensor network to receive data in a local server from the
existing architecture, the first step is to deploy the STASH
sensor network which will subscribe the pedelec data from
a Vehicle Status Service (VSS) server directly into the lo-
cal server. It is an implementation of the pedelec archi-
tecture from our pedelec provider which was fixed. With
this solution, the pedelec data are sent as Datastreams to
the server whenever there is an update data log on the TCU.
However, due to the network security issue and adherence
to data privacy laws, this could not be tested. A second so-
lution, a workaround, was implemented to make commu-
nication from our server to the pedelec provider via File
Transfer Protocol (FTP). With this, users can retrieve data
every 24 hours and the pedelec TCU datastreams are col-
lected into the VSS servers database. The drawback of this
solution is that users cannot get the data in real-time which
would otherwise be possible. For the Garmin Smart Watch
data, the Datastreams are sent to the Garmin Connect server
(Garmin, 2018) whenever the device is connected to the in-
ternet. Then, the data can be extracted into TCX or GPX
format later on. For the Open Weather Data, the data source
is already provided in JSON format and can be then parsed
and imported directly into the SensorThings API server.

In the part of 3D City Model Data Preparation ©), in order
to process the web-based visualization of the 3D city mod-
els on the Cesiums web application with the input CityGML
file, the data conversion is needed and can be done with the

following solutions including 1) Using 3D CityDB to con-
vert the data into gITF format, 2) Using FME Workbench to
convert the data into Cesium 3D Tile format, and 3)Using
Georocket GeoToolbox tool to convert the data into Cesium
3D Tile format.

© Data Integration: In the part of Sensor/IoT Data Integra-
tion ®), the sensor/IoT data in a different format are parsed
and modeled in according to the OGC Observations and
Measurements specification then imported into the OGC Sen-
sorThings API server. For the next part 3D City Model Data
Integration (), the 3D city model in Cesium 3D Tile and
¢ITF are prepared in a project folder to be used later on in
the 3D Web-based application.

@ User Application: This part is to build an application by
utilizing the sensor data from the prepared sensor network
which is done on step @ and @ together with the prepared
3D city model data from the third step ©. The application
will be built in 3D using the Cesium JavaScript library.

4. IMPLEMENTATION
4.1 The sensor network protocols evaluation

Firstly, the best suitable sensor network protocol from the three
candidate protocols including 1) OGC SensorThings API, 2) OGC
Sensor Observation Service (SOS), and 3) Advanced Sensor Data
Delivery Service (ASDDS) is selected for this research. To do
that, the evaluation of the technical performance on each sensor
network protocol is made in the following metrics are used in-
cluding 1) Request size of an operation, 2) Response time of an
operation, 3) Response length of an operation, and 4) Support of
dynamic 3D location of a moving sensor. For the request size of
an operation, the SOS protocol needs a larger size of code and
transaction on each request while the SensorThings API and the
ASDDS use the simple HTTP GET method. For the response
time of an operation, the response time of a single request has
been evaluated and compared. A simple Node-JS application on
the server-side is written to perform a request on one observa-
tion result and print the response time to the console window.
The test result shows that the SOS takes more time until the re-
sponse comes back. For the response length of an operation, the
response length of the SOS provides much longer response length
as an XML format if comparing to the other JSON-based stan-
dard. But, with the 52North SOS 4 implementation version, the
response set of the value and time are available in JSON format
and are embedded in the single response file. While the OGC
SensorThings API and ASDDS provide the response as a repet-
itive attribute key-value pairs. However, to compensate for this
repetitive drawback in SensorThings API, firstly, the users are
capable to request only the needed attributed value, for exam-
ple, only result value with the query capability over the HTTP
request. Secondly, the SensorThings API is supported by service-
driven pagination which the number of response body can be
limited on each request. If the response size is larger than the
limited number on the server-side, then the nextLink annotation
is included in a response which represents the link to the next
part of the whole response body. For the support of dynamic 3D
location of a moving sensor, with the OGC SensorThings API,
the 3D locations are supported in GeoJSON format. The location
of the Thing entity can be updated through the HTTP PATCH
method. After the geospatial location of the Thing entities have
been updated, the existing location of the Locations entities will
be collected in the HistoricalLocations entity. For the OGC
SOS, the observation with the geospatial location is supported by
specifying the sampling geometry of the observation in the GML
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Figure 2: System Architecture

based which is much more complex request body comparing to
the OGC SensorThings API. While in ASDDS, there are no fea-
tures or entities to support the 2D or 3D locations of the sensor
systems directly.

To summarize the finding of the sensor network protocols eval-
uation, the OGC SensorThings API is the most competent IoT
framework among the three candidate protocols. Also, the com-
munication of OGC SensorThings API among IoT devices, servers,
and clients is in a standard-based REST style and JSON-based
encoding providing its advantage for developers to understand,
implement, and develop an application based on this standard in
a compact way. Additionally, it is the only protocol among the
three candidate protocol that supports the MQTT communica-
tion which is very useful for adding a light-weight IoT device
in the future. Even though the lack of the aggregation function
is its downside, there are several methods to add this feature to
this protocol including 1) adding an aggregation function on a
client-side, 2) adding an aggregation function a server-side, and
3) pre-computation of the aggregated results on the server-side.
In conclusion, the OGC SensorThings API protocol is selected
for an implementation for integrating the sensor and IoT data in
this work.

4.2 The sensor network protocols implementation

To implement the OGC SensorThings API in this research, the
server implementation of the OGC SensorThings API from Fraun-
hofer Institut IOSB is used. The first step to use this server is
to use the Apache Tomcat Maven to create a Web application
Archive or WAR file from the root folder of this source code.
Then, the Tomcat server must be installed on the machine that is
used for receiving the sensor data. In this study, the default port
8080 of the Tomcat server is used. Later on, the prepared Sen-
sorThings API WAR file is used to deploy on this server with the
application name of SensorThingsService.

4.3 Data modelling for the SensorThings API entities

For the data modeling, the sensor protocol conceptual model is
based on the OGC Observations and Measurements (O&M) spec-
ification. Firstly, all Sensing entities have to be specified starting
with modeling the incoming pedelec data, the Things entity set
is referred to the pedelec while the Sensors entity set is referred
to sensors placed on each pedelec. The ObservedProperties
entity set refers to the data type of the observed value from the
pedelec TCU. The FeaturesOfInterest entity set is referred
to users or riders. Currently, there is no system to automatically
identify who uses the pedelec at each moment, therefore in the
current sensor network, the FeaturesOflnterest entity is set to the
pedelec user ID manually. For the location of pedelecs, the latest
updated locations will be collected and updated in the Location
entity and the historical data will be automatically moved to the
Historicallocation entity whenever there is a new update
data of the location. This enables the developer to access all ped-
elec location data in both real-time and historical data. following
table.

Then, the Datastreams entity set is referred to the unique
ObservedProperty, Sensor, Thing and FeatureOf Interest
entity set. To confirm the idea about Datastreams, the exam-
ple figure explains each entity in Observations and Measurements
concept (Fig. 3, (FreeVectors.net, 2018)) After all the entities of
Observations and Measurements specification are identified, the
relations of entities are constructed based on the O&M standard
which is described in (Section 3.1.1: OGC SensorThings API,
(Liang, 2017)).

To use SensorThings API to manage the incoming data as an Ob-
servation entity, all possible Datastream and

FeatureOfInterest must be identified, created and imported
to the sensor network. As the Datastream entity is a set of com-
bination of Sensor, Thing, ObservedProperty and Location
entities, these entities must be identified first. To do this, JSON
arrays of these entities are created following the SensorThings
API standard. For example, Listings 1 and 2 show some part of
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the JSON array of the Things entity of the Sensors entity. The
figure 4 is showing the UML diagram of SensorThings API of the
example incoming data indicating the charge level of the pedelec
with the vehical identification : E-bike20131126003c.

Listing 1: JSON array: Things entity

-
[{
“name”: “ebikel”,
”description”: eBike #I1,
“properties”:{
”vin”: “eBikel2345c”
1.
]
- _J
p Listing 2: JSON array: Sensors entity
[{
“name”: “ebikel -TCU”,
“description”: Telemetric & Connectivity ,
”encodingType”: “application/pdf”,
“metadta”: http://censored.com/EbData. pdf”
1.
]
- _J

Feature of Interest

User/Ebike

Figure 3: pedelec: Observations and Measurements enti-
ties (FreeVectors.net, 2018)

4.4 SensorThings API: E-bike usage datastream

After the SensorThings API is successfully deployed on the ma-
chine, this application allows users to make a communication
with RESTful HTTP method to make requests and get responses
in JSON format via a SensorThings base resource path as the fol-
lowing URL pattern.

http://[IP name/address]: [port]/
[application_name]/[version]/[entity_name)]

Then, the next part is to make a connection link between the sen-
sor Datastreams and the SensorThings API database. To do
this, the NodeJS program is written to execute POST command
on the server side when there is an update of the Datastreams
from the sensor. For example, the Datastreams that collects the
charge level of the pedelec based on SensorThings API Standard
are shown in figd

4.5 A 3D Web-based Application using Cesium

The 3D Web-based application is built to illustrate utilizing many
sensor data types from the implemented sensor network and the
prepared 3D city model data. For users, this application is de-
signed as a tool for researchers who interested in the relation

among the different parameters from heterogeneous sensor sys-
tems together with the realistic environment simulation as a ter-
rain height or a 3D city environment. The data that are used to
build this web application including (1) Data from Ebike-TCU
sensors, (2) Data from Garmin Smart Watch, (3) Historical Stuttgart
Weather data from OpenWeatherData API and the prepared city
models in the area of Stuttgart city.

For requesting the sensor data from the database, the JQuery li-
brary is used to make a request for the specified observation result
from the SensorThings API server. With the SensorThings API
standard, users can request the observation result with the spec-
ified period of time by using the filter query filter and also limit
the response body to return only result and resultTime key-pair-
values by using the selected query select. Then, to visualize the
data on Cesium application, the data is conversed into CZML or
Cesium language which is a JSON describing a time-dynamic
primarily for display in a Cesium application.

The developed web application for this research is named as i_city
ebike sharing and has the user interface shown in figure 5. The
main user’s menu is on the left window with the main functional-
ities as the following:

© Map pin  With this function, users can simulate the impor-
tant point of interest related to the E-bike usage, for example, the
starting point of a journey or the charging station.

@ 3D city model Users can simulate the 3D city model in Stuttgart
are in prepared gITF or Cesium 3D Tile. Also, they are able to
adjust the transparency level.

© Real-time E-bike status Users can request the latest infor-
mation on each E-bike, for example, charging level, speed, pedal
force, etc.

@ Historical E-bike route Users can request the historical E-
bike session simulation on the selected session date. The E-bike
usage information window will pop-up showing the current status
matching the E-bike status on the specific time and the applica-
tion clock. (figure 5)

O Compute the Statistical information  Users can request the
statistic of the historical E-bike usage. For this functionality,
there is a menu panel that users can select date and time for the
beginning and the end of for the request usage time and also the
first and second Sensor or IoT data parameters. Then, after the
selection, the statistical chart and relevant statistical parameters
are shown to users (figure 6).

5. CONCLUSIONS AND FUTURE WORK

A 3D web-based application has been developed in the final part
of this research. The Cesium JavaScript is used to build the main
part of the application. For the 3D city model, the current ce-
sium application version is not supported to show the city model
in CityGML file format directly. Some additional steps for file
conversion to Cesium 3D-Tile or gITF are needed. Accordingly,
the conversion of CityGML to Cesium 3D-Tile and gITF is done
in this work using different tools. At this stage, three different
tools are deliberately examined to find out the best solution. By
using the open-source 3DCityDB, the tool has proven capabilities
to import the CityGML data in PostgreSQL database and export
to the gITF file format with a defined styling option such as roof
and wall color of the building. A drawback of this tool is that
it still needs some manual steps for users to import the data into
the database first before exporting the data to a preferred format.
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Figure 6: Participant statistics : Garmin-HeartRate v/s TCU-Speed

There is no single step to converse the CityGML data to gITF file
format directly. On the other hand, the GeoRocket GeoToolbox
1.0.2, which is a lite source program written in Java for convert-
ing the input CityGML file into Cesium 3D-Tile, can run the con-
version through the command window in a single step without
exchanging file in the database. The Cesium 3D-Tile output from
the Stuttgart CityGML dataset can be shown on the Cesium 3D
application without any problem. Similarly, the FME 2017 can
convert a CityGML into Cesium 3D-Tile with one step and show
the result on the Cesium application as well. In addition, this
tool can view and edit the model of CityGML in both 2D and 3D
perspectives with a simple user-interface. However, the desktop
program of this tool must be installed first.

For the web-based visualization of the 3D city model in the Ce-
sium application, the result in Cesium 3D-Tile format has proven
that it takes less time and resource on the client side to load com-
pared to the file in gITF format. Still, at the moment, there is
no open source tool to convert data from CityGML to Cesium
3D-Tile directly. Currently, Cesium 3D-Tile is under the stage
of consideration where it will be certified as one of the OGC
community standard under the 3D Portrayal Service. This will
allow Cesium 3D-Tile to become interoperable among other 3D

geospatial formats such as X3D, gITF, I3S, and CityGML.

For the application development process using Cesium JavaScript
library, it is simple to learn how to use the Cesium framework as
there are many examples and tutorials on the website and also a
big developer community. To simulate the historical E-bike route,
the CZML file format is built on the client-side by requesting
the sensor data from the sensor network to show 3D E-bike path
which shows the good results on the application. All the sensor
data are collected into the sensor network without any constraints.
For further research, some rules or constraints can be applied to
validate the accuracy of its source, for example, the location fea-
sibility if the movement speed of the sensor is realistic for E-bike.
Hence, any observation data of the sensor position from one lo-
cation to another with excessed defined speed will be rejected by
the server. In addition, some observed property data are provided
by both the E-bike sensor and the Garmin Smart Watch in paral-
lel. Nevertheless, these duplicated data are not being deployed to
improve the total accuracy or to observe which data source pro-
vides more precise data. The future work of this part could be
to find a method to improve the data quality by analysis of data
from many sources. Lastly, the sensor system in this project is
still open for more IoT devices in daily-life such as smartphones,
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wearable health sensor devices, etc. These devices could measure
some missing important parameter that the Garmin Smart Watch
and the E-bike sensor do not collect during the usage time. Fur-
thermore, any supports of sensor network for various IoT prod-
ucts such as Apple iPhone, Samsung Galaxy, Apple Watch, etc.,
would give a good impression for users after the E-bike sharing
project is deployed in a city level. From a researcher point of
view, more sensors equipped on each E-bike means more usage
information. In other words, greater opportunity for researchers
and developers to analyze and utilize those data in a Smart Cities
concept. For instance, an IMU sensor equipped on E-bike would
give a parameter to calculate the real terrain slope over the whole
usage time; or a temperature sensor to measure the outside tem-
perature and then the relation of this value and the body tem-
perature from a wearable device can be computed. Moreover,
some type of sensors or devices can be integrated to let the users
identify their simple information like age and gender which are
important for the future research.
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