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ABSTRACT:

When the fire brigade arrives at a burning building, it is of vital importance that people who are still inside can quickly be found. Smart
buildings should be able to expose this location data to the fire brigade working in a smart city. In this paper the feasibility is researched
of using ultrasonic sound sensors for human presence detection in smoke-filled spaces. This type of sensor could assist the fire brigade
when evacuating a large building by directing them to the places where their help is most needed. The advantage of ultrasonic sound
over other sensors or cameras is that its signal is able to pierce through smoke, does not require badges or other wearable devices
and introduces little privacy and security risks. In addition, ultrasonic sensors are very inexpensive making it possible to equip every
room of a building with an ultrasonic presence detector. In this research both a preliminary ultrasound measuring device and signal
processing algorithm have been designed. Testing results show that the walking movement of a person in an indoor area can be detected
with the combination of the sensor and the algorithms. In addition, tests of the signal strength in smoke have shown that ultrasound
is capable of “looking through” the smoke. The algorithm based on a particle filter allows for more information to be extracted from
the relatively simple sensor signal by detecting human walking movement specifically and opens up the way for an ultrasound based
indoor positioning system that can be used in emergency situations.

1. INTRODUCTION

In large building fires, an important factor that determines the
strategy of the fire brigade is the presence of people inside the
building. Choices like where to start extinguishing and whether
to risk going into the building to search for people depend on
this knowledge. Usually, the only source of information there is
comes from incomplete sources such as statements from the peo-
ple who fled the building or lists of employees. The largest por-
tion of fatalities in fire emergency situations is not caused by a
direct result of the heat, but rather poisoning by the smoke gener-
ated by the fire (Stec, 2017). People suffering from the results of
smoke are often unconscious, but could still be saved if the fire-
men can reach them in time. For instance, carbon monoxide, the
most common poisonous gas in smoke from an indoor fire, may
incapacitate a person within 1 or 2 minutes at an air concentration
of 6400 ppm, but actual death from carbon monoxide may not
occur for up to 20 minutes (Goldstein, 2008). During this time,
quickly finding people is of vital importance. If an overview of
the building, indicating where people are, could be given so that
rescue actions can be quickly and efficiently coordinated then this
could potentially save lives.

The digital layer of a smart city would provide all kinds of infor-
mation that the fire brigade may need for disaster management.
Location data is intrinsically part of this information. In the data
of a smart city, there is no difference between inside or outside
location. This is a continuous environment with one grid refer-
ence. However, the underlying sensor technology will be differ-
ent. The options for indoor positioning are quite varied. RFID
badges (Ortakci et al., 2015), cameras (Sun et al., 2016) or even

Bluetooth (Lee et al., 2017) can all provide positioning informa-
tion. However, these sensors either do not work when there is
smoke or require people to wear something, making them prone
to failure when their information is most required and possibly
privacy sensitive. In this paper a new sensor based on ultrasound
is proposed that may be able to solve the indoor positioning prob-
lems, provide the smart city with the required positioning data in
ordinary circumstances and in addition give the fire brigade an
edge in disaster management when a fire occurs.

An important quality of ultrasound is that it is not obstructed by
smoke, retaining its localisation ability for a longer time dur-
ing a fire. It has been shown that it is possible to create a self-
configuring network of ultrasonic sensors that can track the loca-
tion of a target with an average error of less than 18 cm (Basaran
et al., 2014). Since the sensors work on the basis of echolocation,
the people inside the building do not need to do anything in order
to be tracked. It has been shown that it is also possible to use mo-
bile devices for ultrasonic localisation (Filonenko et al., 2013),
however, in an emergency situation it is a great advantage that
the localisation responsibility can be transferred from the person
to the smart building itself. In addition, this type of echoloca-
tion has a smaller impact on peoples privacy because they never
need to provide their identity to the system and no images of any
person could ever obtained by the ultrasonic sensor.

The fact that people are not required to identify themselves in
any way before the system can track them poses the challenge
to prevent tracking non-human objects such as doors, chairs and
possibly animals. This can be done by analysing the specific type
of movement in more detail. Any moving object has a character-
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istic movement signature in the ultrasonic signal. This signature
is caused by the separately moving parts of the object and is often
called the micro-Doppler signature (Kalgaonkar and Raj, 2007).
Recognising human movement from this feature is the research
that has been performed in this paper. The scope is to show that
enough data can be extracted from the signal of a single ultra-
sonic sensor to characterise human walking movement. To estab-
lish trust in the smoke penetrating capabilities of the ultrasonic
sensor and in order to provide a starting point for future research,
the proposed setup has also been tested in smoke conditions.

2. SONAR

Sonar is mostly used under water. Under water, sound carries
much further and is therefore a good alternative for radar, which
does not work well in water. In air, using sonar is still possible
but its range is reduced to the order of 10 meters (Kalgaonkar
and Raj, 2007). For indoor applications this is still quite usable.
In this research a continuous sound wave is used. A continu-
ous wave does not allow distance measurement, but since this
research is focussed on recognising movement of people, this is
not a problem and the same hardware could be used to do a pulsed
measurement in order to allow distance measurements as well.

An important advantage of sonar is that the hardware is very in-
expensive since it basically consists of just a speaker and a micro-
phone. The device that has been built for this research consists
of an ultrasonic receiver and transmitter accounting for a retail
price of approximately 6 euros each and two audio amplifiers of
about 1 euro per amplifier. Combined with some resistors and
capacitors, the total of all the components is less than 20 euros,
excluding the hardware for signal processing, which is currently
performed on a laptop.

The transmitter of the ultrasonic sensor sends out a sound of con-
stant frequency and the receiver registers the echo of this sound
from the environment. There are two types of information con-
veyed in this signal. First of all, any moving objects that reflect
the sound wave will change the frequency of the reflected wave
due to the Doppler effect. Secondly, the time it takes a pulse of
sound to reach an object and return to the sensor can be used to
calculate the distance to a certain object. It should be noted that
the signal that an ultrasonic sensor provides is one dimensional
(mono audio) and therefore the reflected signal of all objects in
a room will be summed into this one dimensional signal. The
signal processing therefore becomes a very important task. This
research is focussed on creating an algorithm that is able to pro-
cess all the little frequency changes in an ultrasonic signal and
to use a model based pattern recognition approach to recognise
human activity. The distance measurement is left out in this re-
search but could be incorporated in further research to localise
the activity.

In order to detect movement from the sonar signal, the Doppler
effect is analysed in some more detail. The frequency of the echo
of a walking person changes due to the Doppler effect. This hap-
pens at all of the separately moving body parts because the mov-
ing parts either elongate or compress a sound wave depending on
the direction of their movement. This changes the frequency of
the returned signal. The velocity v of a body part with respect to
the sensor can be calculated from the returned frequency fr and
the sent frequency fs as

v =

(
1− fr

fs

)
vsound

2
, (1)

where vsound is the velocity of sound in air. Since fs and vsound

are constants, the velocity of an object is a linear function of the
frequency change it causes.

The most common way of analysing what frequencies are in a
certain signal is by using the Fourier transform. The Fourier
transform is a data transformation that takes a time - amplitude
signal and converts it to a frequency - amplitude signal so that
it can be seen how much each frequency component is present
in the signal. By equation (1) the presence of frequencies in the
signal is directly related to the velocities that were in the mea-
sured scene. Unfortunately the Fourier transformation loses the
time component of the data so that it is not possible to deduce
how the velocities in the scene change over time. A way to keep
this dynamic information in the data is to apply the Fourier trans-
form to small pieces of signal. This way frequency and therefore
velocity information is made available for every interval of sig-
nal while it is still possible to see how this information changes
over time by comparing the subsequent intervals. This method,
often called the short time Fourier transform, results in a three di-
mensional graph with time, frequency and amplitude on the axes.
This graph is referred to as the spectrogram of the signal.

An example of a spectrogram from the signal that was reflected
off a walking person can be found in figure 1. The time and fre-
quency are on the x and y axes and the amplitude is represented
by the brightness level (brighter means higher amplitude). The
linear relationship between frequency and velocity allows for the
creation of a secondary y-axis giving the velocity corresponding
to each frequency. Different velocities that correspond to mov-
ing body parts can be observed in the spectrogram. The line at
zero velocity is always present due to reflections from the static
surroundings.

Figure 1. This figure shows the spectrogram of a walking
person. Brighter colours correspond to higher presence of the

frequencies.

Together all the small movements and their associated frequency
changes cause a so called Doppler signature in the spectrogram.
Based on this it is possible to discriminate between types of
movement based on the ultrasonic signal. Previously, this tech-
nique has been used for classifying gait (Kalgaonkar and Raj,
2007). In (Groot et al., 2013) a particle filter has been applied
in combination with the Thalmann model (Boulic et al., 1990)
that describes human walking for classifying Doppler signatures
from radar data. In this paper the same approach will be used, but
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focussed on recognising human presence in an emergency situa-
tion.

3. THE MOVEMENT MODEL

In order to recognise a walking person from the signal, the human
walking motion has to be characterised in terms of the body part
velocities. Using statistical methods, the movement model can
then be matched to the spectrogram of the measured signal. The
model that was used for walking people is the Thalmann model
(Boulic et al., 1990). This model has been built up empirically
from measuring the body parts of many people while they were
walking. It describes the angles that the joints make in relation
to each other over time. The model takes the person height and
walking velocity as parameters. Using the angles between the
joints, it is possible to calculate the (x, y, z) coordinates of the
body parts and then calculate their velocity relative to the sensor.

Figure 2. In this visualisation of the Thalmann model, the
various body parts that are modelled can be seen, indicated by

different colors.

Figure 3. The velocities of some (not all) body parts can be seen
here. The mean velocity is about 4 km/h and that the ankles

reach the largest velocities.

4. THE MEASUREMENT MODEL

Using the Thalmann movement model, the system that is ob-
served (walking persons) can be characterised. In order to com-
pare this to the signal that the ultrasonic sensor receives, the mea-
surements themselves also have to be modelled. As shown in
equation 1, the velocities that are calculated from the Thalmann
model (such as shown in figure 3) are directly related to the fre-
quencies that are present in the signal. Indeed, figure 3 is already
bearing some resemblance to the spectrogram in figure 1. How-
ever, it is not quite the same as the spectrogram yet. In practice
the velocities will be spread across neighbouring frequencies be-
cause of variations within a time frame of the spectrogram and
because of the characteristics of the discrete Fourier transform
itself (Harris, 1978). The velocities are therefore spread in the
model using a Gaussian spreading function.

Secondly, the strength of the reflection by a person depends on
the distance that this person is away from the sensor and on the
reflecting surface area. Sound spreads spherically and therefore
the sound intensity per square meter decreases with the same rate
with which the surface of a sphere increases. This is proportional
to the distance squared. In addition, the air also absorbs part of
the energy adding an exponential decay factor to the equation. In
figure 1 this effect can also be observed as the signal becomes
weaker while the person is walking away from the sensor. The
resulting sound intensity I(d) in watt per square meter that is re-
ceived from an object with a reflective surface of A square meters
at distance d meters is proportional to

I(d) ∝ I0Ad−410−0.26d, (2)

where I0 in watt is determined by the sound intensity at the sound
source.

Finally, there will be noise in the measurements. The noise in the
spectrogram can be described by a scaled non central chi square
distribution (Muirhead, 1982). Using the probability distribution
of the noise, it is possible to assert how likely it is that an observed
difference between the model and the measurement is due to a
model misfit or due to noise.

5. FILTERING

In order to make real time estimates of the number of people, it
is necessary to process the signal as it arrives. A particle filter
was chosen to do this. Particle filters are often used for tracking
applications and their advantage is that it is easy to incorporate
any model of choice describing the movement of the object that
is being tracked (Doucet et al., 2000). That means that the model
for walking that has been set up in this research can easily be
extended to allow for more activities to be detected.

At each time step the particle filter predicts, using the movement
model, what the next measurement will be. It does this in a
stochastic way by randomly generating many variations (called
particles in this context) on what the next measurement could be
like. When the measurement then becomes available, the parti-
cles are assigned weights that correspond to how well they fit the
measurement. Before the next prediction step, the particles are
then resampled from the current set of particles with each par-
ticle having a chance of being drawn equal to the weight it was
assigned in the previous step. By performing the resampling step,
particles that fit the measurement very well will be multiplied and

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018 
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W7-135-2018 | © Authors 2018. CC BY 4.0 License.

 
137



particles that were far off from the measurement will be extinct.
After the resampling step, the particles are again evolved to the
next future measurement and the algorithm is continued in the
same way.

The parameters that are the input to the model that generates the
theoretical signal from the Thalmann movement model are:

• Person height

• Walking velocity

• Distance to the sensor

• Walking direction

• Walking phase

The walking phase is a number between 0 and 1 which describes
how far a person in in a walking cycle. A walking cycle consists
of two steps, one with the left and one with the right foot. After
this the legs are again in the position in which they started.

6. RESULTS

In the first experiment, the sensor was placed in an office hallway
were people walked by. The sensor was placed on shoulder hight
and a continuous measurement was performed. The particle fil-
ter algorithm was then used to detect when there was a person
walking through the hallway.

The second experiment was performed on on a training location
of the fire brigade at the Spinel Safety Center in Dordrecht, The
Netherlands. At this training facility, a house containing some
common furniture like a couch and some closets and a small
kitchen was filled with glycerine based smoke, so dense that it
was not possible to distinguish objects from even half a meter
distance. The sensor was placed inside the house next to its en-
trance. Figure 4 shows this room.

In both cases, a continuous ultrasound tone of 41KHz was emit-
ted by the sensor and its echo was recorded with a sampling fre-
quency of 96KHz. The recorded sound was saved as a wav file
and processed afterwards using the algorithm described in the

Figure 4. A picture of the inside of the testing house before it
was filled with smoke. The picture is taken from the entrance.
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Figure 5. Particle filter results on the signal of a person walking
away from the sensor and then back again.

previous section. The results of the first and second experiment
can be seen in figures 5 and 6, respectively. In these figures the
upper graph shows the calculated likelihood of a person being
present, the middle graph shows the measured spectrogram and
the lower graph shows the simulated measurement that best fits
the measured data.

The measurement that was recorded in a normal office environ-
ment can be found in figure 5. The characteristic Doppler sig-
nature of a walking person can be clearly distinguished in the
measurement and it can also be seen that the simulated spectro-
gram follows the real signal quite well. The likelihood of a person
being present is fairly accurate, being close to 1 when the signal
shows that there is a person and 0 when there is only noise. It
can be seen that the system has more difficulty recognising that
there is a person when the person is walking towards the sensor
(negative velocity) than when the person is walking away from
the sensor (positive velocity). In the first case the person is de-
tected at a 4 meter distance while in the second case, the person
can be tracked up to 10 meters away from the sensor. This is be-
cause when a person walks towards the sensor from far away, the
signal starts out very weakly and because the system cannot see
what the signal will be like in the future, the very small signal
can still be reasonably explained as being due to noise. When the
person starts walking away while being close to the sensor, the
system knows that there has been a person before and it is there-
fore reasonable to believe that this same person is still causing the
signal. It is possible to increase the sensitivity of the system by
increasing the a priori likelihood of a person being present, but
this would inevitably increase the number of false positives.

During the smoke measurement, the signal strength in the room
was measured with and without smoke when the room was empty.
This measurement showed that the difference in signal strength
was within the standard deviation of the signal, and therefore in-
significant, showing that the sensor can measure equally well in
the glycerine based smoke as in normal conditions. Since the sen-
sor measurements themselves are not affected, the spectrograms
measured in smoke and in normal visibility are in principle the
same, as long as the scene is the same. It is therefore interesting
to look at the behaviour of a person walking without any visibility
in order to understand how the scene might change. When look-
ing at the spectrogram that was measured on a person walking in
the smoke filled room in figure 6, it is much harder to recognise
the characteristic Thalmann Doppler signature. Starting from 12
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Figure 6. Particle filter results on the measurement of a person
trying to find his way through glycerine based smoke, first away

from the sensor and then back.

seconds it can be found, but still at a much lower velocity level
than in normal conditions. Since the sensor itself is not affected
by the smoke, the only conclusion that can be drawn from this
difference, is that the person himself is behaving differently. This
conclusion was indeed confirmed by the person on whom the
measurement was performed. When walking in the smoke filled
room, the test subject was not able to see anything and there-
fore very withholding while walking, out of fear of bumping into
something. This can especially be seen in the signal before 10
seconds where the person first walked towards the sensor. After
this the person knew the room a little bit better and was able to
walk back in his normal way, but still much more slowly than he
would normally walk.

Looking at the presence likelihood it can be observed that despite
the different movement signature, the person is still detected, al-
though with less certainty. When looking at the simulated spec-
trogram it can be seen that the algorithm cannot follow the signal
very well and therefore is not very similar to the measured sig-
nal. The reason for this is simply that this kind of movement
was not in the model and therefore cannot represent the signal in
a good way. If a good movement model for blind path finding
was available then it would be possible to also detect this kind
of movement and the particle filter could even be programmed
to detect whether someone is exhibiting ordinary walking move-
ment or not. However, since the movement characteristic of a
person walking through smoke (possibly in panic) is inherently
less certain, it might be better to recognise human behaviour at
times when the situation is still safe and after that keep tracking
the person using an ultrasonic trilateration solution even when the
movement signature of this person changes.

7. CONCLUSIONS

By combining several simple electrical components a sensor was
built that can measure movement with enough accuracy to be able
to distinguish the characteristic movement signature of a walking
person when analysed using its spectrogram. Moreover, this sen-
sor was tested in smoke conditions and was still able to gener-
ate the same quality of measurements, making it suitable for use
in a disaster management system for the fire brigade if extended
with a way to remember peoples locations after they have fainted.
It was possible to build this sensor, excluding signal processing

hardware, for under 20 euros, potentially making it a very cost
effective solution.

Using a model based approach incorporating a particle filter, an
algorithm was proposed that can automatically assert the likeli-
hood that a given signal is due to a walking person. This likeli-
hood was very reliable in an office environment, especially when
people were within 4 meters from the sensor. At this distance
the system was always able to detect a person. From larger dis-
tances the weaker signal and the uncertainty this introduced re-
sulted in people being detected up to 10 meters when they had
been detected close by before, but not when they walked towards
the sensor from far away.

By testing the signal processing algorithm in smoke conditions as
well, it has been found that even though the ultrasonic sensor sig-
nal itself is unaffected by the smoke, the changed behaviour due
to the blinding effects of smoke causes people to move very dif-
ferently. The system was still able to detect the person eventually,
but gave much less certainty.

The fact that the sensor works as expected, even when there is no
ordinary visibility due to smoke, combined with the fact that the
proposed algorithm is able to detect people in the case for which it
was currently designed shows that it will be a promising effort to
improve the set up and extend the algorithms before productising
the system.

8. FUTURE WORK

Even though the initial results show that a system based on ultra-
sonic sensing can recognise human motion and is able to make
measurements in smoke, there is still a lot of work to be done
in order to extend the current work into a full indoor positioning
solution that can assist the fire brigade in rescuing people from a
burning building.

First of all, there is the problem of people behaving differently
when there is a lot of smoke in a room. In the experiments per-
formed in this research, the behaviour changed only because of
the lack of sight, but in a real emergency situation, the poisonous
smoke is also likely to make people faint. A possible solution for
this would be to track people even before an emergency situation.
This way the system could recognise that the movement was due
to a human being before, and then keep track of the location at
which new movement occurs. When someone does not move any
more, but did not move out of range either, it is very likely that
the person is still in the same place and the fire brigade should be
alerted.

In order to apply the above tracking logic to a system, it would
be very helpful to apply distance measurement in combination
with movement measurement. For this, the hardware does not
have to be changed, only the signal would have to be switched
from a continuous signal to a pulsed signal and the processing
algorithm adjusted accordingly. When the distance measurement
of multiple sensors in a room are combined, it would be possible
to calculate the location at which movement occurred. Also, the
current algorithm for the detection of human motion could be
extended to be able to count the number of people moving. This
would give the system more accuracy when there are multiple
people walking close together and individual localisation is more
difficult.

Using more sensors in a network would be necessary in any case
in order to cover larger rooms and to keep track of a full building.
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There is quite some logic involved in receiving all the information
and processing it. Ideally the sensors themselves would process a
part of the data on site so that the infrastructure is not required to
transfer the raw sensor signal data. In order to process the data on
site, the current algorithm would need to be improved in terms of
speed. The Thalmann model that has been used in this research
provides a very detailed movement description, but for the pur-
pose it is used in it would also be sufficient to have a simpler
approximation of the movement model that would be faster to
evaluate. A possibility for easily building movement models for
many types of movement could be using a 3D pointcloud sensor
as described in (Murray et al., 2018).

Finally, the current sensor is merely a prototype to be able to test
with. In order to make it suitable as a real product, it would re-
quire a more robust package that can withstand high temperatures
and it should be easy to connect into the huge sensor network of
a smart city.
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