
COMPUTING FEEDBACK FOR CITIZENS’ PROPOSALS IN PARTICIPATIVE URBAN
PLANNING

J. Dambruch 1,2

1 Technische Universität Darmstadt, Darmstadt, Germany

2 Fraunhofer Institute for Computer Graphics Research IGD, Competence Center for Spatial Information Management
 64283 Darmstadt, Germany – jens.dambruch@igd.fraunhofer.de

KEY WORDS: Public participation, co-creation, automated feedback, Domain-Specific Languages

ABSTRACT:

We show an approach how to provide computed feedback on citizens’ proposals based on open data and expert knowledge in
urban planning and public participation by using Domain-Specific Languages (DSL). We outline the process involving different
stakeholders of engineering such a DSL and provide an architecture capable of executing the language and uploading new scripts
at runtime. A real-world example of the city of Hamburg is used to show the principles and serves as input for development. A
prototype has been implemented and evaluated at various events involving citizen and city representatives. We conclude that
DSLs can be successfully applied to enable a new way to access data in a more convenient and understandable form, abstracting
from technical details and focusing on domain aspects.

1. INTRODUCTION

Engaging individual stakeholders and citizens in urban
planning is a growing trend. Besides meetings and written
communication especially web-enabled tools can aid this
participatory approach in various ways. As first step several
open data initiatives have been started and major cities such as
Hamburg1, Rome2 or London3 have started publishing data
online as open data.
Khan et al. (2017) report on the development of innovative
ICT systems for public participation using open data. These
platforms have the potential to transform city governance by
facilitating both top-down and bottom-up decision making.
A common problem is that data is mostly published “as-is”
and - without sound knowledge of the corresponding domain -
hard to understand and use. Also, various digital formats
necessitate the use of software tools targeted mainly at
professional users. On the other hand, new technical
developments such as web technology and improved 3D
display hardware is available at low cost and can be used in
this context successfully. Dambruch and Krämer (2014) show
how a 3D interactive web portal can be used to visualize urban
designs in interactive 3D and to gather citizens opinions and
feedback at the same time. Also, Ruppert et al (2015) report
on 3D visual analytics in an urban environment. Since data
about planning and legal rules imposed on planning and
development are often not visible or even formally defined it
is necessary to explain such restrictions to citizens when
making proposals. At best this should happen in an interactive
fashion by a dialogue-based system.
The idea of such an interactive feedback facility is the
motivation for this paper and in the following we report on the
concept and prototypical implementation. The driving use
cases are taken from the smarticipate4 project. For both
gathering requirements in the analysis phase and also for
testing and evaluation in later phases, we adopted a simple use
case elaborated with the city of Hamburg, where citizens

1 http://www.hamburg.de/transparenzportal-hamburg/
2 http://dati.comune.roma.it/
3 https://data.london.gov.uk/
4 http://www.smarticipate.eu

should propose locations to plant new trees within the city.
This use case should be implemented using a visual web-
application, which gives direct feedback on the location
selected by indicating possible obstacles blocking the location
such as buildings, roads, existing trees or even legal
regulations and city planning. Especially the reasons for
declining such proposals should be made transparent by giving
explanations such as: “There are gas pipes below the desired
location and the roots could harm them”.
For the design and implementation of these checks several
aspects are to be considered. The rules to check have to be
transformed to executable code from an informal description
ranging from legislation text written by lawyers to orally
inherited procedures involving details that nobody is aware of.
So basically, programmers and experts are bound in an
involved communication process any time they have to
implement the changes on rules or even implement new rules.
Another way would be to train administration to understand
technical programming concepts such as rule-based systems or
Semantic Web technology to implement those rules
themselves.
Both options, training experts to be programmers or teaching
programmers domain knowledge need a lot of engagement or
are too expensive on the long run and especially the data to be
used has to be considered carefully, since it has to be made
available in a suitable format as well. This introduces a lot of
overhead and leads to the idea that domain experts should be
enabled to define rules themselves in a specialized language
which is close to their abstraction level, without the need to
care for technical details and we show how this can be
accomplished with Domain-Specific Languages (DSL).
There is literature on Visual Analytics and Decision Making
such as Ruppert (2018) and Kovalerchuck and Schwing
(2004), but so far the concept of automated Feedback with
DSL processing based on available data seems to be new.

The paper is structured as follows: Chapter 2 explains the
concept of DSL for computing feedback on citizens proposals
and how engineering of such DSLs is done. Chapter 3
elaborates on a prototypical implementation of such DSLs and
a corresponding web-service with details on technology used
and examples covering the use case mentioned before. Chapter

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

35

4 is about evaluation and demonstration of the prototype in the
context of the smarticipate project. Chapter 5 is about future
work regarding technology and further implementation of the
prototype and chapter 6 is a discussion of the results and
conclusion.

2. CONCEPT

2.1 Domain-Specific Languages (DSL)

DSL is a well-known concept in computer science and is
widespread for example for descriptions of configurations of
systems. According to Fowler (2011, p. 27) a DSL is a
computer programming language of limited expressiveness
focused on a particular domain. This means that no general-
purpose programming is in mind rather a simple language
design tailored to users’ needs. In principle, this DSL is on the
same or very close to the semantic level of domain users
hiding unnecessary technical details. A concept of using DSL
for urban analysis has been outlined by Malewski, Dambruch
and Krämer (2015), which used DSLs as an instrument for
analyzing and visualizing geospatial data in a web
environment. A DSL was used to analyzed cycle paths and
also for highlighting results of the analysis. One of the major
drawbacks of this approach was that an expensive data
preparation was needed to make the data fit for the rule
execution system via annotating data and transforming it in
special formats. This should be replaced by ad-hoc annotation.
Mernick et al. (2005) report that DSLs can be enablers of
reuse in that the domain analysis carried out is now available
in an executable form – the DSL - for other developers as
well. On the other hand, they consider DSL development as a
hard task for both domain experts and developers since both
domain and technical knowledge or a close dialogue between
both is needed. A DSL will also enable domain experts to
concentrate on aspects important and abstract from technical
implementation aspects, which reduces development efforts.
In terms of the use case example of tree planting outlined
before, we aim to implement a feedback service using a DSL
as a technique to enable experts to define the rules and
processing needed to deliver automated feedback. As Stein
and Krämer (2014) point out, DSLs are especially designed
keeping in mind that these users are typically domain experts,
familiar with their domain model, but not with programming
languages or technical data processing tools. Therefore, based
on the analysis outlined next, we want to design a formal
language as close as appropriate to the language used by
experts, but can also be processed by computers in an
effective and efficient way.

2.2 Engineering a DSL

The crucial part is to define the DSL and also how scripts of
this language are executed in a computer environment. We
conceptualize this as a collaborative 3 phase process between
stakeholders, where phases are implemented as iterative sub-
processes as well as the process itself can be applied
iteratively.

Krämer (2014) outlines an approach based on Nicola et al.
(2009), which we adopt as basis for modelling phases. It
names the following aspects:

• Requirements Gathering
• Definition of Use Cases and User Stories
• Domain Analysis
• Definition of a Terminology and a Domain Model

• Mapping of Terminology to software artefacts and
actions

• Building of sample DSL scripts based on the
terminology and models defined above

• Derive formalized grammar from the sample DSL
scripts

• Review and reiterate if needed.

2.2.1 Phase 1: Design

The first phase (Figure 2.1) is a co-creation session between
domain and data experts and IT experts on the other side.

Figure 2.1 Phase 1

The domain experts are the persons that have the knowledge
about the domain semantics and what rules are to be
considered and decide how these rules look like from a formal
perspective. They select and explain the use cases relevant for
design and elaborates them in user stories. The vocabulary for
the language is elaborated by text analysis and takes the
keywords from user stories. Data entities can be identified by
the nouns used and discussed whether they match existing data
sets and also the relationships between them can be discussed.
Verbs indicate possible actions on the data sets.
The data expert is responsible to provide data that enables rule
processing. Typically, this can be some GIS expert or internal
IT personnel.
The IT experts are responsible for defining formal grammar
for DSL and mappings from data sets to the domain model.
They come up with sample language sentences or fragments
for further elaboration and also the data experts contribute to
this by identifying data sets for the use cases and their
relationship to the vocabulary. The outcome of this phase of
co-creation is a formal grammar and domain model
description driven by the use cases discussed.

2.2.2 Phase 2: Implementation

For the second phase (Figure 2.2) we can split the role of the
IT expert in roles such as analyst or programmer. The IT
analyst is responsible for defining the grammar and mappings
of the domain model to data while the programmer
implements the grammar by mapping the DSL elaborated in
phase 1 to a technical application programming interface
(API) via code templates. The domain model can be mapped
by standard tools such as style-sheet transformation.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

36

Fig 2.2 Phase 2

In most cases it is useful to introduce 2 DSL definitions: (1)
the Domain Model: a model definition language naming and
defining data types to model the domain and also how to
access and map external data into the model and (2) the DSL
Grammar: the actual domain specific language working on
model entities. The entities defined in the domain model could
also be reused more easily, but it needs to be assured that the
semantics of the entities remains clear and bound to the use
case.
In some cases, it might be necessary to extend the target API
by programmers to keep the mapping simple or also to enable
new functionality since the DSL is a restricted language by
design and not computationally complete.
The mappings and templates created will be deployed by the
IT expert on the technical target platform.

2.2.3 Phase 3: Application

In phase 3 (Figure 2.3) the domain expert can make use of the
platform by creating scripts based on the DSL descriptions
and mapping made in the previous phases checking constraints
in planning on (geo-)data obtained from IT based services.
The Rule scripts can be deployed in self-service and also data
is available via adapters configured to use the domain model
created in phase 2.

Figure 2.3 Phase 3

The whole process of language definition can be used
iteratively to enable early access to the language and of course
to amend mistakes or misunderstandings between
stakeholders. These rather involved stops have to be carried
out only once if a new language is elaborated. After this
domain experts can use it to write rules on their own. Existing

languages can be reused or adapted saving efforts, especially
within the technology framework executing the programs and
the libraries used to implement features in the DSL.

2.3 Feedback service design

The platform also needs to offer a runtime framework for
management of such DSL scripts. In this case we propose a
micro-service, which is responsible for managing data and
network access and dispatch of DSL programs to generate
feedback. Figure 2.4 shows how this generic service
framework operates on an activity level.

Figure 2.4 Generic operation of Feedback Service framework

A user or client triggers a standard web request via http on the
feedback service. The DSL programs registered there will be
triggered by a simple mapping of the request. Parameters
provided will be mapped or transformed as needed and
supplied to the program. Then the DSL program is executed
and results will again be mapped and transferred to the client.
The handling of the DSL scripts is twofold: (1) installing the
script in the service and (2) the actual execution of the script.
The installation performs the following steps:

• Parsing of scripts
• Generating executable code module by mapping of

language elements to functional modules
• Loading and registering of module as web service

The execution of the script triggers the generated code module
and supplies the parameters to it. The steps involved depend
on the actual script and can for example include other scripts,
access to data source, mapping of data obtained and various
calculations or string operations as in common programming
languages. Informal rules and data source definitions are
transcribed by Domain Experts to formal rule scripts and data
source definition scripts using the DSL grammar provided by
the programmers. These scripts get executed using the
framework provided by programmers deployed as feedback
service. Domain Experts access the services for example via
web browsers and the feedback can be integrated in a visual
application using maps or 3D city models.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

37

3. FEEDBACK SERVICE IMPLEMENTATION AND

RULE EXECUTION

In the following we describe how we implemented a runtime
environment for the DSLs to compute feedback as a web-
service. The concepts introduced before have been
implemented, so that models and data access definitions can
be generated with a generic DSL for that purpose. Artifacts
created by this are handled as normal program code and get
compiled and deployed with the service. The actual rule DSL
can be changed at run-time by uploading scripts to the service
by domain experts. The engineering steps such as
requirements gathering, domain analysis and definition of the
language have been carried out and documented in the context
of the smarticipate project, which we use as input for our
prototype implementation. It is also the goal to fully automate
as many steps as possible, therefore generation of code,
building and deployment are fully automated as scripts.
Further technical details can be found in Dambruch 2016.

3.1 Technology Stack

We implemented to prototype using the commonly available
platform Java, since there are already lots of mature toolkits
and libraries available for implementing DSL and also
common build and management tools for development.
The actual service is implemented using the Grizzly5 server
framework and the reference implementation of Java API for
Restful Web Service named Jersey6. Jersey as reference
implementation also adheres to a community driven open
specification process and is not vendor specific.
Jersey allows to define web services based on plain java
classes and annotations. Data interfaces are modelled as plain
Java Classes with additional annotations for Java-XML7
Binding. These annotations describe how Java objects are to
be serialized as XML or in our case JSON data.
Jersey also allows to register services at run time, which offers
a lot of flexibility. We use this possibility to generate and
register service handlers from DSL rule programs at runtime.
As tool for Grammar definition ANTLR8 is used and as
template mechanism we use Stringtemplate9 which implement
in combination the core of our DSL concept.

3.2 Framework parts

The code generated is using a java-based framework to
simplify code templates. It should be avoided to have very
complex code templates as this leads to complex error
scenarios for code generation. Instead of this, libraries should
be developed, which could be reused and tested separately,
which reduces the complexity for fixing errors drastically. The
development of the framework on the other hand can make
use of all features available in modern software development.
3.2.1 Adapter
Adapters are responsible for encapsulating data sources. They
make use of the defined entity and mapper artifacts and
deliver Java objects with clear semantics. For example OGC
compliant Web Feature Services are supported.

5 https://javaee.github.io/grizzly/
6 https://jersey.github.io
7 https://github.com/javaee/jaxb-v2
8 http://www.antlr.org, see also Parr (2012)
9 http://www.stringtemplate.org

3.2.2 Selectors
Adapters can make use of query operators to select data based
on spatial properties or other constraints. The results need to
be post processed and mapped to entities.
3.2.3 Entities and Mappers
Entities are the model classes generated as mentioned before,
resembling plain Java-Objects. Mappers contain information
about the data source and how the data is mapped into entities.
It is worth mentioning that no explicit relationships are
modelled between entities, since this information is not
available in most data sources. The relationships are to be
modelled by the DSL and in most cases will be specific for the
use case.

3.3 Defining Models and Mapping

After analysis of the domain and the corresponding data
sources a definition of the models and mappings with our DSL
takes place. This requires the feedback service development
environment and supplies tools to create the actual artefacts.
After this, the generated sources are available for manual
modification or amendment with special features within the
development environment. A second tool will be used to build
the server software, which makes the definitions available in
the feedback service. Finally, a tool can be triggered to
provide the software for deployment.
The grammar enables structured analysis of the user defined
models and simplifies parsing by providing classes which
have to be customized to extract the actual definitions. The
next step is validation to deal with patterns which cannot be
covered by the formal syntax. This should however be kept
very small and at best the grammar structure should be
designed to avoid such checks. Not every aspect can be
checked by the grammar type supported by ANTLR, for
example if an object referenced was defined before can only
be modelled by a more complex class of grammars which are
context sensitive. The next step is then the generation of the
actual Java-artifacts. We use a template engine for this. The
data extracted with the visitors is then put into placeholders
inside the templates and saved to the development
environment.

package "eu.smarticipate.hamburg.dsl"
define model Baum {
 "hausnummer" is string
 "kronendurchmesser" is realnumber
 "pflanzjahr" is number
 "strasse" is string
 "baumtyp" is string
}

define service Baum {
url "http://geodienste.hamburg.de/HH_WFS...
epsg 25832
type "app:strassenbaumkataster"
provides entity Baum {
 "hausnummer" from "hausnummer"
 "krone"from "kronendurchmesser"
 "pflanzjahr" from "pflanzjahr"
 "strasse" from "strasse"
 "baumtyp" from "sorte_deutsch"
 }
}

Fig. 3.3 Example of a model and data access definition

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

38

Figure 3.3 shows an example data and mapping definition for
the Hamburg tree planting use case. The package statement
defines an arbitrary scope for the definition and is needed to
separate different use case implementations. As of the
concept, definitions from other use cases are kept separate.
Each entity classified by a name has several attributes
identified by a name and a type. As types numbers, strings and
date are possible right now.
Next a service is defined having a name and properties for
accessing data provided via a Web Feature Service (Vretanos
2014). Each of the services produces entities as result. Any
entity defined before can be assigned, and also several
services offering the same type of entity are possible. Next is
the definition of how the data source attributes map to the
entities. This is kept very simple as there are already lots of
existing tools for data mapping, which can offer services
tailored to the use cases. However, it is still possible to extend
the DSL to enable more sophisticated mapping.
The next step is to generate technical artefacts representing
the entities and services. For this we use an automated build
script to generate java-based artefacts.
The build system in our case is gradle10 which enables to
define tasks in the build process. In our case the task starts a
parser for the model and mapper definition and generates java
artefacts. These artefacts are then available in the source code
structure of the feedback service, filed under the package
definition given in the aforementioned package statement. It is
advisable to use the standard java naming conventions or a
plain name without special characters.

3.4 Rule Language for tree checks

Based on the language elaborated for tree checks a program
example as in Figure 3.4 can be defined. Principles and
guidelines for a language design are adopted from Fowler
(2010), Karsei (2009) and van Roy (2004). First a package
statement is used to scope programs. Then the name of the
program is defined as “TreeRule” which is also the name to
register as endpoint for service execution. After this the data
sources to use are defined and named. “input” is the data to be
supplied by the caller of the service. Here an entity name
“Baum” is expected.

package "eu.smarticipate.hamburg.dsl"
define TreeRule as
datasource Building buildings, Baum hhtrees,
Lichtsignalanlage lsa, Landesgrundbesitz lgb

input Baum atree

check atree within distance 5 meters of buildings
on fail "Tree within distance of 5 meters"

check atree within distance 10 meters of buildings
on fail "Building within distance of 10 meters"

check atree within distance 10 meters of lsa
on fail "Lichtsignalanlage within distance of 10 meters"

check atree within distance 1 meters of lgb
on fail "Landesgrundbesitz within distance of 1 meters"

Fig. 3.4 Example of check rules program for tree planting

10 https://gradle.org

The actual data is to be supplied as JSON data. This data will
be parsed according to the definition and is provided as input
to the rule. Now the actual check clauses start: mostly they
determine if some datasource has objects close to the input
object. If this is the case the “fail” statements will emit a
warning to the overall result of the rule. The results are
provided to the technical clients also as JSON or XML.

4. EVALUATION

In the context of the smarticipate project a workshop in
Hamburg together with domain experts of the city was
conducted either to gather requirements and to discuss the
possible usage scenarios and feasibility of automated feedback
generation based on already available geodata. The main use
case discussed was about citizens suggesting where to plant
new trees with an online application. Citizens should get
direct feedback about the suitability of the selected planting
position. Table 4.1 shows the main criteria identified for
automated feedback generation, considering data available.
However, it got clear that a lot of topics cannot be covered due
to missing or inaccurate data. Especially infrastructure that is
maintained by private companies is not accessible as open
data. Also, manual control due to the processes established
within the city necessitate that the system cannot make final
decisions: these have to be made by city employees also due
to legal reasons.

Topic Description
Land use and
planned actions

Land already in use for buildings or
streets is obviously not useable for
planting trees. Also planned actions
should be considered if data is
available. For example, if
construction is planned for a street no
new trees should be planted until the
construction has been finished.

Species is
determined by
neighbourhood of
species

If for example an alley made up of all
the same species of trees is given, a
new tree should be of the same
species, if the tree is reasonably close
to the alley.

Species can be
changed by
definition

In contrast to the rule given above
sometimes a tree species doesn’t work
out as desired on a certain location.
Also, a possible climate change might
influence the selection of trees to be
planted. A rule should be
implemented that overrides the rule of
keeping the same species with a
defined other species.

Distance to street
lighting

Trees grow and possibly will mask
street lights nearby. A minimum
distance should be kept from such
positions. Positions of street lights
need to be given.

Distance to other
trees

A certain distance to other trees is
needed to avoid competition of both
trees, for example sycamore trees
need a distance of at least 8 meters,
around 15 meters would be best.

Distance to traffic
signs or traffic
lights

Trees grow and possibly will mask
traffic lights nearby. A minimum
distance should be kept from such

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

39

positions.
Flooding areas Areas which can be flooded should be

avoided in general or a species that
can cope with these needs to be
selected.

Condition of soil

Basically, every ground close to road
works is denaturised and needs to be
refurbished. Thou the surroundings of
the potential tree position should be
free of poisonous substances or
demolition materials.

Privately owned
land

Privately owned land is excluded in
all cases

Table 4.1 Topics and rules suitable for automated checks

The actual service was used by several demo applications, for
example a 3D visualization of the Hamburg city area together
with a tree check rule program to demonstrate the possibilities
of giving feedback in a 3D environment considering rules
defined in Table 4.1. The architecture of the application is
shown in Figure 4.1.

Fig. 4.1 Interactive 3D city visualization of Hamburg with

integrated Feedback Service

The prototype has been shown at several events such as the
smartathons in the context of the smarticipate project. A
smartathon is special event similar to a smart hackathon where
citizens gather with local administration personnel and discuss
topics around urban planning and tools for planning. These
events provided hands-on sessions and also a lot of direct
interaction between planners, citizens and also IT experts. The
demonstrations revealed great potential for such an automated
feedback service. However, users stressed that the impact on
the planning and the results along with the factors leading to
an assessment should be more visual. This means that also the
influences should be made visual for example by colouring
them and not only showing a surrogate like a coloured
cylinder as we did in the demonstration.
The following results were gathered during the events by
observation and dialogues while using the system and are to
be considered for improvements:

• A toolkit to visualize the results is needed: It is a
hard task for visualization experts. Domain-Specific
Languages can also here be applied as a means to
apply proven visualisation patterns and stereotypes

in the 3D application level by end-users (domain
experts).

• The Feedback Service must be very clear regarding
the quality of the results provided. It’s not very
likely that in all possible cases all details are given in
a way that the feedback is deterministic and error-
free and this has to be conveyed to observers.
Missing aspects or missing data can lead to
questionable results and to counter this the system
need to give anytime an explanation which data was
used and which rules have led to the result. For
example, in the tree scenario, there may be
circumstances beyond control, which hinders
ultimately the planting of a new tree, which were not
known due to a bad data situation, e.g. unknown
pipes or hazardous ground below the area. It must be
clear that a service works on models which make
assumptions and those have to be transparent when
interpreting the results.

• The Rules should be displayed and also the exact
causes for the results should be emphasised visually.
Also, additional information about the origins of the
rules and further reading hints should be delivered.

• Missing data or missing rules are to be considered.
There may be steps involving manual interaction by
the city, searching archives for example or cases
where simply no data is available and someone needs
to do an on-site inspection. If this is the case the
system should at least tell about those.

• Lots of negative responses from a feedback service
when using online platforms to propose new
developments can lead to frustration of users. It
would be nice to have a proposal or guidance from
the system where to place trees.

• On the other hand, discussions with domain expert
show that it can complicated to find a suitable spot,
for example due to regulations and the data situation.
This can raise the awareness for the intrinsic
problems in urban planning, even in such simple
cases such as planting a tree and helps also
explaining such situations to the public.

5. FUTURE WORK

The results from evaluation show that it is vital that rules and
the outcomes of the feedback service are made visual and
explain also the reasons why a rule holds. The way the rules
are now transformed to code are too static for such a flexible
processing and other ways of execution will be researched
such as decision tables, production rule systems or
dependency networks (Fowler 2011).
Also further evaluation sessions with experts from other
domains will be conducted in upcoming events or with
interested cities to investigate the practical applicability of the
concept.
Another major aspect is the engineering process mentioned in
chapter 2. These processes are well-established in IT-industry
but not in city administration. There should be an overall
process architecture as sketched in Krämer, Khan and Ludlow
(2013) which could be further extended to serve as a platform
for participatory processes. Another more technical aspect for
research is about the DSL engineering itself: Since language
design is an involved task is there a convenient way to involve
end-users beyond capturing requirements or does this remain

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

40

in the realm of technicians? It is clear that such a language
needs not be complete in the sense of computability theory as
it always will be specific for a domain. The open research
question is what the borderlines of such a domain are, so that
it can be applied effectively and efficiently.

6. CONCLUSION

We have shown that DSLs are a suitable tool for providing
feedback to citizens based on actual data and engineered
knowledge in cities. DSL can be a convenient way to work
with geospatial data also for non-technical experts focusing on
domain problems rather than special technical
implementations.
The concept has the potential to mitigate problems which
typically arise when laymen are confronted with complex
planning. It can help to make reasons for decisions visible,
based on open data thus fostering transparency and mutual
understanding of problems. Also, by exchanging the DSL
scripts different perspectives on a scenario can be taken and
evaluated, enabling different stakeholders to share their point
of view. In comparison with the visual editor conceived from
Malewski, Dambruch and Krämer (2015) in which they
present a concept of a combination of 3D visualization and
Domain-Specific Languages as means for interaction and
analysis, we adopted a micro service approach and eliminated
the need for annotated data. The data will be transformed by
using the language while accessing the data, which reduces
efforts for set up of data drastically. Since there is already
geodata about various topics available this data can be used to
automate routine inquiries from citizens to some extent. It is
expected that simple cases can be automated quite well, e.g.
checking for obstacles like buildings or ownership of the
ground so that city employees can concentrate their work on
special cases, ambiguous data or data only available on paper,
thus offloading them with such tedious tasks.
Considering experiences from past projects the approach to
utilize DSLs is more appropriate as, for example use of
Semantic Web technology due to the following aspects:

• Data availability – usable annotated data or even
RDF is not available in the participating cities.

• Additional work overhead for annotating data and
redundant data storage is not feasible for cities.

• Expert users are typically not familiar with complex
IT-concepts not belonging to their domain and would
need support on long term basis.

• Definition of dynamic aspects, actions and
visualization is more important than reasoning.

• Deriving results from data should be as easy as
possible regarding the skills of users, which means
that there should be means for representing expert
knowledge on different abstraction levels.

The DSL based feedback service offers a lot of possibilities to
develop custom DSLs, which are small and easy to use. On the
other hand, the engineering of a DSL, syntax definition and
mapping to executable code is still a challenging task. By
having clear separations of roles, Domain Experts can make
use of technology through a language façade tailored to their
needs by IT experts. As a consequence, developers can focus
on technical challenges while Domain Experts can focus on
their domain challenges. The key is here to collaborate in a
managed fashion between both worlds. Also, the DSL can
offer a stable interface to data and processing, while the
technology to implement domain knowledge can be exchanged

easily to leverage new technology such as cloud computing or
also using other implementations offering better performance.
The trade-off is to find a language that is close to the domain
and not too abstract, but also reusable.
From the IT perspective, it is rather questionable if every city
needs to have a particular DSL of her own for the same topic
as in other cities. One could rather think of a community
driven engineering process, where an experts panel agree on
standardized elements, which could serve as blueprints. A zoo
of DSLs dealing with the very same topic can be avoided, but
if special features are needed they can be implemented right
away. In comparison to a generic model as Simple Feature
model (Herring et al. 2010) the possibilities to model the
semantics of rules and model elements is a major advantage in
that the rules can be self-explanatory and readable even by
laymen. So, in principle we can think of the DSL development
as an annotation process to data, which we consider as a major
step in making open data not just accessible but usable.

ACKNOWLEDGEMENTS

Research presented in this paper is partly funded by the
European Commission’s H2020 Framework Program Project
smarticipate, Grant # 693729.

REFERENCES

Dambruch, J.; Krämer, M. (2014): Leveraging public
participation in urban planning with 3D web technology. In
Proceedings of the 19th International ACM Conference on 3D
Web Technologies, Vancouver, BC, Canada, 8–10 August
2014; ACM: New York, NY, USA; pp. 117–124.

Dambruch J., Stein A., Ivanova V. (2016): Innovative
Approaches to Urban Data Management using Emerging
Technologies. In: Proceedings of REAL CORP Conference;
pp. 375-384.

De Nicola A., Missikoff M., Navigli R. (2009): A software
engineering approach to on-tology building. Information
Systems, volume 34 Issue 2; pp. 258-275.

Dambruch, J. (2016): Semantic data integration software and
semantic representation concept. Deliverable 3.2 of the
smarticipate project. https://www.smarticipate.eu/resources/

Dambruch, J. (2016): Interface and Toolkit Redbook.
Deliverable 5.2 of the smarticipate project.
https://www.smarticipate.eu/resources/

Fowler M. (2011): Domain-Specific Languages, No. ISBN 0-
321-71294-3, Addison Wesley.

Herring J. (ed.) et al. (2010): OpenGIS® Implementation
Standard for Geographic information - Simple feature access -
Part 1: Common architecture, Open Geospatial Con-sortium
Inc., http://portal.opengeospatial.org/files/?artifact_id=25355.

Karsai G., Krahn H., Pinkernell C., Rumpe B., Schindler M.,
&Völkel S. (2009): Design Guidelines for Domain Specific
Languages. In: Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM’ 09).

Khan, Z., Dambruch, J., Peters-Anders, J., Sackl, A., Strasser,
A., Fröhlich, P., Templer, S., Soomro, K. (2017): Developing
Knowledge based Citizen Participation Platform to Support

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

41

Smart City Decision Making: The Smarticipate Case Study.
In: MDPI Information Journal 2017, 8(2), 47, Special Issue on
smart City Technologies, Systems and Applications.
doi:10.3390/info8020047 http://www.mdpi.com/2078-
2489/8/2/47 .

Kovalerchuck, B., Schwing, J. (2004): Visual and Spatial
Analysis – Advances in Data Mining, Reasoning and Problem
Solving. Springer ISBN 1-4020-2939-X. Dordrecht, The
Netherlands.

Krämer M. (2014): Controlling the Processing of Smart City
Data in the Cloud with Do-main-Specific Languages. In:
IEEE/ACM 7th International Conference on Utility and Cloud
Computing, pp. 824-829.

Kramer, M.; Khan, Z.; Ludlow, D. (2013): Domain-specific
languages for agile urban policy modelling. In Proceedings of
the 27th European Conference on Modelling and Simulation
(ECMS), Alesund, Norway; pp. 673–680.

Krämer M., Stein A. (2014): Automated urban management
processes: integrating a graphical editor for modular domain-
specific languages into a 3D GIS. In: Proceedings of the 19th
international conference on urban planning and regional
development in the information society GeoMultimedia.

Malewski C., Dambruch J., Krämer M. (2015): Towards
Interactive Geodata Analysis through a Combination of
Domain-Specific Languages and 3D Geo Applications in a
Web Portal Environment. In: Proceedings of REAL CORP
Conference 2015, pp. 609-616.

Mernik M., Heering J., Sloane A. (2005): When and How to
Develop Domain-Specific Languages. ACM Computing
Surveys, Vol. 37, No. 4, pp. 316-344.

Parr, T. (2012): The Definitive ANTLR 4 Reference, The
Pragmatic Bookshelf, Dallas, Texas and Raleigh, North
Carolina, USA.

Ruppert, T. (2018): Visual Analytics to Support Evidence-
Based Decision Making. Technische Unniversität Darmstadt,
Darmstadt, http://tuprints.ulb.tu-darmstadt.de/7045/.

Ruppert, T., Dambruch, J., Krämer, M., Kohlhammer, J.,
Balke, T., Gavanelli, M., Bragaglia, S., Chesani, F., Milano
(2015): M. Visual Decision Support for Policy Making: Ad-
vancing Policy Analysis with Visualization. In Public
Administration and Information Technology; Janssen, M., Ed.;
International Publishers Association: Geneva, Switzerland.

Van Roy, P., Haridi, S. (2004): Concepts, Techniques, and
Models of Computer Programming. Massachusetts Institute of
Technology.

Vretanos P. A. (ed.) et al. (2014): OGC® Web Feature Service
2.0 Interface Standard, Open Geospatial Consortium Inc.,
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-35-2018 | © Authors 2018. CC BY 4.0 License.

42

