
SMART CITY WEBGIS APPLICATIONS: PROOF OF WORK CONCEPT FOR
HIGH-LEVEL QUALITY-OF-SERVICE ASSURANCE

A. Noskov

Institute of Geography, Heidelberg University, Germany - a@n-kov.com

KEY WORDS: Quality of WebGIS Services, Bitcoin’s Proof of Work, Spatial Information Theory, User Activity Monitoring, User
Requests Balancing, Quantity of Spatial Information

ABSTRACT:

In the frame of smart city initiatives, map-based web applications (WebGIS) are distinguished by the complexity of client-side imple-
mentation and high load on web servers. Web-map applications provide non-typical web content usually visualized by JavaScript code.
For such applications, higher-level advanced approaches to quality of service (QoS) assessment are required. In this paper, a method
based on the estimation of users’ interest in a web page and the information quantity provided by a web page is introduced. In order
to implement it, a proof of work (PoW) concept is applied for verification of real users. Moreover, a novel metric is introduced to
calculate the information quantity provided by web pages. PoW is used for verification of real users and distinguishing them from bots.
Additionally, it can be utilized for balancing of web server load. For monitoring of web pages, an image-based approach is introduced.
Web pages are rendered into raster images. A number of metrics describing an image are calculated. This approach allows users to
compare and track various web pages, including rich web applications providing complex WebGL content. Several web services utilize
the developed solutions. Analysis of harvested data proves the effectiveness of the proposed solution.

1. INTRODUCTION

In the frame of smart city initiatives, map-based web services
(WebGIS) are distinguished by the complexity of web applica-
tions and high load on web servers. Several WebGIS applica-
tions are developed in the frame of the WeGovNow (We Gov-
ernment Now) project funded by the EU Horizon-2020 program.
WeGovNow (Boella et al., 2018) is a research and innovation ac-
tion focused on civic participation in local government aiming at
using state-of-the-art digital technologies in community engage-
ment platforms to involve citizens in decision-making processes
within their local neighborhood. WeGovNow enables a new type
of interactivity in the co-production of citizen-centered services
and the co-development of strategic approaches to community de-
velopment. The platform provides several e-Government compo-
nents and related services. The mentioned components provide
the following facilities: citizens’ urban activities coordination
and collaboration, reporting local issues to a public administra-
tion, opinion formation on a given issue, and web mapping tools.
All components implement map-centered web applications.

As known, web-map applications provide non-typical web con-
tent (mainly, graphical) usually visualized by JavaScript (JS) code.
For such applications, higher-level advanced approaches to qual-
ity of service (QoS) assessment are required. Quality of Service
assurance is usually based on testing a number of parameters
(e.g., reliability, compatibility, code maintainability, availability,
effectiveness, vulnerability, efficiency). From tens to hundred
metrics can be applied for web service evaluation. Many exist-
ing approaches are described in the literature considered. One
can describe them as low-level solutions. Map-based web appli-
cations (a.k.a., WebGIS) require higher-level approaches.

In this work, the author proposes an approach based on the evalu-
ation of users’ interest in a web service and the quantity of infor-
mation provided by a web page. In order to conduct this, proof
of work (PoW) verification is applied to distinguish real users

from bots (or auto-ware, like spiders or crawlers). Moreover, spa-
tial information theory based metrics are applied to evaluate the
quantity of information provided by web pages.

This article proposes PoW-based solutions for QoS assurance,
monitoring of user activity and, prospectively, balancing of We-
bGIS services. For the first part of the approach, we use a JavaScript
function to implement PoW verification in client side. Only proved
by work users’ activity is considered further. This allows moni-
toring of users’ activity and setting up some initial variables em-
ployed in the further processes. Next, the author introduces a
novel approach based on spatial information theory to assess the
quantity of information delivered by WebGIS pages. The pro-
posed users’ verification technique and the procedure for evalu-
ation of web pages both construct a framework for QoS assess-
ment.

2. RELATED WORK

(Saleem et al., 2016) mentioned several issues regarding the qual-
ity of web services. Testing of web services is a significant prob-
lem that should be studied carefully; the testing has to be exten-
sive and comprehensive to all important levels, unit, component
and system level.

For assurance of quality of web services, the testing mechanism
for reliability, compatibility, code maintainability, availability, com-
plexity measures, effectiveness, vulnerability, efficiency and per-
formance measures were discovered. In (Shafin et al., 2012)
a Web Service Regression Testing Model (WSRTM) was pre-
sented. Many approaches are applicable for testing the reliability
of web services (Eler et al., 2010). For proper functioning of web
services, it is important to work orderly, have the capability of ef-
ficient integration and operation. Efficiency means the quality or
property of being efficient and near to half techniques caters for
efficiency quality parameters; all other techniques are not consid-
ering the efficiency in their techniques. It is an essential need and

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

99

the most important aspect that to ensure efficiency while perform-
ing and providing services to their user. Besides efficiency, the
effectiveness of providing services is also important. Efficiency
parameter is assured by many techniques (Masood et al., 2013; El
Ioini and Sillitti et al., 2011; Shafin et al., 2012; Yan et al., 2012).
Excepting (Yan et al., 2012) all mentioned techniques are suitable
for compatibility. (Zheng et al., 2014) proposed an approach to
the harvesting of data regarding QoS assessment conducted for
thousands of real world websites. The proposed techniques al-
low low-level evaluation. As mentioned, this paper introduces a
higher-level QoS assurance approach aimed mainly at WebGIS
services.

In this work, we introduce a novel Proof of Work (PoW) based
approach to quality of service assessment. PoW concept was de-
scribed by (Nakamoto, 2008). He described this process as fol-
lows. A PoW system similar to Adam Back’s Hashcash (Back,
2002), rather than newspaper or Usenet posts. The PoW involves
scanning for a value that when hashed, such as with SHA-256,
the hash begins with a number of zero bits. The average work
required is exponential in the number of zero bits required and
can be verified by executing a single hash. For the timestamp
network, the PoW is implemented by incrementing a nonce in
the block until a value is found that gives the block’s hash the re-
quired zero bits. Once the CPU effort has been expended to make
it satisfy the PoW, the block cannot be changed without redoing
the work. As later blocks are chained after it, the work to change
the block would include redoing all the blocks after it.

The Blockchain’s PoW concept is utilized for distinguishing real
users and bots. Alternatively, it can be achieved by using ses-
sion management or analyzing users’ behavior (Tran and Naka-
mura, 2016). The former approach may significantly decrease
the number of users, because of required authorization. The lat-
ter required the deployment of complex systems for user behavior
analysis and modeling. In many cases, it is not applicable.

It is popular to use information theory to estimate the quantity
of information delivered by a map (Noskov and Doytsher, 2014).
The entropy of maps with different degrees of generalization de-
rived from a one detailed map should be almost identical if extra-
neous data is removed. A good example of the task was demon-
strated by (Clarke and Battersby, 2001). The developed Coor-
dinate Digit Density (CDD) function measures redundancy. The
removal of extraneous data in the dataset should prove to increase
information content through the reduction of redundancies in the
coordinate set. A metric based on CDD is utilized in this work.

3. METHODOLOGY

Various approaches for low-level QoS assessment were discussed
in the previous section. These approaches are suitable for any
kind of web services. Developers use such methods for low-level
monitoring. In this work, we propose a solution for higher-level
QoS assurance oriented to a rich web application. The solution
consists of two main steps. First, we define pages which will be
evaluated. In order to achieve it, we apply an approach for distin-
guishing real users and bots. Second, pages visited by real users
are assessed. We utilize an image-based approach for this task.
All processes are carefully logged; that allows us to verify the re-
sults of QoS assessment and provide a full-history information to
developers and users in the future.

3.1 Client Side PoW: Verification of Real Users

As known, HTML has been designed as a markup language rep-
resenting text documents. Now, its use case is much wider. It has
been enriched by incorporating CSS and JS into HTML pages.
As a result, HTML pages can provide rich content. HTML5 of-
fers WebGL functionality which enables to implement advanced
graphics applications covering even 3D visualization.

Despite the structured manner of HTML, it is difficult to ana-
lyze rich web pages, because JS can turn a document into a very
complex entity. WebGIS applications illustrate this. WebGL
based map applications do not contribute to the Document Ob-
ject Model (DOM). They rather provide results of processing in
a form of raster images. Attempts to analyze structurally modern
web applications remain a complex task. Thus, in this article, we
introduced an image-based approach to web page assessment and
monitoring.

PoW-based user verification followed by the web page informa-
tion quantity calculation allows us to assess the quality of We-
bGIS service. The proposed approach is suitable for web services
providing rich visual content. It is not limited only by map-based
web applications.

In order to recognize bots from real users, JS-based solutions are
applied quite often. For instance, a media file could be accessed
by a script function. Bots are usually written in scripting lan-
guages (e.g., Perl, Python). Bots access multiple web pages for
various reasons: harvesting content, collecting statistics, seeking
vulnerabilities, spamming (e.g., referrer spam), etc. Bots can eas-
ily manage cookies. As a result, bots cannot be easily filtered out
by web service owners.

Normally, bots do not evaluate JS code. To prevent email spam-
ming, many people prefer to publish their email addresses as links
generated by a JS function. This approach is quite effective since
significant computer resources are required to acquire informa-
tion generated on-the-fly in web browsers.

The PoW concept. The Proof of Work (Pow) concept utilized by
Bitcoin enables to significantly decrease the probability of rec-
ognizing bots as real users. On the Blockchain technology, the
complexity is based on probability to find a hash integer value
lower than a defined level.

In order to implement a proof of work approach, we propose to
use the xxHash algorithm (Mashtizadeh, 2017). Developers de-
scribe it as ”an Extremely fast Hash algorithm, running at RAM
speed limit”. According to the testing results, xxHash runs 16
times faster than MD5 and 19 times faster than SHA1. This is
important because in our case hashes are calculated in a web
browser environment. Proof of work processing cannot be very
sensitive to a regular user. At the same time, it should be costly
for bots. xxHash libraries are implemented for many program-
ming languages, including JS and Tcl. We use the latter for back-
end development. Two parameters are required to generate an
xxHash. The first parameter is any hashing object. The second
is a seed integer (usually a random object). We generate a hash
according to the following JS listing.

1 XXH. h32 (n a v i g a t o r . u s e r A g e n t +”−”+window .
l o c a t i o n . h r e f +”−”+ S t r i n g ((new Date ()) .
ge tTime ()) , Math . f l o o r (Math . random () ∗
999999999999)) . toNumber ()

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

100

Figure 1. Histograms of hash values for 1000 random strings
generated by 2 attempts.

XXH.h32 is a function for hash calculating. In the listing, a hash
is calculated for a string object consisting of a user agent (a de-
scription of a web browser sending in headers to a server), a URL
address of a web page and a time value in milliseconds joined
by a dash symbol. The function is seeded by a random integer
in the interval 0− 1012. Developers can use various approaches
for calculating hash numbers. They can apply another hashing
algorithm, hashing parameters, various ways to combine param-
eters. The listing demonstrates just one of the infinitely possible
solutions.

From the blockchain solution, one can notice that the proof of
work concept based on the difficulty to find a hash integer lower
than the defined level. Bitcoin defines this level according to the
speed of calculation of the next block in a chain. If a next block
is found too fast a minimal hash level is decreased to increase
the complexity of a next block definition. Otherwise, the level is
increased.

We use a simpler approach to define a minimal level. In order to
obtain such value, we tested our solution on several devices. A
special web page was prepared. The page generates a number of
graphs allowing us to define the minimal level empirically.

Several types of graphs were analyzed. The following figures
provide typical graphs. In Figure 1, the first type of graphs rep-
resents the domain of hash values calculated for random strings
with a random seed.

From Figure 1 one can conclude that the domain of hashes in
0− 109. The distribution is almost equal. Thus we can suppose
that the probability of a random hash value from 0 to the half of
the domain equals approximately 0.5. For 1000 attempts hash
integers are distributed with an average frequency from 30 to 60
for 22 considered intervals. It should be mentioned that the prob-
ability of values in an interval of 4.2 ·109 to 4.5 ·109 is relatively
lower.

In the next step, various minimal levels are considered. In Fig-
ure 2 a histogram of attempts number required to obtain a hash
lower than a defined minimum level is demonstrated. One can
observe, that in the most cases number of attempts is lower than
3000. Only in a few cases, more than 3000 attempts are required.
These attempts can be ignored.

In Figure 3, a histogram of time required to obtain a hash lower
than a defined minimum level is presented. In most cases, a hash
is obtained in time less than 30 milliseconds. Few attempts re-
quired more than 30 milliseconds can be ignored.

Figure 2. Histogram of attempts number required for the
definition of a hash less than 5 ·106 for 1000 random string

objects.

Figure 3. Histogram of time (in milliseconds) required for the
definition of a hash value less than 5 ·106 for 1000 random string

objects.

Using the discovered properties of hash values probabilities we
can construct a framework for the analysis of users’ activity. Usu-
ally, cookies and/or user registration (session management) are
utilized to distinguish bots and real users. Currently, this problem
in many cases can be avoided by bots, because bots are capable
to manage cookies and even pass some basic registration pro-
cess. Complex registration processes require additional efforts
from the users’ side. Most users prefer not to visit websites ac-
cessible only to registered users. The registration can be a serious
obstacle to attract new users, especially for smaller sites.

Alternatively, some websites use a script-based initial verification
of users. A user visiting a web page waits several extra seconds,
while a number of JS routines are carried out to verify if a user
agent is a real web browser and is not a bot script. Then, the web
site returns a cookie with a session id. The process is repeated
when the session is expired. This approach requires a users’ pa-
tience and implementation of a session management in a server
side. The session management raises problems with personal data
processing because giving a session id allows websites to track
the activity of a certain user. In many cases, developers avoid
tracking users, because it can lead to unpleasant legal issues, es-
pecially in some developed countries. Additionally, in the age
of shared VPNs and anonymous networks, like Tor, many users
often share IP addresses. Thousands of bots try to automatically
acquire information through these IPs. As a result, when some-
one visits a website, she/he is forced to pass a captcha manually.
This makes web surfing for such users very problematic.

The described problems can be resolved by utilization of prob-
ability properties of hash values. The solution is based on the
definition of the balance between usability of a web service and
complexity of a hash-based verification task. It is implemented
by the definition of a minimal hash level. In Figures 2 and 3, the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

101

(a)

(b)

(c)

Figure 4. Normalization of rendered images. Top-down:
original, gray-scaled and resized image.

solution has to be in the interval from 0 to 5 · 106− 1, i.e., the
minimal hash level equals 5 · 106− 1. This value configures the
complexity of a task. Decreasing of a level leads to increasing
the complexity and, thus, processing time. Hence, in cases of in-
creasing number of website hits, decreasing a minimal hash level
will lead to slowing down a real user activity. It is useful for the
users’ requests balancing. Additionally, it allows administrators
to identify and block bots interrupting the normal functionality of
a web service.

The described Proof of Work based methodology allows us to dis-
tinguish bots and real users, avoid session management in many
cases and balance request through slowing down user agents. The
proposed approach is useful for indicating the usability of a web
page. Only web pages visited by users passed PoW verification
will be considered further.

3.2 Server Side PoW: Image Based Assessment of Web Pages

In 3.1, we described a mechanism for recognizing real users. Us-
ing it, we can see web pages visited by real users (users passed
PoW verification). This automation shows us essential web pages,
excluding documents playing a role of service pages (e.g., tem-
porarily, debug and testing pages) that are not visited by real
users. Knowing a list of pages, we need an approach to assess

and monitor them. As mentioned above, it is difficult and unpro-
ductive to analyze DOM of web pages. In this work, we introduce
an image-based approach to web page assessment and monitor-
ing. The approach consists of the two following steps: rendering
of a web page and obtaining a number of quantitative parameters
from a rendered raster file.

Nowadays, multiple tools are available for automatic rendering of
web pages. Most of them are divided into two categories. The fist
is designed on top of the QT programming environment. The sec-
ond utilizes facilities provided by the Node.JS library. Both so-
lutions allow rendering of web pages in the command line mode.
That makes them suitable to be used on a server for real-time
rendering of web pages.

Rendering of rich web pages is a resource-consuming process.
A web browser instance is run in memory and renders web page
evaluating rich JS code. Such rendering can be applied to a lim-
ited number of web pages. Thus, it is important to consider only
real users. If a page is not visited it should not be assessed.
Hence, a kind a PoW procedure is applied on the server side be-
cause the solution requires significant resources and cannot be
applied for very massive assessment of web pages.

A web page is rendered to a regular PNG raster file. Two sig-
nificant (for assessment and monitoring) basic metrics can be ex-
tracted from a PNG file: size and height of a file. A virtual mon-
itor utilized for web page rendering always returns same-width
images, thus, it makes no sense to extract a width of a page. A
minimal height of images equals the height of a virtual monitor,
a maximal height is not limited.

During the rendering of web pages, all required CSS rules are
applied and scripts are implemented. Thus, a rendered image file
provides the same view of a web page as users see through a
regular web browser.

The aim of web page monitoring is to recognize the essential
properties of a web page. We do not try to catch every small
change of a web page, only a significant dynamic should be reg-
istered. For this, the quantity of information provided by a web
page is calculated.

Our central monitoring service is designed for multiple websites
in a row. Thus, only simple information quantity metrics were
considered. It was decided to use three metrics.

The first metric is the size of a PNG image in bytes (an integer
value). The size can be easily obtained from an image file; it re-
flects the quantity of information provided by a page. Web pages
rendered into same size images several times are marked as un-
changed for a considering term. If the size of an image grows,
the quantity of information provided by a web page increases.

The second metric is the height of the image in pixels (an integer
value). This an important parameter. For two images with the
same height, the bigger size image provides more information.
As mentioned, all images have the same width.

Pixel Value Density. The third metric is the Pixel Value Den-
sity (PVD); it has been developed by the author. The metric uses
ideas behind Coordinate Digit Density described in 2. PVD is an
advances information theory based parameter designed to evalu-
ate the amount of essential information provided by a raster im-
age. In order to eliminate non-informative (mainly decorative) el-
ements of web pages (e.g., color gradients, background patterns,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

102

(a)

(b)

Figure 5. D3: number of attempts (top) and time (bottom) to
achieve the minimal level.

etc.) and make possible to compare different-size web pages, ren-
dered images have to be normalized. The normalization consists
of converting a color image to grayscale and resizing an image
to rectangular canvas. In Figure 4, the normalization process is
illustrated.

PVD is calculated for normalized images according to the follow-
ing equation:

PV D =
maxindex

∑
i=0

| ni

N
−O | (1)

In the equation, i is an index of a pixel value. For instance, a
black-and-white image contains only two indexes of pixel values,
0 and 1-, 3-byte grayscale image provides 8 indexes for a pixel
value. PNG data format defines indexes for each pixel. That re-
quires less computer memory and can be effectively compressed.
Colors of pixels are defined by a palette which establishes cor-
respondences between indexes and colors (in RGBA format). ni
is the number of pixels with index i. N is the number of pixels
in an image. O is an overall variation of the index. It is calcu-
lated as 1/2bits, where ”bits” means a number of bytes required
for a pixel. For instance, overall variation of a 3-bit pixel image

is calculated as
1
8
=

1
23 .

The proposed metric can be refined during further verification.
More web pages and longer time period are required for this.

4. IMPLEMENTATION

Refinement of shared HTML code. An empty scalable vector
graphic (SVG) file is used for implementation of the client-side
PoW. The SVG data format has been chosen because it is ex-
tremely easy to generate it. In comparison to raster images, any
information could be easily included in a file. That is useful for
debugging. Moreover, a request for an SVG file from another
server is not restricted by any browser. An AJAX request re-
quires permissions granted by a website developer. Otherwise,
it will be rejected to prevent Cross-Site Scripting (XSS) vulner-
abilities. Thus, our central server for user activity monitoring
provides and Application Programming Interface (API) respond-
ing an SVG file. In normal mode, it responds an empty SVG file

(a)

(b)

Figure 6. D2: number of attempts (top) and time (bottom) to
achieve the minimal level.

Device Id Name CPU RAM

D1 Fujitsu Desktop Dual Core 2.4 GHz 16GB
D2 Lenovo X200 2xIntel 2.4GHz 4GB
D3 Samsung Galaxy S3 S4 1.5 GHz 2GB

Table 1. Specifications of the devices utilized in testing.

comprising an XML comment with a word ”Accepted” for val-
idated requests and ”Rejected” otherwise. In debug mode, API
generates SVG images comprising a green rectangle for validated
requests and a red rectangle for rejected.

In most cases, modern websites provide common header and footer
HTML parts. Thus, adding a script function requesting a media
file automatically reflected by all pages of a website. In order to
implement this idea, three components should be integrated into
a common header or footer of a website. The first component is
a link to a script file or inline script itself. The script contains
the main function requesting a media file from a central service
for monitoring user activity. Additionally, a script file contains
required dependencies. Second, an empty DOM image object
should be defined. And third, a trigger of a function requesting
a media file needs to be specified. Thus, a maximum of three
additional lines of HTML code is required.

Several devices were used to test the approach. The Table 1 pro-
vides technical characteristics of the devices.

Several websites are involved in monitoring. *.GSDR.GQ (gsdr.gq,
wgn.gsdr.gq and wgn-pt3.gsdr.gq) is a group of sites described
as ”Geo-Spatial Data Repository for Grand Quality”. The group
consists of different instances (or versions) of a web service for,
mainly, quality assessment of open geospatial data developed in
the frame of the WeGovNow project. IGIS.TK is a web frontend
of a version control system that manages an open source project.
An Integrated Geographic Information System Tool Kit is devel-
oped in the frame of the project. Tiles.CF is another open source
initiative for developing an open source library for manipulating
of geo-tiles. *.n-kov.com (a.n-kov.com and n-kov.com) is a per-
sonal website and a home page of several small open source tools.
All the mentioned websites are monitored by the central service.
SQLite database is used.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

103

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10 (a)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 (b)

0

5

10

15

1 2 3 4 5 6 7 8 9 10 (c)

Figure 7. Number of requests (a), number of unique IP addresses
(b) and user agents (c). Left (red) bars are logged by the web

server data, right (green) bars are verified by proof of work. The
Y-axis represents the time interval, one is 10 hours.

4.1 Client-side applications

In order to define an optimal minimal hash level or minimal hash
value, a number of tests were carried out. We defined empirically
that 5 ·106 can be used. In Figures 2-3, histograms reflecting the
required number of attempts and time are provided for device D1.
Figures 6 and 5 demonstrates same information for devices D2
and D3 correspondingly. One can conclude that for all devices
in the worst case (excluding some extremely rare cases) only 0.2
seconds are required to find a hash with a value lower than 5 ·106.
The fastest device is D1 (the desktop computer). It is twice faster
than the slowest device D2 (the smart phone).

In web pages, recommendations provided in 3.1 were applied.
The procedure is as follows. First, a web application checks the
time of a previous hash definition. If the application generates a
hash less than 3 seconds ago the procedure is rejected. It is use-
ful for dynamic web applications which send monitoring requests
many times, usually when the URL of a web page is modified
(e.g., to update zoom level and central point of a map). Then, an
iteration limited by 106 passes and 0.2 seconds is started. In order
to find a hash lower than the predefined minimal hash value, for
each iteration, a hash of string concatenating user agent, the URL
of the web page and time in milliseconds seeded by a random in-
teger (for each iteration a new random is generated) is calculated.

If the generated hash is lower than the minimal level, then a re-
quest for evaluation is sent in the following form: https://wgn-p
t3.gsdr.gq/wm/api.tcl?hash=1835626&time=1518404673682&s
eed=30631033887. The multiple iterations take time when veri-
fication implemented in a server-side is very fast. Moreover, it is
impossible to know in advance which seed is required. Only mul-
tiple random tries work. This is the main idea behind the proof of
work.

4.2 Server-side applications

The described solution was deployed on a VPN server with 4
dedicated ARM cores, 2 GB of memory and 50GB SSD disk.
GNU/Linux Debian Jessie operating system was installed on the
server. The Apache HTTP web server was installed from the offi-
cial repository. The latest Apache Rivet (version 3.0.1) was built
from the source code. Apache Rivet uses the Tcl programming
language for server-side functionality.

The procedure of request verification is as follows. First, only
requests sent from web pages belonging to the predefined list
of domains are considered. Second, the time is evaluated. Al-
lowed time deviation is one hour. Then the hash is calculated and
checked if it is lower than the predefined minimal level. If so, the
request is accepted.

Next, the web page from which request was sent is accessed. First
of all, the page is rendered into a PNG file. File size and image
height are calculated. Then, PVD is evaluated. All data are com-
mitted to the database.

5. RESULTS

The data considered in this work were collected from Wed Feb
7 15:33:59 CET 2018 to Sun Feb 11 14:07:38 CET 2018. Two
data types are processed: verified by proof of work requests and
a regular web server log covering only pages rendering by a web
browser (e.g., *.html, *.php, *.rvt, *.cgi, etc., media files, such as
*.js, *.css, *.png and APIs are not considered).

For the considered term, 550 requests were logged by the web
server and just 194 requests were verified by proof of work. In
Figure 7, logged and verified data are compared. One can notice
that most of the requests were made by bots. In the bar charts,
the number of requests, unique IP addresses, and user agents are
compared. All charts represent a relatively similar ratio between
real users and bots.

Figure 8 represents collected data in a histogram view. Charts
(b) and (c) were clipped because for Y axis more than 6 the rep-
resents Y value 1. The first histogram reflects collected seeds
(random values). The following histogram represents metrics of
the rendered web pages: size, height, size/height ration and PVD
value of the processed images.

Charts (b) and (c) of Figure 8 represent the same distribution of
images. Charts (d) and (e) provide more representative and use-
ful distribution for analysis allowing us to access the quality of
services. Additionally, it can be mentioned that some web pages
were not rendered because rendering took too much time (we lim-
ited it by 30 seconds). Such pages can be a source of users’ trou-
bles and developers can consider improving their performance.
This can be utilized as a Boolean indicator of web page quality.

The distinguished by the histograms rendered images are pre-
sented in Figure 8, metrics are provided by Table 3.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

104

(a) 0

8

16

24

32

0 5 10 15 20

0

38

76

114

152

0 5 10 15 20(b) 0

35

70

105

140

0 5 10 15 20(c)

0

13

26

39

52

0 5 10 15 20 (d) 0

14

28

42

56

0 5 10 15 20 (e)

Figure 8. Histogram of seed (a) random values used for the hash generation and size (b), height (c), size/height (d) and PVD (e)
values. For the meaning of the intervals of X-axis see Table 2

(a) (b) (c)

(d) (e) (f)

Figure 9. Normalized rendered web pages utilized for PVD calculation.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

105

Histogram, data type Minimal Maximal Interval(Y)

(a), seeds 1.12 ·1010 9.95 ·1011 4.9 ·1010

(b), sizes 17214 4930211 245649
(c), heights 360 26269 1295
(d) size/height ratio 1.0 784.0 39.15
(e) PVD 0.5547 1.4516 0.045

Table 2. Minimum, maximum and interval data for histograms
in Figure 8

Image in Figure 9 Size Height Size/Height PVD

(a) 282549 360 784.86 0.95
(b) 116877 360 324.66 0.74
(c) 130829 360 363.41 0.97
(d) 204716 360 568.65 1.09

Table 3. Image data

6. CONCLUSIONS

In this work, a novel approach to QoS assurance, monitoring,
and balancing of WebGIS services is introduced. Proof of work
concept is widely utilized.

In order to implement the concept, client and server-side applica-
tions have been developed. The approach enables distinguishing
bots and real users. Configuring minimal hash value allows de-
velopers to balance load of web services.

Image-based monitoring of web pages was introduced. Web pages
are rendered to raster images; a number of metrics are calculated.
The metrics are used to assess the quality of service. They can
detect poorly designed web pages and compare various types of
web pages.

The presented method is effective and promising. Prospectively,
more websites will be covered by the presented implementation.
A frontend web page displaying collected real-time data will be
developed. More data will be harvested and analyzed.

ACKNOWLEDGEMENTS

This work has been funded by the European Union’s Horizon
2020 research and innovation programme under the grant agree-
ment n. 693514 (”WeGovNow”). The article reflects only the
authors’ view and the European Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES

Boella, G., Francis, L., Grassi, E., Kistner, A., Nitsche, A.,
Noskov, A., Sanasi, L., Savoca, A., Schifanella, C. and Tsam-
poulatidis, I., 2018. WeGovNow: A Map Based Platform to En-
gage the Local Civic Society. In Companion of the The Web
Conference 2018 on The Web Conference 2018, International
World Wide Web Conferences Steering Committee, pp 1215-1219
https://doi.org/10.1145/3184558.3191560

Back, A. 2002. Hashcash - a denial of service counter-measure.
http://www.hashcash.org/papers/hashcash.pdf (4 July 2018)

Clarke, K. and Battersby S., 2001. The Coordinate Digit Density
function and Map Information Content Analysis. Proceedings of

the American Congress on Surveying and Mapping Annual Meet-
ing, Las Vegas, NV, USA.

Eler, M., Delamaro, M., Maldonado, J. and Masiero, P., 2010.
Built-In Structural Testing of Web Services. Brazilian Symposium
on Software Engineering, Salvador, Bahia https://doi.org/70-79
10.1109/SBES.2010.15

El Ioini, N. and Sillitti, A., 2011. Open Web Services Testing.
IEEE World Congress on Services, Washington, DC, pp. 130-136
https://doi.org/10.1109/SERVICES.2011.48

Mashtizadeh, A., Garfinkel, T., Terei, D., Mazieres, D.
and Rosenblum, M., 2017. Towards practical default-
on multi-core record/replay. Twenty-Second International
Conference on Architectural Support for Programming
Languages and Operating Systems, ACM, pp 693-708
https://doi.org/10.1145/3037697.3037751

Masood, T., Nadeem, A. and Ali, S., 2013. An auto-
mated approach to regression testing of web services based
on WSDL operation changes. IEEE 9th International Confer-
ence on Emerging Technologies (ICET), Islamabad, pp 1-5
https://doi.org/10.1109/ICET.2013.6743536

Nakamoto, S., 2008. Bitcoin: A Peer-to-Peer Electronic Cash
System. https://bitcoin.org/bitcoin.pdf (4 July 2018)

Noskov, A. and Doytsher, Y., 2014. Preparing Simplified 3D
Scenes of Multiple LODs of Buildings in Urban Areas Based
on a Raster Approach and Information Theory. Thematic Car-
tography for the Society, Springer International Publishing, pp
221-236 https://doi.org/10.1007/978-3-319-08180-9 17

Nyquist, H., 1924. Certain factors affecting telegraph
speed. Transactions of the American Institute of Electrical
Engineers, 43, pp.412-422 https://doi.org/10.1002/j.1538-
7305.1924.tb01361.x

Saleem, G., Azam, F., Younus, M., Ahmed N. and Yong L.,
2016. Quality assurance of web services: A systematic lit-
erature review. 2nd IEEE International Conference on Com-
puter and Communications (ICCC), Chengdu, , pp. 1391-1396
https://doi.org/10.1109/CompComm.2016.7924932

Shafin, S., Zhang, L. and Xu, X., 2012. Automated testing of
Web Services system based on OWL-S. World Congress on Infor-
mation and Communication Technologies, Trivandrum, pp 1103-
1108 https://doi.org/10.1109/WICT.2012.6409240

Tran M. and Nakamura Y, 2016. Web Access Behaviour
Model for Filtering Out HTTP Automated Software Ac-
cessed Domain. 10th International Conference on Ubiqui-
tous Information Management and Communication (IMCOM
’16), ACM, New York, NY, USA, , Article 67 , 4 pages
https://doi.org/10.1145/2857546.2857614

Yan, M., Sun, H., Wang, X. and Liu, X., 2012. Building a
TaaS Platform for Web Service Load Testing. IEEE Interna-
tional Conference on Cluster Computing, Beijing, pp 576-579
https://doi.org/10.1109/CLUSTER.2012.20

Zheng, Z., Zhang, Y. and Lyu, M., 2014. Investigat-
ing QoS of Real-World Web Services. IEEE Transac-
tions on Services Computing, vol. 7, no. 1, pp. 32-39
https://doi.org/10.1109/TSC.2012.34

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W7, 2018
3rd International Conference on Smart Data and Smart Cities, 4–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W7-99-2018 | © Authors 2018. CC BY 4.0 License.

106

