
AUTOMATIC 2D MODELLING OF INNER ROOF PLANES BOUNDARIES STARTING 

FROM LIDAR DATA 
 
 

F. Tarsha Kurdi*, M.  Awrangjeb, N. Munir 
 

Institute for Integrated and Intelligent Systems, Griffith University, Nathan QLD 4111, Australia 

(f.tarshakurdi, m.awrangjeb)@griffith.edu.au; nosheen.munir@griffithuni.edu.au 
 

Commission WG IV/10 
 
 

KEY WORDS: Modelling, Segmentation, Lidar, Planes boundaries, 3D point cloud 
 

 

ABSTRACT: 

 
Despite the large quantity of researches and publications achieved during the last three decades about 3D building modelling by using 
Lidar data, the question of inner roof plane boundaries modelling needs to be more extracted in detail. This paper focuses on detection 
and 2D modelling of building inner roof plane boundaries. This operation presents an imperative junction between roof planes detection 
and 3D building model generation. Therefore, it presents key procedure in data driven approaches. For achieving this purpose, roof 
boundaries are classified in four categories: outer building boundaries, inner roof plane boundaries, roof details (chimneys and 
windows) boundaries and boundaries related to non-detectable roof details. This paper concentrates on detection and modelling of 
inner roof plane boundaries and roof details (chimneys and windows) boundaries. Moreover, it details the modelling procedures step 

by step that is envisaged rarely in the literature. The proposed approach starts by analysing the adjacency relationship between roof 
planes. Then, the inner roof plane boundaries are detected. Finally, the junction relationships between boundaries are analysed before 
detecting the roof vertices. Once the 2D roof model is calculated, the visual deformations in addition to modelling accuracy are 
discussed. 

  
1. INTRODUCTION 

Nowadays, the need for automatic calculation of 3D urban 
models is increasing incessantly. That is why the acquisition of 
3D data by airborne laser scanning has gained a considerable 
position among the other data acquisition techniques. This 
system provides fast, day or night, 3D point cloud covering the 
scanned region, without needing matching processes. The 

automation possibility of the modelling procedures is the major 
advantage of Lidar data. There are two principal approaches for 
automatic generation of 3D building models: model-driven 
approach or parametric approach, which searches the most 
appropriate model among basic building models contained in a 
models library. The second approach is data-driven or non-
parametric approach. It calculates 3D model for a complex or 
simple buildings by using series of more or less complex 

operations (Tarsha Kurdi et al., 2007). Hence, the data-driven 
approach responses to extensive cases of building typology, 
whereas the model-driven approach stays limited for the given 
primitive buildings.  
 
Once Lidar technology started to become popular, it was realised 
that the modelling of roof planes and their topological 
relationships are necessary for generating 3D building models. 

Therefore, significant efforts were made towards this objective. 
The detection and modelling of 2D roof plane boundaries present 
a transition step between the detection of roof planes and the 
calculation of 3D building model. The majority of researches in 
bibliography considers this step as a less important step than the 
first two ones. Then, this procedure was not given its correct 
position that it merits. Therefore, the goal of this paper is to focus 
on automatic detection and modelling of 2D roof plane 
boundaries.  

 
At this stage, it is important to know that several terms are used 
in the literature to refer to line segments drawn inside building 
boundary in 2D roof models. They are called sometimes 

“breaklines” as in (Briese, 2004) and (Shan, Toth, 2008). Other 
times they are called “linear features” (Sohn, Dowman, 2007) 
and (Perera et al., 2012), and some authors called them “plane 

boundaries”, “inner boundaries” or “boundaries” (Xiong et al., 
2015), (Zhang et al., 2014) and (Sohn et al., 2008). Breaklines 
and linear features have almost the same meaning, but roof plane 
boundaries differ from breaklines because one breakline may 
represent multiple planes’ boundary lines while the opposite is 
not always right. 
 

2. RELATED WORK 

For modelling inner roof plane boundaries, Rottensteiner et al. 
(2005) suggested to take into account the uncertainty of both the 
two neighbouring planes and the approximate positions of the 
vertices of the polygon segments. Hence, statistical tests were 

introduced to minimise its dependence on the thresholds at all 
stages, including detection and classification of roof planes, 
boundaries, and step edges. Another approach by (Ghaffarian et 
al., 2016) utilised the Purposive Fast Independent Component 
Analysis algorithm (PFICA) for detecting roof plane boundaries, 
then Douglas-Peucker algorithm (Douglas, Peucker, 1973) is 
used after enhancing the obtained result by morphological filter.  
 

In the same context, it is suggested to use aerial images in 
addition to Lidar data. (Schenk, Csatho, 2002) detected roof 
plane boundaries from panchromatic images based on the texture 
discontinuity and utilised them to refine the results from Lidar 
data. (Sohn, Dowman, 2007) used the IKONOS multispectral 
images for roof plane boundary detection. (Sampath, Shan, 2006) 
detected roof planes and plane boundaries simultaneously by 
using exclusively Lidar data. Hence, they applied the linear space 
theory to separate plane boundaries from planar points. (Gross, 

Thoennessen, 2006) used the same principle for detecting the 
linear features from 3D point cloud. However, several authors 
suggest detecting firstly roof planes (Vosselman, Dijkman, 
2001). Then, they considered the set of roof planes as input for 
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detecting planes boundaries. Sohn et al. (2008) applied region 
growing and TIN analysis for extracting roof planes. Then, 
Hough transform and neighbouring plane intersection lines are 
applied in order to extract planes boundaries. Xiao et al. (2015) 
started also by extracting roof planes. Then, plane boundaries and 

vertices were calculated by using an undirected graph model of 
the building roof. By consequent, for obtaining reasonable and 
usable models with regular building boundary segments, the 
RANSAC algorithm is applied to find long segments and the 
corresponding parameters. Furthermore, another constrains were 
performed by applying parallel merging and orthogonal 
adjustments.  
 

At this stage, it is important to refer that it is sometimes advised 
to start by modelling the outer building boundaries. (Awrangjeb, 
2016) suggested a new algorithm for outer building boundary 
extraction. This algorithm has two major steps: outer boundary 
identification by using Delaunay triangulation and boundary 
tracking and smoothing before applying the least squares theory. 
  
Some studies developed solutions for analysing topological 

relationships between building roof planes. (Ameri, 2000) used 
the Voronoï diagram of the roof planes. Jaya et al. (2018), Xiong 
et al. (2015) and Perera et al. (2012) used the roof topology graph 
based on the closed cycle graphs summarising the topological 
relationships between the roof segments. 
 
 

3. DATA 

In order to test our approach on different point densities, two 
types of data are used (Table 1).  

 

 
Table 1. Characteristics of the two datasets used in this paper 

 
The first test site “Hermanni” is a residential area in periphery of 
Helsinki, where large and spaced storey houses are surrounded 
by vegetation. This point cloud belongs to the building extraction 
project of EuroSDR (www.eurosdr.org). The second point cloud 
is of Strasbourg city in France. Several zones with different 
typology natures are covered. But point density and accuracy are 
lower in comparison to Hermanni point cloud.  
 

The following paragraph presents the calculation of building 
label image. This image will be the input data for detecting and 
modelling roof planes boundaries. 
 
 

4. CALCULATION OF BUILDING LABEL IMAGE 

In order to detect automatically the roof planes, the RANSAC 
algorithm (RANdom SAmple Consensus) was extended to 
exceed its limitations. Its major limitation is that it searches to 
detect the best mathematical plane among 3D building point 
cloud even if this plane does not always represent a roof plane. 
The proposed extension allows harmonizing the mathematical 

aspect of the algorithm with the geometry of a roof. At this stage, 
it is important to note that the building point cloud is the input of 
the extended RANSAC algorithm. The final result of roof planes 

detection is a building label image which represents the building 
roof in 2D. This image is segmented according to the roof planes 
(Figure 1e). For obtaining more details about the extended 
RANSAC algorithm see (Tarsha-Kurdi et al., 2008). Once the 
building label image is calculated, the automatic modelling of 

roof planes boundaries can be started.  
 
 

5. AUTOMATIC DETECTION OF THE INNER ROOF 
PLANE BOUNDARIES  

After detection of roof planes and calculating building label 
image (Figure 1e), the first step toward 2D roof modelling is the 
detection of the roof plane boundaries. In the literature (Ameri, 
2000) and (Rottensteiner, 2003), it is suggested to use of Voronoï 
diagram to achieve this task. However, this solution is 
unsatisfactory because it creates distortions not only on the actual 
position of the planes boundaries, but also on adjacency 

relationships between planes. Furthermore, (Vosselman, 
Dijkman, 1999) suggested to calculate the intersection between 
the adjacent planes for detecting the plane boundaries. This 
solution is not advised because the roof plane equations do not 
describe precisely the original roof planes in the presence of 
noisy points and indiscernible roof details. This generates 
sometimes undesirable deformations in the level of 2D building 
models. Therefore, a new method is proposed for constructing a 
more reliable model. This method detects the inner roof plane 

boundaries directly from the building label image. This choice is 
adopted because the building label image is calculated and 
corrected precisely (Tarsha Kurdi et al., 2008) and the position 
of the inner roof plane boundaries in this image is satisfactory. 
 
The input data for detecting roof boundaries is the roof label 
image, which presents segmented roof (Figure 1e). In order to 
detect the roof plane boundaries, there are four successive steps: 

identification of the adjacency relationship between 
neighbouring planes, detection of roof plane boundaries, analysis 
of the junction relationships between boundaries and automatic 
detection of roof vertices. 
 
5.1 Adjacency relationship between roof planes  

In order to identify neighbourhood relationship between roof 
planes, a new square matrix called neighbourhood matrix or so-
called plane_adjacent matrix is calculated. The number of 
columns or lines in this matrix is equal to the number of detected 
roof planes. For example, since the roof of the building presented 
in (Figure 1e) is composed of seven planes; therefore, the matrix 

plane_adjacent is a 7x7 matrix. This matrix is a binary matrix, 
i.e. It contains only two values (‘0’ and ‘1’). For example: if two 
planes 1 and 2 are adjacent, then the cell (1, 2) of the 
plane_adjacent matrix is equal to ‘1’, moreover the cell (2, 1) 
must have the value ‘1’. The symmetry in this matrix represents 
an undesirable redundancy. In order to avoid that, the following 
rule can be set: one cell has to be filled by the value ‘1’ if the two 
planes are adjacent and the line number is lower than the column 

one; otherwise, the cell is set to ‘0’. Following this rule, the cell 
(2, 1) of the plane_adjacent matrix takes the value ‘0’. 
 
In order to fill the plane_adjacent matrix, the following operation 
is repeated for each one of the roof planes, i.e. Plane 2 in the 
building (Figure 1e) is considered: the building label image 
matrix (Figure 1e) is called image_seg. Figure 1a visually 
represents the binary image of Plane 2. The name of this matrix 
is plane_2. Figure 1c represents the negative image of plane_2; 

it is called negative_p2. Then, a band of pixels around this plane 

 Hermanni Strasbourg 

Acquisition  End of June 2002 Begin September 2004 

Sensor TopoEye 
TopScan (Optech 

ALTM 1225) 

Points density 7-9 points / m²  1.3 points / m²  

Flight height 200 m  1440 m 
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is added to the matrix plane_2 defining a new matrix called 
plane2_extended (Figure 1b).  
 
At this stage, a new matrix called plane_2_adjacent is defined 
(Equation 1 and Figure 1d). This matrix allows determining all 

adjacent planes of Plane 2. Then, it allows filling the part 
concerning the plane in the plane_adjacent matrix as shown in 
Table 2. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 

Figure 1. Calculation of the plane_adjacent matrix. 

Visualisation of a) the binary matrix plane_2; b) the matrix 
plane2_extended; c) the matrix negative_p2; d) the matrix 

plane_2_adjacent; and e) Building label image. The colours in 
1d and 1e represent the plane numbers 

 
 

plane_2_adjacent = plane2_extended * negative_p2 *      
image_seg         (1) 

 
where «*» is the element by element multiplication. 
 
 

 
 
 
 
 
 
 
 

 
 
Table 2. plane_adjacent matrix of building shown in Figure 1e 
 

Once the plane_adjacent matrix is calculated completely, that 
means the neighbourhood relationships have been identified. 
Then, the step of roof plane boundaries detection is started.  
 
5.2 Detection of inner roof planes boundaries 

In the building label image, the inner plane boundaries are 
represented by the pixels located on the border between the 
adjacent planes. The first step is to detect these pixels. For this 
purpose, a 3 x 3 moving window is used for testing the vicinity 

of each pixel. This operation allows localising pixels of inner 
planes boundaries (Figure 2a).  

  
 

 

 

 
 

 

 
 

Figure 2. a) Detection of the inner planes boundaries; b) 
raster_inner_boundary matrix; in (Figures 2a) the colours 

represent the plane numbers but in the (Figure 2b) the colours 
represent the boundary segment numbers 

 
In Figure 2a, it can be noted that the boundary of two adjacent 
planes is defined by two pixel rows, one belongs to the first plane 
and the other belongs to its neighbour. Therefore, the value of 
each pixel is the number of original containing plane. Then, these 
couples of pixel rows are merged to give two pixel rows of the 
same value which is the boundary segment number. Figure 2b 
represents the visualisation of matrix (raster_inner_boundary), 

in which the pixel numbers represent the boundary segment 
numbers.  
 
In raster_inner_boundary matrix (Figure 2b), two kinds of pixels 
are met: pixels of boundaries between two adjacent planes 
(boundary circled in blue in Figure 2b) and pixels located at the 
intersection of more than two planes (boundary circled in yellow 
in Figure 2b). The last one seems as the same as a vertex more 

than a boundary segment. But it is considered as a boundary 
segment because it appears in the plane_adjacent matrix. That is 
why it is called a punctual boundary. To locate these pixels, it 
suffices to note that they appear twice in the plane_adjacent 
matrix and each pixel has a minimum of three neighbouring 
planes, (in Figure 2b there are four neighbouring planes of the 
boundary circled in yellow).  
 

Once the matrix raster_inner_boundary is calculated, the plane 
boundaries are localised and saved as a new list. It can be 
observed that one boundary segment is defined by two adjacent 
pixel rows; each one belongs to a different plane. To limit them 
as one row, the median row is calculated. Finally, another 
problem is met frequently during the 2D roof modelling which is 
the presence of roof details located on the roof plane boundaries 
(for example, fireplace on the boundary). In this case, despite the 
boundary between the two planes is defined only one time in 

plane_adjacent matrix, it is decomposed into two portions. For 
this purpose, a region growing algorithm is applied to detect each 
portion independently. 
 
After the detection of the inner roof plane boundaries, the 
automatic detection of the roof vertices is initiated. For carrying 

N° 

plane 
1 2 3 4 5 6 7 

1 0 1 1 1 0 0 0 

2 0 0 1 1 0 0 0 

3 0 0 0 1 1 1 0 

4 0 0 0 0 1 1 0 

5 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 
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out this procedure the junction relationships between the 
boundaries has to be studied. 
 

5.3 Analysis of the junction relationships between 
boundaries 

Since the processing till now is in 2D, a vertex means the junction 
point of two boundaries at least. The importance of analysing the 
junction relationships between inner boundaries comes from the 
fact that a vertex is located at the junction of several boundary 

extremities. But the vertex coordinates (X, Y) will not be exactly 
the same for all boundaries extremities. That is why it must be 
able to find out how to join the boundaries extremities. The 
innovative idea in this contribution is to describe the junction 
relationships between boundaries through a boundary number in 
a specific order. For example, if all boundaries surrounding one 
plane are taken together, then each boundary corresponds to an 
order of succession. The proposed algorithm begins by 

highlighting all roof boundaries, both inner boundaries and outer 
ones. This leads to create a new matrix all_roof_boundaries 
obtained by adding the building outer boundaries matrix to the 
matrix raster_inner_boundries (Figure 3c).  
 
Before presenting an example, it is important to explain the 
method of computing of the junction relationship between the 
boundaries enveloping one plane. Starting from the 
all_roof_boundaries matrix (Figure 3c) and by using the binary 

matrix of selected plane (called b_plane) (Figure 4a); the 
boundaries enveloping this plane can be detected by multiplying 
the last two matrixes element by element, as shown in Equation 
2.  
 

boundary_enveloping _ plane = all_roof_boundaries *  
b_plane                            (2) 

 

where « * » is the multiplication element by element 
 
This (Equation 2) generates a new matrix called 
boundary_enveloping _ plane (Figure 4b). 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. a) Visualisation of the building outer boundaries 

matrix; b) raster_inner_boundaries matrix; c) 
all_roof_boundaries matrix 

 
In the matrix all_roof_boundaries, the numeration of the outer 
building boundaries starts from 1 to m; where m is the number of 
outer building boundaries. After that, the numeration of the inner 

building boundaries starts from m + 1 to m + s; where s is the 
number of inner building boundaries (Figure 4c).    
 
At this stage, the analysis of the junction relationships between 
boundaries can be started. For this purpose, the junction 

relationship between boundaries enveloping each plane is 
calculated. Consequently, n junction relations are obtained; 
where n is the number of roof planes. Finally, global analysis of 
all junction relationships allows determining the boundary which 
passes through each vertex. The roof vertices are also detected 
and assigned. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 4. Calculation of boundary_enveloping _ plane matrix 
a) b_plane matrix of the plane N°2;  b) boundry_enveloping _ 

plane matrix; c) Numeration of roof boundaries 
 
From the boundary_enveloping _ plane matrix (Figure 4b) which 
presents the boundaries enveloping Plane 2 (Figure 4a), the 

junction relationship between boundaries is deduced as the 
following: 1, 14, 6, 8, 2.This junction relationship presents the 
order of the boundaries enveloping Plane 2. In the same way a 
new junction relationship can be deduced for each roof plane. 
Moreover, each junction relationship generates one or several 
triples. For example, the junction relationship of Plane 2 
generates the following triples: (1, 14, 6), (14, 6, 8), (6, 8, 2), (8, 
2, 1) and (2, 1, 14). Let us take the triple (14, 6, 8), it means that 

Boundaries 6 and 14 pass through the same vertex; furthermore, 
the Boundaries 6 and 8 pass also through the same vertex.  
 
Once the inner roof boundaries are detected and all roof planes 
assigned, the detection of roof vertices can be carried out in the 
following paragraph.  
 
In order to detect the vertex, it is necessary to distinguish between 

planes having a single adjacent plane nominate “plane of single 
adjacency” (ex: planes 1, 2 and 3 in Figure 5a) and planes having 
more than one adjacent planes which called “plane of multiple 
adjacencies” (ex: planes 1, 2, 3, 4, 5 and 6 in Figure 5b).  
 
The two plane types can be distinguished directly from the plane 
junction relationship. Indeed, if a plane shares exclusively its 
boundaries with another plane (for example, Plane 1 in Figure 
5a), then the plane is a “single adjacency” (for example, Planes 2 

and 3, Figure 5a). In all other cases, the plane is a “multiple 
adjacencies”. At present, it must similarly distinguish between 
two types of inner roof plane boundaries. The first one is a 
boundary that envelops a single adjacency plane and the second 
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one is that envelops a “multiple adjacencies” plane. Since it 
cannot be said a boundary of single adjacency, therefore this 
boundary type is called boundary of type S and the other 
boundary type is called boundary of type M. Likewise, when a 
vertex joints boundaries of type S, then it is called vertex of type 

S, and when a vertex joints boundaries of type M, then it is called 
vertex of type M.  
 
 

      

        
  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
Figure 5. Representation of two roof planes types; a) 

Representation of single adjacency planes; b) Representation of 
multiple adjacencies planes 

 
 
The boundary are detected and distinguished by their types; 
therefore, the vertices detection can be achieved. 
 

5.4 Automatic detection of the roof vertices  

Since, a vertex combines two or more boundaries; the boundary 
extremities passing through the same vertex must have the same 
coordinates X and Y. But it is not the case for the detected 

boundaries discussed in Section 5.2. So, in order to merge all 
potential vertices into a single one, it is necessary to detect them 
firstly. Previously, two vertex types were defined depending on 
the type of adjacent planes. Both vertex types are the vertex of 
type S and the vertex of type M. In the following, methods of 
automatic detection of each vertex type are exposed.  
 
5.4.1   Automatic detection of vertices of type M: It is shown 

above the junction relationship of each plane can be presented by 
a set of triples. Each one is a suite of three boundaries, by 
consequent, it defines two vertices. For example, the triple (14, 
6, 8) presents two vertices: (14, 6) and (6, 8) (Figure 4c).  
After detection all roof triples, then it can be noted that one vertex 
can be presented within several triples. Another example can also 
be taken, in the Figure 6a, the following vertices: (1, 2), (1, 3), 
(2, 3) represent the same vertex. Another example is presented in 

Figure 6b. In this example, the following vertices: (1, 5), (2, 5), 
(3, 5) and (4, 5) should represent the same vertex. 
 
5.4.2   Automatic detection of vertices of type S: It has been 
seen that the boundary of type S, the junction relationship 
contains only one inner boundary. In this case, the plane area (in 
pixel unit) becomes a criterion for decision. Because if the roof 
detail area is smaller than a given threshold (in pixel unit), then 

its geometry becomes vague. Moreover, the threshold is taken in 

pixel unit because it relates to the point density. Indeed, if the 
plane area is bigger than a given threshold, it is possible to apply 
Douglas-Peucker algorithm to decompose the plane outline 
polygon according to its sides. Otherwise, if the plane area is 
smaller than a given threshold (in pixel unit), it is necessary to 

distinguish two kinds of plane of type S. The first one is the case 
of junction relationship consists of one inner boundary only 
(Plane 1 in Figure 5a). The second kind is the case of junction 
relationship containing several boundaries but only one among 
them is inner boundary (Planes 2 and 3 in Figure 5a). This 
distinction is made because each one of the two plane kinds has 
a specific processing way. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 6. Merging of vertices; a) Three boundary segments pass 
in the same vertex; b) Five boundary segments pass in the same 

vertex 

 
- Case of junction relationship consists of one boundary only: 
Let us take the example of Plane 1 in Figure 5a. On the one hand, 
the junction relationship is composed of a single boundary 
according to boundary definition (a set of pixels describing the 
same adjacency relationship between two planes), but it has, on 
the other hand, four vertices (the plane outline polygon corners). 
In this case, geometric constraints are introduced by assuming 

the geometric plane form is rectangular (because its geometry in 
building label image is vague), which is the most frequent case. 
So the coordinates of the four rectangle corners (vertices) are 
calculated by using the modelling method based on static 
moments. All details and equations of this method are given at 
(Tarsha Kurdi et al., 2007) in the context of parametric modelling 
approach of building footprint.   
 

- Case of junction relationship containing several 
boundaries: Taking the example of the Planes 2 and 3 in Figure 
5a, two different situations arise: either the plane is attached to a 
single outer boundary (Plane 2), or the plane is adjacent to two 
outer boundaries (Plane 3). In the first case, the plane is defined 
by three inner boundaries and four vertices. On the other case, 
while the plane is adjacent to two outer boundaries, it is defined 
by two inner boundaries and three vertices. Vertex calculation 

follows a process that studies the angle formed by two successive 
outer boundaries of the considered plane. This hypothesis can be 
explained by the fact that it is possible to meet a plane adjacent 
to two outer boundaries but the angle between the two outer 
boundaries is close to 180° (Figure 7c).  
 
Despite the plane is attached to two outer boundaries but its 
model likes the case of plane attached to a single outer boundary. 
In order to distinguish between the two cases, the farthest pixel, 

among the plane circumference ones, from the plane gravity 
centre has to be detected. This point and the plane gravity centre 
define a circle radius. The centre of this circle is the plane gravity 
centre. Then, we calculate the intersection of this circle with the 
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outer boundaries that surrounding the plane (points C and D in 
Figure 7c).  
 
Then the angle β is calculated from the centre of gravity and the 
two last points C and D (Figure 7). If this angle β is close to 180° 

(Figure 7a), then the plane is considered as attached to two outer 
boundaries, else the plane is taken as attached to one outer 
boundary (Figure 7b and 7c). Finally, two perpendicular lines are 
drawn from the intersection points (C and D). If our case 
corresponds to Figure 7a, then the intersection of the two 
perpendicular lines is calculated. Otherwise, the intersection 
points of the two perpendicular lines with the circle are 
calculated.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 7. Modelling of roof planes of type S attached to 
building outer boundaries; a) Plane attached to two outer 

boundaries; b) Plane attached to a single outer boundary; b) 
Plane attached to two outer boundaries but it is treated as the 

case of Figure 7b 
 
 

Once the inner roof plane boundaries modelled in 2D, the 
technique Douglas-Peucker is applied on each boundary. This 
procedure allows decomposing the inner boundary segments 
according to the lines. At this stage, the fundamental elements, 
which are necessary for calculating the 2D building roof model, 
are available.  
 

6. RESULTS 

Figure 8 presents the final result of automatic 2D building 
modelling for Hermanni site (point density= 7 points/m2). 
Moreover, three colours are used and three buildings are zoomed 
in Figure 9 for illustrating the model deformations. The blue lines 
represent the building outer boundaries, the red represent the 

inner roof plane boundaries and the green represent the roof 
details boundaries.  
 
It has to be noted that some inner boundaries are also drawn in 
green; this is explained simply by the fact that the green 
boundaries does not cross another inner boundary. Therefore, the 
construction algorithm considers this plane as a roof detail (see 

Buildings 1, 4, 5, 9, 10 and 11 in Figures 8 and 9). But that will 
not effect on the final 2D model. Finally, the analysis qualitative 
and the accuracy quantification of this result are carried out in 
the following. 
 

 
   
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 8. Final result of automatic 2D building modelling; 
Hermanni site; in blue: the building outlines; in red: the inner 

roof boundaries; in green: the roof details 
 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 9. Final result of automatic 2D building modelling; 
Three selected buildings (Buildings 6, 7 and 9); in blue: 

building outlines; in red: inner roof boundaries; in green: roof 

details 
 
 

7. ACCURACY ANALYSIS 

In the context of visual deformations of building roof model, 

according to the point density and the roof detail dimensions, it 
can be distinguished between two roof detail types: detectable 
roof details and non-detectable ones. Indeed, the presence of non-
detectable details in the cloud generates deformations in 2D 
building model as already seen in Figure 9 (red circles). 
Deformations encountered here appear as reflection of presence 
of the indiscernible details on the building roof. While they do 
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not come from geometric uncertainty. The arising result at this 
stage confirms that these deformations become eventually very 
beneficial because they indicate the presence of indiscernible 
details in the original building.  
 

The method developed by (Tarsha Kurdi, 2008) is applied to 
analyse the deformations and the accuracy of building models 
“pixel by pixel”. It is based on the calculation of distance 
(deviation) between each point and its mean plane. 
Consequently, a new matrix called “error map” is calculated 
(Figure 10).  
 
 

 
 
 
 
 
 
 
 

 
Figure 10. Error map visualisation; a) and b) Buildings 3 and 6  

 
The pixel values in this matrix are equal to the deviation ones. 
To visualise the error map matrix representatively, it has to 
replace the variances bigger than 1 m by 1 m, and the variance 
smaller than -1 m by -1 m. Hence, all pixel values in this matrix 
are between 1 and -1. The (Figures 10a and 10b) illustrate the 
error maps of Buildings 3 and 6.  

 
From Figure 10, it can be observed that the building error map 
expresses the 2D building model accuracy. For example, if pixel 
value is equal or close to zero, the model in this position is precise 
and vice versa. Furthermore, the non-detectable roof details 
appear clearly in building error map. Therefore, the error map is 
used for estimating the building model accuracy. For this 
purpose, the deviation of distribution has to be analysed.  

 
For example, from Table 3 it can be noted that more than 90% of 
building points (Buildings 6 and 3) have an acceptable deviation 
regarding the accuracy of point positions. The application of the 
same test for all Hermanni site buildings shows also the same 
result. This result explains the height quality of obtained building 
models.   
 

 
Table 3. Analysis of the deviation distribution 

The point cloud of building presented in (Figure 11) has a low 
point density (1.3 point/ m2). From error map and building aerial 
image (Figures 11a and 11d) it can be noted that there are a lot 
of no detectable details on building roof. Hence, that can be 
explained by the weak point density and architectural building 

complexity. Moreover, these no detectable details can be seen 
clearly on error map. Therefore, error map can be used to localize 
the no detectable details and to reduce their negative effects on 
the 2D model (visual deformations). It can also be used to model 
these roof details. 
 

Generally, the proposed approach provides good results. 
Nevertheless, more investigation is necessary to calculate the 2D 
building model more faithful to reality. And by consequent, 
calculate accurate 3D building model. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. a) Building aerial image; b) Building label image; c) 
2D roof model; d) Error map visualisation; this building is in 

Strasbourg city 
 

8. CONCLUSION AND PERSPECTIVE 

This paper presented a full workflow of automatic 2D inner roof 
boundaries modelling from Lidar data exclusively. The 
generalisation level of the constructed model is related directly 
to five factors: the point density, the cloud accuracy, the cloud 
homogeneity, the presence of no detectable details and the 
architectural building complexity. At this stage, the error map 
can play an important role for judging if the total 2D building 
model is reliable or not.  

 
However, several adjustments were achieved to improve the 
quality of the 2D building model. In a future research, this model 
can be refined by introducing certain geometric constraints, such 
as parallelism or orthogonality. These improvements will make 
the building model closer to reality. The visual deformations 
were obviously harmful, but they also represent a source of 
valuable information. Therefore farther investigations will allow 

locating the no detectable roof details. Then, it will be possible 
as the first step to eliminate their negative influence from the 
calculated building model. In the second step the no detectable 
details can be modelled.  
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