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ABSTRACT:

We employ a triple graph grammar to enable configurable conversion from IFC to CityGML. In this paper, we present the mathe-
matical framework behind the graph transformation approach as well as an application to create, store and maintain transformation
rules implementing this framework. Particular emphasis is put on how the approach enables graphical representation and static
analysis of rules and rulesets, both in the theoretical framework and prototypical implementation. Even if various publications and
tools for general graph transformation do already exist, we hope that the BIM–GIS community will benefit from a domain-specific
introduction to the theory and dedicated software tools.

1. INTRODUCTION

1.1 IFC2CityGML context

This work evolved as part of the IFC2CityGML project, where
we employ graph transformation methods to achieve cross-
domain conversion of digital building models into digital city
models. We focus on two well-known data standards in the re-
spective domains: the ISO (2013) standard Industry Foundation
classes (IFC) on the source side and the OGC (2012) standard
CityGML on the target side. The project aims for a complete
and correct conversion, where completeness and correctness are
defined through the requirements of the target specification de-
rived from use cases in the geospatial domain.

These objectives lead to the following implications: First, a use
case driven approach requires an adaptable framework with sep-
aration of general conversion logic and use-case specific logic.
Second, cooperation with stakeholders to develop use-case spe-
cific details of the conversion can be facilitated with representa-
tions of the conversion logic that are more tangible than code in
a general-purpose programming language. Third, completeness
and correctness considerations require a method that is backed
by a rigorous formal framework.

1.2 Triple graph transformation

We employ graph transformations for the following reasons:

Visual representation. Graphs have an inherent visual repre-
sentation that makes complex situations easier to understand.

Runtime configuration. With a rule-based approach, the use-
case specific details of the conversion procedure can be speci-
fied at runtime as opposed to approaches where the whole con-
version is compiled and its scope is fixed at runtime. This also
allows incremental development where the conversion process
can be adapted to evolving use-case requirements.

Declarative specification. A declarative specification allows
domain experts to work on the details of the conversion, inde-
pendent from developers implementing the general conversion
logic with an imperative approach.
∗ Corresponding author

Formal representation. The sound mathematical theory be-
hind algebraic graph transformation allows for formal assess-
ment of completeness and correctness.

Different operationalizations. Triple graph grammars allow
for different operationalizations, e.g. the same grammar can be
used to derive forward, backward and synchronization rules.

1.3 Related work

Integration of building information modelling with the geospa-
tial domain has attracted considerable attention recently, be-
cause it carries the promise to scale up the advantages of each
domain beyond their respective scopes and tackle cross-domain
use cases. One way to approach the issue is to convert data
between the most popular standards of the BIM and GIS do-
main — IFC ISO (2013) and CityGML OGC (2012) respec-
tively. However, none of the existing attempts considers use-
case specific configurations or employs a rigid formal approach
to mapping.

Graph transformation (or graph grammar) is a well-known ap-
proach applicable to a range of problems in the software engi-
neering domain where the problems can be represented as graph
structures, see e.g. König et al. (2018) for an introduction.
Ehrig et al. (2006) have worked out a seminal theory of alge-
braic graph transformation and also applied it to model trans-
formation and integration problems Ehrig et al. (2015). The use
of three graphs to represent source, target and connection data
as well as the left- and right hand sides of transformation rules
was already proposed by Schürr in 1995.

In preliminary work we have demonstrated the application of
the approach for IFC-to-CityGML conversion Stouffs et al.
(2018) and discussed details of graph representations on the
IFC side Tauscher and Crawford (2018). Here, we present the
theoretical background and its implementation in a transforma-
tion rule repository application in more detail. The reminder of
this work is organized as follows: We first give an introduction
to TGG as applied in our project (Section 2). We then intro-
duce a software application to maintain these rules and describe
how the theoretical concepts reflect in the implementation (Sec-
tion 3). In Section 4 we show how the application has been
employed for IFC-to-CityGML conversion. Finally we discuss
limitations and future work.
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2. FORMAL MODEL

We will first give a slightly simplified introduction to triple
graph grammars using the triple of connected IFC and
CityGML graphs as example case. For the conversion we re-
strict ourselves to forward transformations. We will show the
formal specifics of forward transformation rules and elaborate
on how static analysis can be carried out over these rules.

2.1 TGG primer using the IFC2CityGML example

In triple graph grammars the two sides of an integration or
transformation as well as their connections are represented as
three distinct graphs. For unidirectional cases such as ours we
can identify a source and a target side and call the three graphs
source, target and connection graph. A triple graph grammar
then consists of production rules to generate all possible con-
sistent graph triples starting from an empty triple. A grammar
can also be seen as a transformation system, where produc-
tions are called transformations and the start structure is not
restricted to be empty. In this section we will look at the math-
ematical elements of a grammar or transformation system for
IFC–CityGML integration or conversion.

A directed graph G consists of a set of nodes N , a set of edges
E, and two functions s, t : E → N that assign source or tar-
get nodes to edges: G = (N,E, s, t). A graph morphism is
a mapping between two graphs such that the graph structure
is maintained. Given two graphs G1 = (N1, E1, s1, t1) and
G2 = (N2, E2, s2, t2), a morphism M is defined by two func-
tions mN : N1 → N2 and mE : E1 → E2, mapping the nodes
and edges of the two graphs: M = (mN ,mE). To guarantee
the structure-preserving quality of a morphism, it must hold that
s2 ◦mE = mN ◦ s1 and t2 ◦mE = mN ◦ t1. We write short
M : G1 → G2 for such a morphism.

In our application of triple graph grammars, graph morphisms
appear in different places. First of all, the source and target
graphs of a triple are typed, which means that there are type
graphs IFC and GML representing the schemas. For an IFC-
typed graph GIFC there is a morphism typeIFC : GIFC →
IFC, and similarly for a GML-typed graph GGML there is a
morphism typeGML : GGML → GML. For every morphism
m : GT1 → GT2 between two typed graphs GT1 and GT2 with
the same type graph T and typing morphisms type1 : GT1 →
T and type2 : GT2 → T , we require type2 ◦ m = type1.
Intuitively this means, that in addition to preserving the graph
structure, a morphism of typed graphs must also preserve the
type of the mapped nodes and edges.

A central concept used in graph transformation approaches
based on category theory is the so-called pushout. For two mor-
phisms b : A→ B and c : A→ C, which share a domain A, a
pushout is a graph P with another two morphisms d : B → P
and e : C → P which share a co-domain. The resulting di-
agram is said to commute, because d ◦ b = e ◦ c. Further,
for a push-out the graph P must be the most general or univer-
sal graph that satisfies the commutative condition. It has been
shown that this graph is unique up to isomorphism. For exam-
ple, in Figure 1, the four graphs and morphisms l : K → L,
d : K → D, m : L→ G, g : D → G form such a commutative
diagram with shared domain K and co-domain G. If G is the
most general graph fulfilling the commutation, then it is said to
be the pushout of L and D over K.

We are adopting double-pushout (DPO) graph-rewriting, where
each production rule is represented as a span (L ← K → R)

with three graphs L (left hand side of the rule), R (right-hand
side), K (invariant or glue graph) and two morphisms l : K →
L and r : K → R. These rules are then successively applied
to a start graph to retrieve productions. The application of a
rule to a host graph G is represented by a diagram of two push-
outs, a so-called DPO diagram as shown in Figure 1. The upper
row of the diagram shows the rule span, whereas the lower row
represents the application of the rule. After finding a match
m : L → G, that is an appearance of the left-hand side L in
the host graph G, a context graph D is constructed to complete
the left push-out diagram. Successively, the production H can
be constructed to complete the right push-out diagram, with the
co-match m∗ : R → H . Figuratively speaking, the part of the
host graph G that matches the left-hand side of the rule L is
replaced with the right-hand side R to derive H .
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Figure 1. Double pushout

Now, a double push-out for triple graphs encompasses not only
a single graph, but a triple of two typed graphs and one un-
typed graph. Thus each box in the original pushout diagram
will contain a triple of three graphs and each arrow will repre-
sent three morphisms, where two of the graphs and two of the
morphism are typed. For instance the triple graph L consists
of the three graphs LIFC , LCON , and LGML with typing mor-
phisms ifcL : LIFC → IFC and gmlL : LGML → GML.
As an example for a triple morphism m : L → G consists of
the three morphisms

mIFC : LIFC → GIFC , (1)
mCON : LCON → GCON , (2)
mGML : LGML → GGML, (3)

where mIFC and mGML are typed and those we require ifcG ◦
mIFC = gmlL and ifcG ◦ mGML = gmlL. The resulting
DPO diagram for IFC–CityGML conversion is shown in Figure
2. It contains the following graphs and correlating morphisms:

• Triple L (left-hand side): LIFC , LCON , LGML

• Triple K (invariant/glue): KIFC , KCON , KGML

• Triple R (right-hand side): RIFC , RCON , RGML

• Triple G (input): GIFC , GCON , GGML

• Triple D (glue): DIFC , DCON , DGML

• Triple H (output): HIFC , HCON , HGML

• Type graphs IFC and GML

• Typing morphisms IFC: ifcL : LIFC → IFC,
similarly ifcK , ifcR, ifcG, ifcD , ifcH

• Typing morphisms GML: gmlL : LGML → GML,
similarly gmlK , gmlR, gmlG, gmlD , gmlH

• Rule span morphisms: lIFC : KIFC → LIFC and rIFC :
KIFC → RIFC similarly lGML, rGML, lCON , rCON
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Figure 2. Double pushout for a triple graph rule with all participating graphs and morphisms

• Host span morphisms:
gIFC : KIFC → GIFC and hIFC : KIFC → HIFC

similarly gGML, hGML, gCON , hCON

• Match and co-match morphisms:
mIFC : LIFC → GIFC and m∗

IFC : RIFC → HIFC

similarly mGML, m∗
GML, mCON , m∗

CON

• Glue morphism: dIFC : KIFC → DIFC ,
similarly dGML and dCON

It can be seen that the 6 triples result in 18 graphs of which 6
are IFC-typed, 6 are GML-typed and 6 are untyped.

2.2 Integrated representation for visualisation

To cater for the visualization (Section 3.1) and for later opera-
tionalization in forward transformation (Section 4) we are stor-
ing the rule spans (L ← K → R) in an integrated way, where
nodes and edges appearing in all three graphs of the span are
stored only once. Instead of repeating the invariant graph we
have thus nodes and edges which appear only in the left hand
side marked explicitly as deleted elements and those only in the
right hand side marked as added elements.

An example is shown in Figures 3 and 4. The explicit repre-
sentation in Figure 3 corresponds to the upper row in Figure 2.
The morphisms are not explicitly depicted, but can be under-
stood from corresponding node identifiers, e.g. ”ifcBuilding”,
”gmlBuilding” etc. Figure 4 shows the integrated representa-
tion of the three triples in Figure 3. More detail on visual rule
representation is given in Section 3.1.

This is possible as long as the rule span morphisms are isomor-
phic, that is the node and edge mapping functions are bijec-
tive. If this is the case, we can drop the morphisms l and r and
remove the isomorphic images of the invariant/glue graph K
from the left- and right-hand graphs L and R. Given the three
graphs L = (NL, EL, sL, tL), K = (NK , EK , sK , tK), R =
(NR, ER, sR, tR) and isomorphisms l : K → L, r : K → R,
we will end up with one graph I = (NI , EI , sI , tI) and subsets
ND ⊂ NI , ED ⊂ EI of deleted nodes and edges, NA ⊂ NI ,
EA ⊂ EI of added nodes and edges, and NP ⊂ NI , EP ⊂ EI

of preserved nodes and edges.

We omit the details of converting the original rule-span into the
integrated representation and vice versa and just characterize
the original and the integrated representation of the rule span:

ND, NP , NA are pairwise disjunct (4)
ED, EP , EA are pairwise disjunct (5)

NK = NP and EK = EP (6)
NL = ND ∪NP and EL = ED ∪ EP (7)
NL = NA ∪NP and EL = EA ∪ EP (8)

2.3 Forward transformation

One advantage of triple graph grammars is that they allow for
the derivation of different operational transformation systems.
However, in this project we focus on forward transformation
and thus chose to directly specify the transformation rules in-
stead of deriving them. This choice eliminates potential com-
plexity at the cost of reduced generalization and flexible utiliza-
tion Stouffs et al. (2018).

This decision implies some restrictions on the transformation
rules. In particular, no changes are allowed on the source
graph. The start (triple) graph of a forward transformation con-
sists of the input IFC data as graph GIFC together with empty
CityGML and connection graphs GGML and GCON . The input
data will not be modified, while the CityGML and connection
graph are populated during the conversion process, hence the
final production HIFC,n after n rule applications, should be
equal to the initial start graph GIFC . This can be confirmed for
two cases: 1. GIFC and HIFC are isomorphic for every rule
application. This is the case if and only if LIFC , DIFC , RIFC

are isomorphic too for every rule. 2. Every added intermedi-
ate node or edge is removed in later rule application. We allow
the latter, but only for the elements of enhancement types (e.g.
context), not for nodes and edges of IFC types.

As an example, the rule in Figure 4 demonstrates the limita-
tions: newly created nodes and edges appear only on the GML
side, not on the IFC side and deletions are restricted to the con-
text node. Technically these restrictions simplify the model,
since we can remove or omit a few graphs and morphisms from
the model. Another such simplification on the CityGML side is
the prohibition of removals and limitation to additions. Apart
from the restriction to forward transformations we require a few
further restrictions specific to our conversion procedure which
are described later in the implementation Sections 3.4 and 3.5.

2.4 Static analysis

With this formal model in place, we can carry out some static
analysis on the ruleset, without knowing about particular input
data and without actually executing the conversion.

Check forward transformation restrictions. We can check
whether the rules follow the restrictions posed for forward
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Figure 3. Forward transformation rule, explicit representation with left hand side (left), glue graphs (centre) and right hand side (right)
of a triple graph transformation rule
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Figure 4. Forward transformation rule, integrated representation

transformation in the previous Section 2.3. Further restrictions
can ensure rule structures specific to conversion algorithms.

Schema conformance. We can check whether the typing mor-
phisms do indeed exist. This ensures that our rules conform to
the source and target metamodel. This aims at verifying conver-
sion correctness, where all conversions process and create only
valid IFC and CityGML models.

Schema coverage. We can check how many of the nodes and
edges in the source and target type graphs are covered by the
co-domain of the rules’ typing morphisms. This will eventually
verify conversion completeness, that is to which degree we can
process and create all possible valid IFC and CityGML models.

Identify rule dependencies and conflicts. Even without ac-
tual input data, we can make some statements about potential
rule application. For instance, critical pair analysis allows to
identify dependent and conflicting rules. This is useful, for in-
stance, to select rules for parallel application. Further, we can
determine rule application order for our conversion algorithm,
identify rules that will potentially never apply and asses termi-
nation of the transformation.

It must be noted that with schema conformance and coverage
analysis, we can only assess partial aspects correctness and
completeness. For a thorough analysis, we would need to de-
duce grammars from the source and target metamodel and from
the rule’s isolated the source and target template parts. We
could then try to compare the metamodel and ruleset deduced
grammars. Unfortunately it is not easy to decide whether one
language or grammar is equal or a subset of another.

3. RULE REPOSITORY

We have created a web application for editing and manage-
ment of triple graph transformation rulesets. The application
is implemented with Grails, a web application framework for
the JVM written in Groovy Smith and Ledbrook (2014). Part
of the functionality can also be used as a library. Grails con-
tains GORM, which provides object relational mapping (ORM)
and allows for transparent integration of different relational
databases. Throughout our project we used the default H2
database in embedded mode, which can be swapped easily.

We take advantage of the intuitive visualization of graph trans-
formation rules (Section 3.1) and provide a domain-specific lan-
guage to specify the rules (Section 3.2). The rules are fully
flexible to be specified for any operationalization or as gen-
eral rules, but we provide validations with regard to the limita-
tions of forward transformation as required in our project (3.3).
Further the tool includes some simplified rule notations (Sec-
tion 3.5) and functionality to group and manage the rules (Sec-
tion 3.6).

3.1 Visualization

Section 2.2 introduced the underlying mathematical model for
visualizations and a first example diagram (Figure 4). Here we
add more detail about the design and creation of these diagrams.

Each node is represented as a box labelled with its identifier and
type (the name of its image node in the type graph). Each edge
is represented as a continuous line connecting two nodes, anno-
tated with its type and a line end marker indicating its direction:
either a dot for the IFC graph inspired by Express-G ISO (2004)
or an arrow for the CityGML graph inspired by UML. The type
annotations of nodes and edges capture the typing morphisms,
that is the mapping into the type graph which is not explicitly
represented. Connection graph rules are undirected, untyped
and represented as dashed lines.

Nodes are filled in grey, with a darker tone for created nodes
and edges and a lighter tone for deleted nodes and edges. In ad-
dition, plus and minus symbols are used to annotate created and
deleted elements. We forego colours in favour of an accessible
design and to support greyscale printing.

The visualizations are generated in GraphViz DOT format
Gansner and North (2000) and then rendered to Scalable Vec-
tor Graphics (SVG) using the Viz.js libary1. The SVG can be
displayed natively in modern browsers. The application also
offers a download link for further processing of the visual rep-
resentations. GraphViz offers various graph layout algorithms.
We have chosen an orthogonal layout for directed graphs, to tie
in with familiar EXPRESS-G and UML layouts.

3.2 Domain specific language

We developed a domain specific language (DSL) to specify the
graph transformation rules. As an introductory example, con-
sider the listing below. It describes the rule from Figure 4,
without the context nodes and edges.

The rule description consists of three main blocks, one for the
glue graph (preserved), one for the graph elements only con-
tained in the left-hand graph (deleted), and one for the graph el-
ements only contained in the right-hand graph (added). Empty

1 https://github.com/mdaines/viz.js
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blocks can be omitted. Each of these blocks contains three
blocks pertaining to the three graphs of a triple and each graph
contains a node as well as an edge block. Nodes are grouped
by type and listed by identifier. Edges are grouped by type and
listed as pairs of source and target node identifiers.

i f c 2 c i t y g m l . r u l e {
p r e s e r v e d {

i f c {
nodes {

I f c B u i l d i n g { i f c B u i l d i n g ( ) }
I f c R e l A g g r e g a t e s { a g g r e g a t i o n ( ) }
I f c B u i l d i n g S t o r e y { i f c S t o r e y ( ) }

}
edges {

r e l a t e d O b j e c t s = [ [ a g g r e g a t i o n , i f c S t o r e y ] ]
r e l a t i n g O b j e c t = [ [ a g g r e g a t i o n , i f c B u i l d i n g ] ]

}
}
gml {

nodes {
’ b ldg : B u i l d i n g ’ { g m l B u i l d i n g ( ) }

}
}
con {

edges {
= [ [ i f c B u i l d i n g , g m l B u i l d i n g ] ]

}
}

}
c r e a t e d {

gml {
nodes {

’ b ldg : S to rey ’ { gmlS to rey ( ) }
}
edges {

b u i l d i n g S u b d i v i s i o n = [ [ gmlBui ld ing , gmlS to rey ] ]
}

}
con {

edges {
= [ [ i f c S t o r e y , gmlS to rey ] ]

}
}

}
}

Groovy supports the implementation of DSLs with various
language constructions. Our implementation makes use of
Groovy’s builder support Dearle (2010). The syntactic ele-
ments were chosen such that the implementation is easy to ac-
complish, the language is readable, writing is efficient and the
resulting code is compact. For instance, we deliberately de-
cided against XML, with verbose start and end tags, and against
JSON, with mandatory quotation marks for keywords.

By using the node identifiers and Groovy expressions, we can
define predicates that act as constraints for the rule application
(validators) and also functions to be executed during rule appli-
cation to populate attribute values (converters).

3.3 Validation of rules and rulesets

The graph visualization of a rule provides a way to assess en-
tered DSL code for plausibility and conformance to the in-
tentions of the author. It helps to spot errors such as discon-
nected nodes, wrong edge directions, wrong start or end nodes
of edges. But in order to produce the visualization the DSL
code needs already to be valid on a basic level, e.g. the gen-
eral syntax must be valid, there should be no dangling edges.
After visual plausibility checking passes, there are some severe

issues that are harder to identify by visual inspection, e.g. typos
in IFC or CityGML type names, node-edge connections that do
not conform to the schemas, edges to be created that connect
nodes to be deleted, violations of the forward transformation
restriction. To catch these two categories of errors (before and
beyond visual plausibility checking) and to provide appropriate
feedback to rule authors, the application carries out some auto-
mated validation upon editing of a rule. In particular, we check
for syntactic correctness, semantic correctness (schema confor-
mance), and further semantics, e.g. the specific rule structure
required for the conversion algorithms.

Syntactic correctness. Since the DSL is an embedded DSL
which makes use of host language constructions, a large part of
the syntactic errors are covered by the Groovy parser, e.g. non-
matching parenthesis, expressions with wrong structure, assign-
ments in inadequate places etc. These errors are reported from
the parser with DSL code line number and can be passed to the
UI as they are. Some errors, which are syntactically correct in
Groovy, but not in the DSL, can only be covered later during
construction of the model from the DSL script, e.g. missing
angular brackets where a list is expected. For these errors, sep-
arate error messages are generated in the DSL builder.

Schema conformance. This validation ensures a first level of
semantic correctness. We want to guarantee that the type mor-
phisms (Section 2.1) do exist. For IFC, the type graph is repre-
sented as object graph of the buildingSMART library2 and we
programmatically check the morphism’s existence and preser-
vation of graph structure. Mismatches such as non-existent
node types or inappropriate combinations of edge and node
types are reported. A similar check could be carried out on
the CityGML side using the XML Metadata Interchange (XMI)
representation of the schema, though in the prototype we have
only implemented the IFC schema validation.

Further semantics of single rules. Additional validation en-
sures specific structures of transformation rules. For instance,
we can limit rules to forward transformations (Section 2.3) or
enforce limitations presented by the rule application (conver-
sion) procedures. In our case, the conversion engine requires
the rules to conform to one of a given set of rule types. We
describe these rule types in Section 3.4.

Static analysis of rulesets. Apart from single rules, we can
evaluate the consistency of the whole ruleset. Instead of search-
ing an instance graph for matches of the rule’s left-hand side
(graph parsing), we use our confined rule types with their well-
defined pre- and post-conditions to trace their potential appli-
cation order. This way it is possible to identify isolated rules
that will never apply or ambiguities and infer missing rules or
refining conditions. Other static analysis that can be carried out
is the evaluation of schema coverage on source and target side
or termination qualities of the rule set by identifying potential
circular rule application sequences.

In our prototype, the following are implemented: validation of
syntactic correctness, schema conformance on the IFC side, for-
ward transformation and rule type evaluation. It should be noted
that these validations are unrelated to the validators mentioned
in Section 3.2. While the former validate rules statically inde-
pendent of their application to a specific data set (or start graph),
the latter are invoked during graph transformation to guide rule
application for a given data set.

2 https://github.com/opensourceBIM/BuildingSMARTLibrary
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3.4 Rule types

The application can recognize and mark rules as being of a spe-
cific type. We identify four different rule types that are rele-
vant to our conversion methods. These are shown in Figure 5.
Anjorin et al. (2015) present guidelines for the development of
graph transformation rules and identify very few generic pat-
terns that appear in the rule design process: islands, extensions,
and bridges. These correspond roughly to our root, standard,
and reference types.

The rule types differ and are distinguishable by the number of
connected pairs of an IFC and CityGML node, and the graph el-
ements created on CityGML side (either nodes, edges or none).
For instance, the standard rule (Figure 5b), has two connected
pairs of IFC and CityGML nodes, with a path of edges and
nodes between the two CityGML nodes. We call these two
IFC–CityGML pairs entry and exit pair. The CityGML exit
node the CityGML path elements appear only in the right hand
side of the rule (created nodes and edges).

It is important to note that the rules as depicted in Figure 5 are
only prototypical rules. They can contain arbitrarily complex
left-hand side constructions on the IFC as well as the CityGML
side to define their application scope. The connecting paths
between the IFC nodes and the CityGML nodes of the pairs
can be arbitrarily complex as well, where the prototypical rules
only contain a simple edge, for instance the gmlRelation edge
between gmlParent and gmlChild.

The particulars of each rule type can be defined mathematically
in the formal framework laid out in Section 2, but we are omit-
ting the details for the limited scope of this paper.

3.5 Rule definition shortcuts and expansion

To facilitate rule development, we introduced shortcut notations
for some common rule constructions.

As mentioned in Section 3.2, the most flexible way to notate
validators is to describe them as a predicate expression over
identifiable elements of the transformation rule. However, rules
are easier to read and understand if the validators appear near
the elements that they relate to. Thus we allow validators that
constrain an attribute value to be defined directly at the node,
using notation similar to UML (Figure 6a). This is implemented
for literal String attribute values and lists of possible values.

We use a similar notation to specify getters and setters for at-
tributes as shortcuts (Figures 6b and 6c). These shortcuts are
specific to a rule construction that we use in our conversion pro-
cedure: a global context to hold values across rule applications.
The context can be seen as a dedicated node to which we attach
and from where we access global values. This is only possi-
ble because we generate a tree-like structure on the CityGML
side. Because we can follow an application order of rules that
walks the tree top-down, we can assume that rules further up in
the tree structure are already processed and context is populated
with the respective values. Figures 6b and 6c show how this is
expressed as a graph rule and how the shortcut simplifies the
rule graph.

Getters can exist on CityGML and IFC side, while setters
should only appear on the CityGML side or on the IFC con-
text. There is also a shortcut notation to put whole nodes into
context and notations to specify attribute value converters.

Nodes created with a standard rule (Figure 5b) are implicitly
”put” into context with their class name as index. That means
any edge from context to an existing node of the same class is
deleted and a new edge is added from context to the node just
created. In Figure 4, the nodes ”ctx” and ”oldStoreyCtx” and
the two ”current” relations can be omitted in the shortcut form.

We provide another rule type, which combines a standard rule
(Figure 5b) with a reference rule (Figure 5c). The resulting
standard-reference rule type is shown in Figure 7. Rules of this
type are required by the IFC–CityGML conversion algorithm.
They allow for the generation of links in the tree structure across
multiple branches of the tree. In our implementation they are
to be specified directly in the combined form, but they could
also be generated automatically through static analysis from
combining a standard and a reference rule with corresponding
types of the CityGML node. Note that the standard-reference
rule again permits to omit the explicit context node declaration.
The dangling CityGML node which is not connected to an IFC
counterpart is to be taken from the context.

3.6 Management, modularity, grouping, packaging

The web application also offers some supporting functionality
for the management of the rules. Rules have identifying names
and numeric IDs, they can be viewed in lists with paging and
sorting, and they can also be deleted.

Rules can be grouped into rulesets, with each rule being as-
signed to one or more identifiable and named sets. All rules in
a ruleset can be downloaded at once as a zip archive and con-
versely such an archive can be imported to create a new ruleset
in the database. The database can also be queried for orphaned
rules, which are not assigned to any ruleset.

This basic functionality does already allow for the creation of
modular rule repositories to explore different conversion op-
tions, for instance regarding the spatio-semantic paradigms.

4. EMPLOYING THE RULES

The rules and rulesets in the rule repository can be employed in
a variety of ways, from static analysis, to population of graph
transformation systems for actual conversion, to deduction of
IFC or CityGML side model requirements (e.g. in MVD form
for IFC), or checking of IFC input data against a given ruleset.
For the IFC2CityGML project we have implemented both input
checking for rule applicability and actual conversion through a
custom application. Both are implemented as separate applica-
tions that receive an IFC file as input and in addition configura-
tion information in JSON format deduced from a given ruleset.
This section describes how the JSON payload for these appli-
cations is generated from the rulesets.

4.1 Pre-processing for checking

The checking application produces a report in table form, with
records for each rule stating how often this rule would apply
for a given IFC file. In order to achieve this, it processes a tree
spanning the IFC part of the rule (which is part of the left-hand
side by definition of the forward transformation) to match the
rule against the IFC object graph starting at potential IFC entry
nodes and computing the match count as the rule tree is tra-
versed in parallel with the IFC input graph. The rule repository
application extracts this IFC spanning tree for every rule in a
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ifcRoot
IfcType

gmlRoot
GmlType

+

+

(a) Root rule

ifcParent
IfcType1

ifcChild
IfcType2

ifcRelation

gmlParent
GmlType1

gmlChild
GmlType2

+

+

+
gmlRelation

(b) Standard rule

ifcChild
IfcType2

gmlChild
GmlType2

ifcParent
IfcType1

ifcRelation

gmlParent
GmlType1

+
gmlRelation

(c) Reference rule

ifcParent
IfcType1

ifcChild
IfcType2

attribute > $ctxVar

ifcRelation

gmlParent
GmlType1

attribute < converter ( $ctxVar)

(d) Property rule

Figure 5. Rule types as deduced from the requirements of the conversion procedure

nodeId
NodeType

attrId
String

attrName

condition:
attrId = "value"

nodeId
NodeType

attrName: value

(a) Validators, long and short form

nodeId
NodeType

attrId
AttrType

attrName

ctx
Context

+

ctxName

nodeId
NodeType

attrName > $ctxName

(b) Getters, long and short form

nodeId
NodeType

attrId
AttrType

+

attrName

ctx
Context

ctxName

nodeId
NodeType

attrName < $ctxName

(c) Setters, long and short form

Figure 6. Shortcuts to define attribute-specific validators, setters and getters, long forms (left) and short forms (right)

ifcParent
IfcType1

ifcChild
IfcType2

ifcRelation

gmlReferenced
GmlType1

gmlChild
GmlType3

+

+

+
gmlReference

gmlParent
GmlType2

+
gmlRelation

Figure 7. Combined rule type for conversion

ruleset and exposes it in JSON form for the checking applica-
tion to be used.

We used the results of this checking during the rule-
development process to shortcut the feedback loop and replace
validation and analysis of actual conversion output. The check-
ing results allow to assess where rules are missing or have pre-
conditions which are too broad or too narrow. As opposed to a
full conversion run, each rule is evaluated in isolation and thus
context can not be considered. Because of this it must be noted
that this can not be reasonably applied for standard-reference
rules. Checking ignores the non-standard part of the rule, be-
cause context is not populated. For these rules to get more com-
plete checks, we would have to split them into standard and ref-
erence rules and thus incorporate the context information into
the reference rule.

4.2 Pre-processing for conversion

The conversion application actually carries out the actual con-
version from IFC to CityGML. The details of the conversion
process are beyond the scope of this paper, but the requirements
of the conversion process were developed in parallel to the rule
management application described here and led to the rule types
described in Section 3.4 as well as some of the shortcuts in Sec-
tion 3.5. The conversion also takes advantage of the simplifica-
tions described in Section 2.3. This is why the JSON payload
for the conversion can be generated pretty straight-forward.

To generate these operational conversion rules we extract the
connected IFC and CityGML nodes (entry and exit pairs), the
paths between connected IFC nodes and connected CityGML

nodes (if the rule has two pairs) and potentially to the refer-
enced CityGML node. Further we collect the setters, getters,
and validators and resolve the path from a defined node (usu-
ally the IFC or CityGML exit node).

5. CONCLUSIONS

5.1 Summary

We have shown a formal mathematical framework to apply
graph transformation for the IFC-to-CityGML conversion and
its implementation in a rule management application including
a custom DSL and visual representation of the transformation
rules. We have also demonstrated how the general graph trans-
formation approach was tailored to our conversion algorithm.

It must be admitted, that rules that rely on predictable rule ap-
plication order, do not conform to the original ideas of graph
transformation. Instead we mix in concepts of other program-
ming paradigms. We could express that same conversion logic
in rules that only use the local rule context, but these would be
more complex and rule application procedures would be com-
plicated in terms of finding appropriate matches. We strived to
find a balance between general graph transformation and man-
ageable operationalization.

A similar objective has led to and comparable approach has
been taken with layered grammars, where rules are organized in
layers to be applied in a particular order, while the order among
rules of the same layer stays undetermined. This way, for in-
stance, deletion of nodes can be postponed to a stage where
they are not needed as precondition for other rules.

5.2 Limitations

In favour of achieving a working end-to-end conversion pro-
cess, we accepted some limitations on the theoretical side and
in the implementation.

First of all, in our theoretic framework there is no proper han-
dling for primitive data types and hence attribute mapping. This
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is not relevant for our implementation, since in Java primitive
types can be treated similar to non-primitive types. However,
for more rigid analysis and checking in particular of the valida-
tor and converter parts of the rules, it would be necessary to add
a data type algebra to the model.

The formal model is also still weak with regard to the repre-
sentation of generalization and specialization in the type graph.
For now, we resort to a flattened type graph where an associa-
tion between a given source and target type is represented as a
set of edges for every pair of nodes representing the source type
or any of its supertypes and the target type or any of its super-
types. Transformations based on rules with flattened have been
shown to be equivalent to such with explicitly modelled gener-
alization ?, but while they remove complexity from the formal
model and some analysis such as type checking, other analy-
sis may become more complicated ore performs worse, such as
static application order analysis.

The integrated representation makes it easier to understand
the rules, but it can not handle splitting and joining of nodes
(non-isomorphic rule span morphisms). The current imple-
mentation of the shortcut validators is limited to String equal-
ity checks. We do not support negative application conditions,
which would be necessary for more complex rule applications.
All of these result from deliberate prioritization choices during
prototype implementation.

5.3 Future work

The graph-transformation based conversion approach opens up
the possibility for static analysis, of which we have imple-
mented only a small portion and which would be a promising
field for future research and development. This includes, but is
not limited to assessment of conversion completeness and cor-
rectness, ruleset consistency, and schema coverage on source
and target side.

It would also be interesting to investigate whether the current
forward transformation rules can be transformed into general
TGG rules which allow for the derivation of different opera-
tional transformation systems, e.g. model synchronization. It
could be also worth trying to populate a general graph transfor-
mation system such as AGG with the rules. Connected to this,
the standard-reference rule type would need reconsideration.

Some concepts omitted from the implementation, such as neg-
ative application conditions would need to be implemented to
leverage the full potential of graph transformation. Other thing
nice to have would be better rule editing support with syntax
highlighting and autocompletion, maybe even interactive visu-
alization and graphical editing of the rules. CityGML and ADE
schema conformance of rules with XMI would facilitate rule
development.
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