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ABSTRACT: 
 
Because of the importance of access to sunlight, shadow analysis is a common consideration in urban design, especially for dense 
urban developments. As shadow computation is computationally expensive, most urban shadow analysis tools have to date 
circumvented the high computational costs by representing urban complexity only through simplified geometric models. The 
simplification process removes details and adversely affects the level of realism of the ultimate results. In this paper, an alternative 
approach is presented by utilizing the highest level of detail and resolution captured in the geometric input data source, which is an 
extremely high-resolution airborne laser scanning point cloud (300 points/m2). To cope with the high computational demand caused 
by the use of this dense and detailed input data set, the Comprehensive Urban Shadow algorithm is introduced to distribute the 
computation for parallel processing on a Hadoop cluster. The proposed comprehensive urban shadow analysis solution is scalable, 
reasonably fast, and capable of preserving the original resolution and geometric detail of the original point cloud data.  
 
 

1. INTRODUCTION 

Sunlight is a key source of warmth and brightness and provides 
positive effects on human health, as well as vegetation growth 
(Littlefair, 2001). In some countries such as Japan, Germany, and 
the United Kingdom, access to sunlight is a legal right (Zielinska-
Dabkowska, Xavia, 2019)  with “right to light” enshrined in 
English property law under the 1663 Ancient Lights Law 
(Encyclopaedia Britannica, 1998). Ensuring access to sunlight 
can be a challenge in urban environments, because the built 
infrastructure can block sunlight and cause shadows, especially 
in the presence of multi-story buildings and narrow streets. Thus, 
shadow analysis is often a part of the urban planning process, 
especially for dense urban environments (e.g. NYC Department 
of City Planning, 2013; Prevision Design, 2016).  
 
Arguably, shadow analysis is a computationally expensive, 
spatio-temporal problem. Urban shadows result from the 
complex spatial interaction of objects within the built 
environment, including the terrain, buildings, other built 
infrastructure, and vegetation. A tall object such as a mountain or 
high-rise building can cast shadows onto other objects hundreds 
or even thousands of meters away when the sun is at a low 
azimuth (i.e. near sunrise or sunset). The exact pattern of these 
shadows changes daily over the course of a year. Consequently, 
a complete shadow analysis requires computation for every 
single day and over the daily exposure cycle throughout the 
annual cycle. So while shadow analysis is a well understood 
subject (Woo, Poulin, 2012), there has yet to be an efficient 
computational approach for capturing the full extent and 
complexity of a large-scale urban shadow analysis. As indicated 
by a recent review by Miranda et al. (2019), most of the existing 
approaches today (e.g. NYC Department of City Planning, 2013; 
Prevision Design, 2016) are restricted to a small spatial scale 
and/or a limited temporal range, as described in Section 2. 
 
 

                                                             
*  Corresponding author 
 

2. RELATED WORKS 

Shadow analysis has been extensively explored in computer 
graphics. According to Woo and Poulin (2012), common shadow 
algorithms can be classified into five general categories: (1) 
planar shadow receivers, (2) shadow depth mapping, (3) shadow 
volumes, (4) ray tracing, and (5) area subdivision and 
preprocessing. Planar shadow receiver approaches assume all 
shadow-receiving objects have the form of planar surfaces (e.g. 
walls and floor surfaces of an indoor space). Such an assumption 
greatly reduces computational complexity and computing time. 
However, the approach has restricted applicability (e.g. the 
shadow receivers must be planar and do not self-shadow) and is 
not very accurate, because of the high level of geometric 
simplification. Shadow depth mapping is an image-based 
approach in which the 3D scene is projected onto a 2D plane 
situated between the scene and the light source. Each pixel in the 
resulting 2D image maintains a depth buffer (also known as a Z-
buffer) to track the visibility and depth of each portion of the 
scene, with respect to a light source. The buffers allow objects 
nearest to the light source to be identified and marked as 
illuminated, while objects further away from the light source in 
the same pixel are shaded. While shadow depth mapping has the 
advantage of being computationally efficient, the approach lacks 
a high degree of accuracy. In contrast, the shadow volume 
approach attempts to better capture the 3D elements of the scene. 
Specifically, the approach models the shadows of a polygonal 
object in the scene as polygons in the direction opposite to that 
of the light source. A shadow counting algorithm is then applied 
to identify shaded and illuminated segments. The shadow volume 
approach has the distinction of being both relatively fast and 
accurate, as long as its application is restricted to polygonal 
models within a modest scene. Ray tracing is a straightforward, 
powerful and widely used approach in which the shadow 
determination is performed by tracing rays from the light sources 
to points on the objects being analyzed. If there is not an object 
obstructing the ray traced between a light source and a point, the 
point is considered as illuminated by the light source. Otherwise, 
the point is considered to be shaded. Ray tracing has wide 
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applicability to different kinds of geometry and light sources. The 
technique’s main disadvantage is its high computational cost. 
The last common class of shadow algorithms is area subdivision 
and preprocessing, in which object surfaces are subdivided into 
illuminated and shaded area parts. The approach is the least 
popular among the 5 classes, because of its unsuitability for large 
scenes. Readers interested in an in-depth review of shadow 
algorithms may consult Woo and Poulin (2012). 
 
While shadow analysis is a well-studied subject supported by a 
large body of literature, computing shadows for large scenes,  
such as urban environments particularly when the computation is 
needed over a large temporal extent, has remained a challenge 
(Hinks et al., 2015; Miranda et al., 2019). In a recently published 
study on large-scale urban shadow analysis, to reduce the 
computational burden, Miranda et al. (2019) proposed using a 3D 
vector model of New York City (NYC), in which the majority of 
structures are represented by CityGML’s Level of Detail 1 (LoD 
1) with several segments represented at LoD 2 (NYC Department 
of City Planning, 2018). The model was derived from a 2014 
aerial survey by the NYC Department of Information Technology 
and Telecommunications. In that research, only shadows on the 
horizontal ground surface were considered. The computation was 
further reduced by hypothesizing that the shadow movement was 
linear within two nearby time steps (e.g. within 1 hour). Together 
with several approximation strategies (e.g. limiting the number 
of shadow sources and approximating the sun position) and the 
use of a large memory computing workstation with a state-of-the-
art Graphical Processing Unit (GPU), real-time performance (i.e. 
rendering speed faster than 20 frames per second) was achieved 
when computing shadow maps for 6 hours per day at a 1-hour 
interval for 20 random days spreading throughout the year to 
facilitate interactive testing of multiple urban design scenarios. 
  
Point cloud based shadow analysis is not infrequently seen in 
research on solar potential estimation – most commonly through 
the transformation of point cloud data into a raster representation 
(e.g. a Digital Surface Model) or a 3D vector model, which 
becomes the basis for the shadow casting (e.g. Carneiro, 2011; 
Fogl, Moudrý, 2016; Huang et al., 2015; Redweik et al., 2013). 
The reduction from a 3D point cloud into a 2.5D raster-based 
model reduces the LoD and, thus, the accuracy in further 
analyses. Specifically, trees and overhanging building structures 
cannot be correctly modeled where each xy-position is only 
represented by a single elevation (Fogl, Moudrý, 2016). 
Correctly modeling non-rectilinear façades is also difficult 
without specific workarounds (Catita et al., 2014; Desthieux et 
al., 2018). Apart from the aforementioned raster input, laser 
scanning based 3D vector models have also been used for solar 
potential analysis (e.g. Gooding et al., 2015; Jacques et al., 2014; 
Li et al., 2015; Martínez-Rubio et al., 2016; Nguyen et al., 2012). 
The vector-based method is particularly well-suited for low-
resolution point clouds (e.g. below 1 point/m2) (e.g. Gooding et 
al., 2015; Nguyen et al., 2012). Point cloud data obtained by laser 
scanning often possess different kinds of imperfections (e.g. 
occlusion, noise, outliers). During model reconstruction 
processes, imperfect point cloud datasets are transformed into a 
vector model, and those imperfections are often rectified by 
employing prior human knowledge and/or heuristic rules. For 
example, a building model reconstruction process may exploit 
the following human knowledge about building geometries: (1) 
building envelopes are often made of planar surfaces, which 
together compose an air-tight volume; (2) building walls are 
vertical and often orthogonal to each other; and (3) roof planes 
meet at ridges, and nearby ridges often coincide. Those added 
pieces of information are particularly useful and needed for low-
resolution and incomplete input data. Importantly, despite being 

highly resource intensive, these 3D vector models, typically 
reconstructed from point clouds, often deviate significantly from 
the actual scene, because objects in real urban environments are 
often far more complex than the simplistic, artificial models 
reflective of such heuristic rules. 
 
As this brief review of the recent literature demonstrates, the 
problem of large-scale shadow-casting in complex urban 
environments remains unsolved. In an effort towards a more 
comprehensive approach for large-scale urban shadow analysis, 
this paper presents a distributed computing solution for 
computing urban shadows from aerial laser scanning (ALS) point 
clouds. As of 2019, the point cloud of 1.4 billion points used in 
the paper (Laefer et al., 2017) remains among the densest ALS 
datasets in the world today with a density of 300 points/m2. This 
paper postulates that point clouds ofthis level of density are 
becoming more readily available and that such data, in and of 
itself, has sufficient detail and completeness to realistically 
represent the geometry of the urban environment for shadow 
analysis without any further 3D reconstruction. Specifically, 
instead of transforming the point cloud into a simpler version of 
continuous surfaces, such as a raster model, an extruded vector 
model, or a mesh, this paper opts for a full per-point analysis, in 
which all ALS data points are utilized directly in the shadow 
casting analysis. To provide sufficient computational power, a 
Hadoop cluster containing 44 computing nodes was used. The 
shadow casting algorithm was formulated as a distributed 
algorithm, which performed the computation in parallel on the 
Hadoop cluster.   
 
3. A DISTRIBUTED POINT CLOUD PROCESSING 

STRATEGY FOR URBAN SHADOW ANALYSIS 

To circumvent the drawbacks of the loss of data accuracy and 
details due to the common data simplification discussed in 
Section 2, this research presents the Comprehensive Urban 
Shadow (CUS) method as an alternative solution that employs an 
original point cloud with the full resolution and details captured 
by laser scanning to enable a more thorough analysis. CUS is 
based on an algorithm previously developed by the authors for 
solar potential simulation (Vo et al., 2019). While the approach 
is computationally demanding and requires a specifically 
designed distributed shadow casting algorithm, which performs 
the computation in parallel in a Hadoop cluster, it is highly 
scalable. This section presents the CUS method and details of the 
implementation within the Apache Spark processing framework.  
 

 
Figure 1. Distributed shadow computation algorithm 
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3.1 Algorithm Formulation  

At a given position of the sun (i.e. a collimated light source), a 
point p in a point cloud can only cast shadow on and receive 
shadows from the other points along the same sun ray passing p 
(Fig. 1). Let the point data be grouped into point beams parallel 
to the direction of the light source to resemble sun rays; each 
point beam can be processed individually without the need of 
exchanging data with other point beams. This key observation 
enables formulating the computation for efficient parallel 
processing.  
 
To group the point cloud data into point beams, the data are first 
transformed to a 3D coordinate system, which has one of the axes 
parallel to the direction of the sun. In Fig. 1, UPQ is the 
transformed coordinate system, and P is the axis pointing toward 
the Sun. Subsequently, the transformed point cloud data are 
projected onto the UQ-plane and discretized by a regular 2D grid 
with a spacing of (δu × δq). The data points contained in each grid 
cell can be considered as points sharing the same sun ray. The 
grid cell size (δu × δp) determines the thickness of the synthetic 
beams and is selected based on the point spacing of the dataset so 
that each cell contains at least one data point from each surface 
through which the beam passes. As the ALS point cloud 
employed in this research has a nominal point spacing of 6 cm on 
horizontal surfaces (equivalent to 300 points/m2) and a nominal 
spacing of 17 cm on vertical surfaces (equivalent to 35 
points/m2), a grid cell size of 25 cm was selected (i.e. 1.5 to 2.0 
times the lower spacing). Selection of the grid size is an important 
consideration, as thin point beams may go through the gaps 
between ALS points and fail to detect a source of shadow, while 
thick point beams exaggerate the shadow effects of objects and 
result in a lower-resolution model. 
 
In theory, the point closest to the sun (i.e. the one having the 
greatest p-coordinate) within each point beam is the only point 
illuminated by the sunlight. Other points further away from the 
sun along the same beam are shaded by one or more closer points. 
However, as the synthetic sun beams in the simulation have a 
certain thickness, instead of passing through a single point, each 
point beam is likely to intersect with a cluster of points on each 
surface through which the beam passes. Thus, a one-dimensional 
spatial clustering algorithm is applied on each point beam to 
identify the cluster of spatially coherent points closest to the sun. 
All of the points in the cluster are marked as illuminated, and the 
remaining points in the beam are marked as shaded. DBSCAN 
(Ester et al., 1996) was selected for the spatial clustering herein, 
although other spatial clustering algorithms may also be viable.  
 
3.2 Implementation Details 

Apache Spark, a powerful, general-purpose, distributed 
computing framework within the Hadoop ecosystem, was 
selected for the implementation of the distributed algorithm 
presented in Section 3.1. Apache Spark is a well-known, Big 
Data batch processing framework that succeeds Hadoop’s 
MapReduce with a 10 to 100 times improvement in data 
processing speed due to a more efficient use of memory, with 
greater flexibility and wider applicability (Zecevic and Bonaci, 
2016). In recent years, Spark has been explored for processing 
massive amounts of laser scanning point cloud data (e.g. Li et al., 
2017; Rizki et al., 2017).  
 
Spark works by partitioning input data into a set of records and 
repeatedly performing a series of user-defined transformations on 
the data records. The transformations must be functional, 
meaning that they must be free of global state and side effects, so 

that multiple transformations can be executed totally in parallel 
in a distributed computing environment. Unlike in MapReduce 
frameworks, the output of one transformation in Spark can be 
passed directly to the next transformation without being written 
out to the distributed file systems, which reduces the data 
input/output costs. Data are restructured (e.g. sorted, or grouped) 
only when necessary. The data processing model is based on the 
generic concept of data flow, shared by other software such as 
Tez (https://tez.apache.org) and Flink (https://flink.apache.org) 
and often considered as a more flexible, more efficient model for 
scalable, distributed batch data processing.  
 
Data records in Spark are represented by the notion of a Resilient 
Distributed Dataset (RDD), which possesses the characteristics 
of immutability, resiliency, and distributable. The 3 
characteristics of RDDs are critical to efficient distributed 
computation. Immutability reduces the level of computational 
complexity and simplifies parallel data processing as an RDD is 
never modified during its lifetime, and expensive data 
synchronization is not needed until the shuffle stages. The 
resilience characteristic ensures fault-tolerance and enhances the 
possibility that the framework will continue to work, in cases of 
partial data corruption or node failure, which are common issues 
in distributed hardware systems. The last characteristic (i.e. being 
distributed) means that a dataset is partitioned and cloned on 
multiple computing nodes for parallel processing, which also 
ensures redundancy in case of failure. As RDDs are immutable, 
they can only be transformed to other RDDs via transformation 
functions. A Spark computation is often represented as an acyclic 
data flow containing a series of RDDs and the transformation 
functions between them. The acyclic data flow in Fig. 2 presents 
the RDDs and the transformations needed to implement the 
algorithm described in Section 3.1. 

 
Figure 2. Acyclic data flow diagram representing the Spark 

implementation 
The first RDD (i.e. RDD1) in Fig. 2 is the input point cloud data 
read into the data flow from the Hadoop Distributed File System 
(HDFS). For each sun position defined by the sun’s azimuth and 
altitude angles (γ, θ), a transformation T1 is applied on RDD1 to 
produce RDD2. Several steps are encapsulated in T1. Each step 
processes each data point individually. Thus, no data exchange 
between the computing nodes is needed. The first step is the 
transformation of the point cloud, which is originally defined in 
the Irish TM75 map projection [Easting (x), Northing (y), 
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Elevation (z)], to a new coordinate system of UQP with the P axis 
parallel to the current sun direction. Eqn. 1 shows the formulae 
required for the transformation. In Eqn. 1, µ is the North 
correction factor, which accounts for the deviation between the 
map projection’s North and the true North. The North correction 
factor for Dublin city is 1.5504 degrees (Ordnance Survey of 
Ireland, 1996). Notably, all of the trigonometric factors in Eqn. 1 
can be pre-computed, and the pre-computation of these factors 
can reduce the computation time of T1 by 80%. The projection 
and discretization steps are performed by the simple formulae in 
Eqn. 2. The selection of the discretization steps (i.e. δu and δq) is 
partially based on the data resolution, the expected level of detail 
of the output. For the particular dataset presented in this paper, δu 
= δq = 0.25 m was selected. The squared brackets in Eqn. 2 denote 
the rounding operators to the nearest integers. The grid index (iu, 
iq) resulting from Eqn. 2 is used as the key for RDD2 (UQIdx in 
Fig. 2) while the value of RDD2 is the data point in the original 
coordinate system. T2 groups the data from RDD2 by the UQIdx 
to aggregate all of the data points sharing the same grid cell. The 
output of T2 is RDD3, in which the point data are grouped into 
grid cells, each of which corresponds to a point beam. The point 
beams in RDD3 are forwarded to T3, which performs DBSCAN 
on each individual beam and marks the points in the cluster that 
have the highest p-coordinates (i.e. closest to the sun), as 
illuminated. Similar to the data discretization in T1, DBSCAN in 
T3 requires a user-defined parameter ϵ, which defines the 
maximum distance between any pair of points in a cluster. A 
value of ϵ is selected as 0.25 m based on the data’s nominal 
sampling distance of 0.16 m on vertical surfaces. The output of 
T3 (i.e. RDD4) is a set of key-value pairs, in which each key is a 
data point, and the corresponding value is the timestep, at which 
the data point is illuminated. Ultimately, RDD4 persists to HDFS 
and can be transformed into multiple output data formats, as 
presented in Section 4.  
 

 !

𝑢 = 𝑥	 cos(𝛾 − 𝜇) − 𝑦	 sin(𝛾 − 𝜇)	
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4. RESULTS 

The direct output of the data flow presented in Section 3 is a 3D 
shadow model – a representation of the shadow distribution in 3D 
at the given instantaneous moment (i.e. timestep). In addition, the 
data flow can be iterated for a set of timesteps to cover a temporal 
extent (i.e. from sunrise to sunset) and generate what Miranda et 
al. (2019) terms a shadow accrual map. Time-lapse video 
showing the shadow variation over a temporal extent can also be 
generated from the data resulting from the computations 
described in Section 3. The subsequent subsections present the 
different data output formats. Discussions on the accuracy, 
computational performance, and a comparison with some 
existing approaches are also included. 
 
4.1 3D Shadow Model 

The ultimate RDD of the data flow in Section 3 (i.e. RDD4 in 
Fig. 2) is a set of data points illuminated by the sun at a given 
timestep. Shaded points are excluded from the result set during 
the T3 transformation. As such, RDD3 can be used directly as a 
3D shadow model. Two examples of such a models are presented 
in Figs. 3 and 4. To evaluate the accuracy of the computed 
shadow, a pair of aerial, oblique images captured synchronously 

with the laser scanning point cloud were plotted alongside the 
shadow models. The timestamps extracted from the images’ 
metadata are used to compute the shadows to ensure a temporal 
alignment between the datasets.  
 

 
(a) Computed 3D shadow map 

 
(b) Ground truth aerial image 

Figure 3. 3D shadow point cloud of the Liberty Hall and the 
surrounding computed for 12:50:47 26/03/2015 

 
(a) Computed 3D shadow map 

 
(b) Ground truth aerial image 

Figure 4. 3D shadow point cloud of the North-West corner of 
St. Stephen’s Green computed for 15:02:19 26/03/2015 
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Numbers 1-4 highlight specific locations between Figs. 3a and 3b 
where the agreement is easy to see. The locations include 
shadows from buildings with complex shapes and vegetation. 
Number 5 shows locations where the shadows from the glass 
façades of the Liberty Hall were underestimated. This is because 
neither the glass façades nor the interior structures of the building 
were captured in the ALS point cloud. The underestimation of 
shadows from buildings with a glass façade can be alleviated, if 
the glass façades can be detected and reconstructed prior to the 
simulation (Truong-Hong et al., 2013).  
 
Figure 4 shows the computed shadows and the ground truth aerial 
image of the North-West corner of St. Stephen’s Green. The 
buildings’ shadows are accurately computed as seen at locations 
1-4 in the figures. Shadows from vegetation are overestimated in 
the computation (numbers 5-6), as the semi-transparency of the 
trees is not taken into account in the computation. In reality, 

sunlight can partially penetrate through the tree’s crowns, unless 
the trees have particularly dense crowns. In the computation, the 
trees’ data points are considered as fully opaque. The simulation 
could be improved, if trees are modeled as semi-transparent, as 
previously done by Jochem et al. (2009). Knowledge of the trees 
species would be necessary, if such modeling were to be 
considered.  
 
Computation of a shadow model for the entire 1.4 billion points 
of the Dublin dataset for each time step took approximately from 
1.5 to 3 minutes on a 44-node Hadoop cluster.; the runtime per 
timestep is reduced when the computation is repeated for 
multiple timesteps, since the input data read from HDFS and 
other staging data can be reused. Each node in the cluster has 2×8 
core Intel Haswell CPUs and 128GB memory. The performance 
tests presented in the paper did not use more than 50 cores and 
less than 5 GB of memory per core through NYU’s HPC cluster.  

 

 
(a) Dublin Castle – Winter Solstice [shadow maps generated by the CUS method] 

 
(b) Dublin City Liberty Hall – Summer Solstice [shadow maps generated by authors’ CUS method] 

 
(c) Referenced shadow accrual maps based on the work of Miranda et al. (2019) as provided to the authors 

Figure 5. Shadow accrual maps
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4.2 Shadow Accrual Maps 

The shadow computation presented in Section 3 can be repeated 
for multiple timesteps (e.g. every 30 minutes from sunrise to 
sunset) to compute a shadow accrual map to present the total 
amount of shadow at each location on the map during the covered 
period. Such a map is important for analyzing the influence of the 
existing urban configurations and/or new developments on the 
overall urban environment with respect to sunlight access. The 
shadow accrual maps generated from the approach presented in 
this paper are inherently 3D. However, the example maps in Fig. 
5 are presented in 2D, and only the close-ups are in 3D, so that 
the maps can be easily compared to published results by others 
(Bui and White, 2016). 
 
Compared to the referenced maps, which were created from a 
vector building model of a city, the shadow accrual maps created 
with the CUS method proposed in this paper are much more 
realistic and contain a significantly greater level of detail. 
Everything captured in the ALS data, including buildings, trees, 
and urban infrastructure (e.g. the railway in Fig. 5b) are included 
in the shadow computation with accurate geometries for both 
roles – shadow casting and shadow receiving. Furthermore, there 
is no artificial limit in the distance to which shadows of an object 
can reach, as occurs when data are tiled.  
 
As previously noted the main goal of the work by Miranda et al. 
(2019) was to minimize computational time (see Section 2), 
which came at the expense of accuracy and visual fidelity, as only 
buildings were considered in the referenced maps and those 
building geometries were represented at LoD 1 (i.e. prismatic, 
block models with flat roofs) with 100 iconic buildings 
represented at LoD 2 (i.e. models contain roof features and 
certain thematically differentiated surfaces). As seen in Fig. 5c, 
the shadows in the referenced map are only cast on flat ground 
surfaces. Thus, the shadows that should be cast upon nearby 
buildings do not appear. Approaching the shadow computation 
from a wholly different perspective, this paper prioritizes the 
modeling accuracy and realism and takes minutes to hours 
(depending on the temporal resolution and the available 
computing resource) to compute a shadow accrual map for a day, 
as opposed to the seconds reported by Miranda et al. (2019). 
Depending on the expectation (e.g. immediate determination of a 
rough estimation, or a deferred, highly detailed simulation), one, 
the other, or the two used sequentially may be most suitable. 
 
4.3 Shadow Time-Lapse Video 

In addition to the primary output, instantaneous shadow models 
can be computed for multiple timesteps and integrated into a 
time-lapse animation to present the temporal variation of the 
shadows. An example of such time-lapse animation is presented 
in Video 1 (available from https://vimeo.com/298795058). The 
animations complement the shadow accumulation maps in 
Section 4.2 to provide detailed insights when needed. For 
example, Video 1 clearly shows that the shadows from some 
relatively high buildings on the South side of River Liffey can 
reach to the other side of the river in the early morning and the 
late afternoon times. Such information is difficult to extract from 
a less detailed shadow accrual map.  
 

5. CONCLUSIONS 

This paper presents the CUS method as a scalable, distributed 
computing algorithm for computing detailed urban shadows in 
3D directly from high-resolution ALS point clouds. The 
algorithm allows the computation to be performed in parallel on 

a distributed computing cluster. Computing an instantaneous 
shadow map for a dataset of 1.4 billion points takes up to 3 
minutes on a 44-node Hadoop cluster. The computational 
strategy is highly scalable since more cores and/or more 
computing nodes can be added to enhance the data processing 
capability, if a shorter processing time is desired or more data 
need to be processed. Multiple types of output can be extracted 
from the primary output of the presented computation, including 
3D shadow models, shadow accrual maps, and time-lapse 
animations of shadows. Each of the data output types can be 
useful in different ways for urban shadow analysis. The output 
shadow results are highly realistic and contain a high level of 
detail since the computation employs all of the fine geometric 
details captured by the extremely high-resolution ALS datasets. 
This approach stands in strong contrast to the common 
approaches for large-scale urban shadow analysis, which rely on 
overly simplistic geometric models as input. Furthermore, in 
those methods, point cloud data are typically converted to raster 
models or simplistic vector models prior to the shadow 
computation, thereby requiring additional processing steps and 
potentially introducing errors. The shadow models resulting from 
the proposed CUS method include all urban features captured by 
ALS, including buildings, other urban infrastructure, vegetation, 
and almost everything else in the urban environment visible to 
the laser scanner. All of the urban features are represented in their 
accurate, original geometries in the computation, thereby 
transforming to highly realistic output models.   
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