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ABSTRACT: 

 

Automatic semantic segmentation of point clouds observed in a 3D complex urban scene is a challenging issue. Semantic segmentation 

of urban scenes based on machine learning algorithm requires appropriate features to distinguish objects from mobile terrestrial and 

airborne LiDAR point clouds in point level. In this paper, we propose a pointwise semantic segmentation method based on our proposed 

features derived from Difference of Normal and the features “directional height above” that compare height difference between a given 

point and neighbors in eight directions in addition to the features based on normal estimation. Random forest classifier is chosen to 

classify points in mobile terrestrial and airborne LiDAR point clouds. The results obtained from our experiments show that the proposed 

features are effective for semantic segmentation of mobile terrestrial and airborne LiDAR point clouds, especially for vegetation, 

building and ground classes in an airborne LiDAR point clouds in urban areas.  

 

 

1. INTRODUCTION 

With the rapid development of LiDAR technologies, airborne 

and terrestrial LiDAR datasets are widely used as an important 

source of geospatial information for various applications ranging 

from 3D mapping to urban planning, land surveying, building 

reconstruction, 3D city modeling and digital heritage 

management (Yang, 2013). Generally, LiDAR data processing 

and modeling steps take tremendous time and operator efforts 

compared to the data acquisition step (Knaak, 2012). To address 

this issue, the automation of LiDAR data processing is very 

important to help to better benefit from the richness of data. 

Semantic segmentation is one of those important steps in LiDAR 

data processing that needs to be automated especially for real-

time applications.  

 

Semantic segmentation of point clouds directly gives semantic 

labels to points for better understanding scenes recorded in a 

point cloud. The efficiency of this process is important in 

applications such as self-driving cars which navigate themselves 

by integrating LiDAR scanners to observe the surrounding areas 

(Fisher, 2013), or on-the-fly decision making for secure 

navigation and localization. Furthermore, dynamic environment 

maps and real-time semantic 3D object maps are important 

prerequisites in motion planning for robots self-navigation as 

well (Rusu, 2010). In addition, semantic segmentation is required 

in applications such as cliff recognition to evaluate sea cliff 

changes (Young, 2010) or detecting transport network 

obstructions by comparing airborne LiDAR data before and after 

disasters to shorten the time of reaching disaster sites (Kwan, 

2010). In some practical applications, identifying points 

representing terrain topography from airborne LiDAR point 

clouds is a fundamental requirement. However, extraction of the 

topography in urban areas is more complex as tunnels and bridges 

are not easy to be detected from airborne LiDAR point clouds. 

Semantic segmentation is promising to classify airborne LiDAR 

point clouds to deal with varying topography based on 

appropriate features. 

                                                                 
*  Corresponding author 

 

In this paper, we present an improved pointwise semantic 

segmentation of an urban scene from mobile terrestrial and 

airborne LiDAR point clouds. Inspired by multi-scale features for 

classifying points defined in (Hackel, 2016), we propose features 

derived from Difference of Normal (DoN) for better identifying 

geometric properties of the surface of different objects. The 

feature “directional height above” that compares height 

difference between a given point and its neighbors is defined to 

improve semantic segmentation of airborne LiDAR point clouds 

especially for building and ground classes. This allows training 

models in an urban area with buildings and relatively flat ground. 

The method is robust enough to segment scenes with changing 

topography and buildings with different dimensions. Random 

forest classifier is chosen to classify points based on existed 

features and new proposed features. The results obtained from 

several experiments show that the proposed method with newly 

defined features is effective to improve semantic segmentation of 

airborne and mobile terrestrial LiDAR point clouds, especially to 

differentiate ground, buildings, and vegetation from airborne 

LiDAR point clouds in urban areas.  

 

The remainder of this paper is structured as follows: we present 

related works in Section 2. Sections 3 presents the proposed 

method and define the features for semantic segmentation in 

details. Section 4 presents experiments on mobile and airborne 

LiDAR point cloud and the analysis of experimental results. 

Finally, Section 5 concludes this work and presents some 

perspectives on future work. 

 

 

2. RELATED WORK 

Automatic semantic segmentation for deriving information on 

individual objects from LiDAR point clouds is a difficult task 

(Hackel, 2016). Segmentation is the process of partitioning a 

point cloud into groups with homogeneous properties where all 

points belonging to a group have the same meaningful label (for 
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example, points belonging to a geometric primitive such as a 

plane) (Awwad, 2010; Rabbani, 2006). Similarly, semantic 

segmentation of point clouds gives a semantic label to points 

representing the same object class (for example a wall or a 

building). Knowledge-based and machine learning methods are 

among the approaches that are proposed for the extraction of 

semantic information from point clouds in urban areas. 

Knowledge-based methods for extracting semantic information 

from point clouds have been explored in segmentation, feature 

extraction, and object recognition from point clouds. (Pu, 2009) 

extracted semantic features using semantic rules for the 

reconstruction of building facades from point clouds.  (Boochs, 

2011), (Hmida, 2012) and (Truong, 2013) used semantic 

knowledge in all point cloud processing stages for object 

detection based on three modules including a built knowledge 

module, an algorithm selection module, and a semantic 

qualification engine. (Xing, 2018) proposed a knowledge base for 

feature recognition from point clouds of urban scenes. The prior 

knowledge about objects is formalized as semantic rules based 

on ontology in which contains several modules for describing 

urban scenes in different perspectives. Among them, the spatial 

relations module allows formalizing possible topological 

relations among object components extracted from point clouds. 

The geometric properties and topological relations between 

object components extracted from point clouds are viewed as 

facts to infer semantic information of objects, such as recognizing 

complex geometry, building roof styles and building components.  

 

Machine-learning algorithms are used to extract semantic 

information from point clouds. For the indoor environment, Rusu 

(Rusu, 2009b) used Conditional Random Field (CRF) to label 

small indoor point clouds based on Fast Point Feature Histograms 

(FPFH) derived from planar segments. Xiong (Xiong, 2013) 

employed region growing algorithms to detect planar patches 

from a voxelized point cloud of inner structures of buildings and 

then used the “Stacking” learning algorithm to classify patches. 

Then, the patches are annotated with semantic labels of building 

components. In their work, the features are designed for a group 

of points in planar segments and the classification is conducted 

based on the features of planar segments. Armeni (Armeni, 2016) 

proposed a hierarchical approach for semantic parsing point 

cloud of an entire building in an indoor space into semantically 

meaningful spaces at the first level, and spaces parsed into 

building elements wall, columns in the second level. For 

identifying building elements, 3D sliding windows are used to 

slide candidate windows from large-scale point clouds. Then, for 

each voxel, features including position, size, surface normal, 

curvature, occupancy, and ratio, were derived from points in the 

voxel. Structured SVM classifier is chosen to classify candidate 

windows. This method is effective to segment indoor 

environment of buildings. Semantic segmentation based on the 

features of candidate windows can fast segment large indoor 

scenes. However, the features of candidate windows will not 

perform well for semantic segmentation of complex urban scenes. 

For the outdoor environment, pointwise semantic segmentation 

of point clouds directly gives semantic labels to points, which is 

a straightforward way to understand scenes. Weinmann 

(Weinmann, 2013) studied on feature relevance assessment 

based on geometric 2D and 3D features and analyzed the impact 

on the semantic interpretation of 3D terrestrial LiDAR point 

cloud data using four classifiers. The experiments are conducted 

on a terrestrial LiDAR point cloud representing an urban 

environment containing smooth ground. For improving the 

distinctiveness of 2D and 3D geometric features, the optimal size 

of neighborhoods selection for individual points is explored 

based on the definition of Shannon entropy (Weinmann, 2015). 

The multi-scale features extended from (Weinmann, 2013) for 

dealing with varying point density are used in semantic 

segmentation of urban area observed by terrestrial LiDAR. This 

is a supervised pointwise classification of mobile LiDAR point 

clouds of urban area using a random forest classifier that is 

simple but powerful, and has good generalization ability (Hackel, 

2016). Moreover, Niemeyer (Niemeyer, 2012) used a CRF to 

classify urban scenes with a flat ground in a point cloud. The 

fundamental element of machine-learning methods is the 

definition of features. The features are designed according to 

nature of segmentation (pointwise or voxel). Meanwhile, the 

design of features for semantic segmentation of mobile terrestrial 

LiDAR as well as airborne LiDAR point clouds should consider 

the variety of objects. For example, height difference in a local 

area is effective to distinguish ground and buildings, but not 

effective for tunnels and for varying change of ground. This is 

because the ground close to the edges of a tunnel will be 

classified into building class. Therefore, it is necessary to define 

new features that allow better distinction between tunnels, 

buildings in the topography itself. 

 

In addition, other solutions based on deep learning for semantic 

segmentation include Pointnet (Qi, 2017), PointCNN (Li, 2018) 

and deep learning on multiple 2D image views (or snapshots) of 

the point cloud (Boulch, 2018). However, these methods need a 

massive volume of training sets. For practical applications, it is 

not easy to collect a good training set, especially for semantic 

segmentation of large-scale mobile terrestrial and airborne 

LiDAR point clouds.  

 

In summary, knowledge-based methods for extracting semantic 

information on objects require pre-built rules or knowledge base 

to infer semantic information combining the information 

extracted from point clouds. This method is difficult to be applied 

in point level and if it is used in a large-scale urban scene, the 

knowledge base containing appropriate rules is essential to 

recognize different types of objects. A large volume of the pre-

labeled training set is needful to deep learning algorithm for 

semantic segmentation of urban scenes. However, it is possible 

to obtain good results of semantic segmentation without the need 

for large volume of training set if the appropriate features are 

defined for machine learning methods of semantic segmentation 

of urban scenes. 

 

 

3. METHOD 

Machine learning based semantic segmentation includes three 

steps: define features for training a classification model, train 

classification models on a training set based on defined features 

and evaluate the classifier performance on a testing set. Pointwise 

semantic segmentation requires to define a feature vector for each 

point. Then the feature vectors derived from the training set are 

input into machine learning classifier to train a model. Similarly, 

feature vectors obtained from the testing set are given to the 

trained model to classify points for evaluating the classification 

results.  

 

3.1 Definition of Features for Pointwise Semantic 

Segmentation 

3.1.1 Normal Estimation: Within a point cloud, surface 

normal estimation at a given point requires the information on its 

neighbors in a local area (Klasing, 2009). There are several 

methods for selecting neighbors, including fixed number 

neighbors selection and fixed radius neighbors selection. Due to 

the presence of uneven density and occlusion in point clouds, the 

fixed number neighbors selection allows ensuring the selection 
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of the required points for the estimation of the surface normal. 

Although, this may introduce some uncertainty in the estimation 

process. In this paper, the optimal neighbor size is selected using 

the general definition of the Shannon Entropy (Weinmann, 2014). 

When the neighbors are chosen, the Principal Component 

Analysis (PCA) is used to estimate the normal. According to the 

approach, the local surface covariance matrix C is expressed as: 

 

;  (1) 

 

Where C is a 3*3 symmetric and positive semi-definite matrix.  

 𝑝 is the centroid  

 𝑝𝑖  indicates the neighboring point 

 𝜆𝑗  is eigenvalue 

 𝑣𝑗  is eigenvector  

 

After using Singular Value Decomposition (SVD), its 

eigenvalues 𝜆𝑗 and the corresponding non-zero eigenvectors 𝑣𝑗 

are solved. These eigenvectors are orthogonal to each other. In a 

point cloud with 3D coordinates, if eigenvalues 𝜆2 > 𝜆1 > 𝜆0 > 0, 

the two largest eigenvectors can approximately determine a plane 

and the eigenvector corresponding to the smallest eigenvalue is 

its orientation, or normal (Rusu, 2009a). Therefore, the 

eigenvector corresponding to 𝜆0  is the approximation of the 

normal (+𝑛⃗  or −𝑛⃗ ). The known viewpoint and the Riemannian 

graphs (Hoppe, 1992) can be used to make normal directions 

uniform. Additionally, the curvature (surface variation) at 𝑝𝑖 is 

defined as:  

 

0

0 1 2

( )ip



  


 

    (2) 

 

3.1.2 Definition of Multi-scale Features for Semantic 

Segmentation: For a large-scale urban scene, the extraction of 

multi-scale features from dense point clouds requires huge 

computation capabilities within a given range of selected 

neighbors. Decreasing the point density in a large range is 

necessary to balance computation cost and time. The strategy of 

downsampling (Brodu, 2012; Hackel, 2016) point clouds makes 

it possible to select a fixed number of nearest neighbors for 

different scales (Figure 1). The point cloud is downsampled by 

generating a pyramid of scales using different voxel size. For a 

given point in the original point cloud, the fixed number of 

neighbors is picked up at each scale level. The voxel filter is a 

widely used method for downsampling 3D point clouds. The 

bounding volume of the point cloud is divided into small voxels 

of a given size, and the points in each voxel are replaced by the 

centroid of the point set. Based on the normal estimation in a 

point cloud, several features for the characterization of objects 

(as shown in Table 1) are derived (Gross, 2006; Hackel, 2016; 

Wang, 2015) at different scales. 

 

We also propose to calculate height above feature based on sliced 

point cloud in 8 directions (east, south, west, north, southeast, 

southwest, northeast and northwest) (as shown in Figure 2). For 

each point P, we slice point cloud in 8 directions on P. The height 

difference is calculated based on the endpoints of smooth line 

segments. For example, in Figure 2(B), point P1 is an endpoint 

of the segment containing current point P because there is a sharp 

change on point P1 when the line segment grows from P to P1. 

Similarly, point P2 is an endpoint of another smooth line segment 

containing the lowest points. The sliced height above feature is 

computed by the height difference between two neighboring 

endpoints belonging to different line segments (P1 and P2). The 

sliced height above features are calculated in eight directions, and 

they are computed in the level 0 of the downsampled point cloud. 

 

Level 

0

Level 

1

Level 

m

 
 

nL0 nL1nLm

 

Figure 1. Illustration of downsampling a point cloud at different 

scales 

 

Features 

in 

(Hackel, 

2016) 

Covariance 

Sum  1 2 3+ +     

Omnivariance 3
1 2 3     

Eigenentropy 
3

1
ln( )i ii

 


    

Anisotropy  1 3 1-  （ ）   

Planarity  2 3 1-  （ ）  

Linearity  1 2 1-  （ ）  

Surface 

Variation  3 1 2 3( + + )      

Sphericity 3 1   

Verticality z 31 | ,e |n    (nz = (0,0,1)) 

Moment  

1st order 1st 

axis 
1( )

,ii Neg P
p p e


     

2nd order 1st 

axis 

2

1( )
,ii Neg P

p p e


    

1st order 2nd 

axis 
2( )

,ii Neg P
p p e


    

2nd order 2nd 

axis 

2

2( )
,ii Neg P

p p e


    

Height  

Height Range max minZ Z   

Height Below minpZ Z  

Height Above max pZ Z  

Our 

proposed 

new 

features 

Directional 

height 

Sliced Height 

Above (8 

directions) 

[
1dZ , 

2dZ ,
3dZ ,

4dZ ,
5dZ , 

6dZ ,
7dZ ,

8dZ ] 

Where 
1 2di p pZ Z Z    

DoN Norm of DoN _ _ 0( ( , , ))d l i lnorm n p P P  

Table 1. Features for semantic segmentation of urban scenes from 

LiDAR point clouds 

 

Difference of Normal (DoN) is an arithmetic multi-scale operator 

for evaluating the geometric properties of a point cloud (Ioannou, 

2012). Here, the term “scale” indicates the size of the radius used 

for normal estimation. It is defined as: 

 

1

1
( ) ( )

k
T

i i

i

C p p p p
k 

     j  =   j 0,1,2j jC v v  
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 ( , ) ( , )
( , , )

2

l l s s
d l s

n p r n p r
n p r r


    (3) 

 

Where p is the given point 

 𝑛𝑙(𝑝, 𝑟𝑙) is the normal estimated in a large radius 𝑟𝑙 
 𝑛𝑠(𝑝, 𝑟𝑠) is the normal estimated in a small radius 𝑟𝑠 

 

 Surface normal estimation is dependent on the neighbors located 

in a sphere defined by radius r. In this paper, 𝑟𝑙 is replaced by the 

downsampled fixed number of nearest neighbors at a larger scale 

and 𝑟𝑠 is replaced by the downsampled fixed number of nearest 

neighbors at a smaller scale. Thus, the DoN based on the fixed 

number of nearest neighbors and the scale used for selecting 

neighbors are defined as follows: 

 

 ( , ) ( , )
( , , )

2

l l s s
d l s

n p P n p P
n p P P


    (4) 

 

Where  𝑃𝑙 represents large-scale fixed number of neighbors 

 𝑃𝑠 represents small-scale fixed number of neighbors 

 

Hence, the change of scales for picking up nearest neighbors to 

compute the DoN can reflect the properties of the geometric 

shape and size of objects. For a perfect plane, the DoN is a zero 

vector. For a planar segment, the values of DoN for most of 

points are near the zero vector. The histogram of the norm of DoN 

reveals the effectiveness of DoN for distinguishing between the 

objects having planar surfaces (such as buildings and roads) and 

those without regular geometric shapes (such as trees and bushes). 

Here the norm of a vector Δ𝑛𝑑  is defined as: 

 

 2 2 2( ) ( . ) ( . ) ( . )d d d dnorm n n x n y n z        (5) 

 

 

A 

P

P1

P2

 

B 

Figure 2. Illustration of “directional height above” feature in 8 

directions 

 

In Figure 3, an example is given to show the characteristics of the 

DoN for different types of objects in three different scales of 𝑟𝑠 

and 𝑟𝑙. The values of radius 𝑟𝑠 and 𝑟𝑙  are 0.5 and 1 meter, 0.5 and 

1.5 meters, and 1 and 2 meters, respectively. In a point cloud of 

a building wall, over 98% of points fall in the range of the norm 

of DoN between 0 and 0.18 while most points have a greater 

value for a tree. This example reveals that the norm of DoN 

calculated between normals estimated using downsampled 

neighbors at different scale is effective for semantic segmentation 

of point clouds. 

 

3.2 Random Forest for Pointwise Semantic Segmentation 

Random forest (Breiman, 2001) is composed of  a collection of 

decision trees constructed using random features sampled 

independently. Each tree is trained on the training set based on 

bootstraps that creates a random resampling on training set itself, 

and random features are selected to create trees (Svetnik, 2003). 

The prediction is decided by aggregating of the predictions of 

decision trees. Each node in a binary decision tree represents a 

feature selected for splitting samples into two classes. Gini 

impurity measures how well a potential split is in this node 

(Menze, 2009). The formula of Gini impurity is: 

 

 
1

( ) 1 ( )
C C

ii
Gini m p


      (6) 

 
Where  𝑝𝑖 = 𝑛𝑘 𝑛⁄   is the fraction of 𝑛𝑘 samples from C classes 

out of the total of n samples at node m.  
 

The multi-scale features defined in the previous section are 

organized as a features vector which combines features obtained 

in different scales. The feature vector is produced on each point. 

The feature vector represents the learnable variables of objects.  

Then the feature vectors are input into machine learning classifier 

for learning the parameters for classification from the training set. 

Similarly, the feature vectors calculated from the testing set are 

used in the semantic segmentation on the testing set for the 

evaluation of the performance of the learned classifier. Generally, 

the precision, recall, and F1-Score are calculated to compare the 

performance of the classifier. 

 

We choose a Random Forest classifier for pointwise semantic 

segmentation because it is straightforward to deal with multi-

class problem and it is easy to parallelize its implementation. It 

demonstrated good results on large-scale point clouds in a 

reasonable time (Hackel, 2016; Weinmann, 2015). We use the 

random forest algorithm in Scikit-learn library with Gini-

impurity (Menze, 2009) as the splitting criterion. In our 

application, the density of point clouds is uneven, and it has high 

density on the ground. Due to occlusion, the scanning angle and 

the viewpoint of the scanner, some parts of objects are missing 

or have low density. Thus, the uneven density of points leads to 

a distribution of class labels that do not conform to reality, which 

affects the training of the classifier parameters. For decreasing 

this negative effect, the dataset is downsampled with an 

appropriate resolution. After downsampling, the dataset better 

represents the true distribution of classes in point clouds. In fact, 

the high density of points in the local area is not better than the 

even point density because it is difficult to reflect the geometric 

properties in a small range with dense points. Considering the 

computation efficiency, the downsampled training set is 

economic to fit the capabilities of memory and to get the 

classification done in a reasonable time. In addition, the classifier 

trained on the point cloud with even density and reasonable 

resolution has good generalization capabilities. 

 

  

  

Figure 3. Histogram of the norm of DoN for distinguishing 

different objects. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019 
14th 3D GeoInfo Conference 2019, 24–27 September 2019, Singapore

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W8-139-2019 | © Authors 2019. CC BY 4.0 License.

 
142



 

 

 

4. EXPERIMENTS AND RESULTS 

For the first experiment, a mobile LiDAR dataset is scanned at 

Laval University campus by a Terrapoint Titan mobile LiDAR 

system. The average point spacing in the point cloud is 0.089m. 

The point density is approximately 130 points/m2. A higher 

density of points is observed on the roads. Due to occlusions, 

scan angle, and objects properties, the point density is non-

uniform and objects are incomplete in some parts of the point 

cloud. In the LAS files, the outlier points are cleaned, and moving 

objects and noisy points are removed from the raw dataset. 

 

In addition, we have carried out second experiment with airborne 

LiDAR dataset from Montreal area. The point cloud contains flat 

urban terrain and changing topography following the both sides 

of railway. In the point cloud, there are buildings, vegetation, 

bridges, ground, and other classes (power lines, cars, poles, etc.) 

 

All algorithms are implemented in C++ in QT with Point Cloud 

Library for computing features and scikit-learn for classification 

using random forest classifier. All experiments are run on a 

laptop with Intel Xeon E3-1505 v5 CPU (quad-core, 2.8GHz) 

and 48 GB of RAM. The process of computing features is 

parallelized across the available CPU cores. The training of 

model and the classification step are set to parallel as well. 

 

4.1 Experiments on Mobile Terrestrial LiDAR Point Cloud 

Based on the proposed pointwise segmentation method, the 

features of each point are composed of features derived from 

multi-scale neighbors selection. We chose 8 scales (0.1, 0.2, 0.4, 

0.8, 1.6, 3.2, 6.4 and 12.8 (meters)) for downsampling point 

clouds to calculate the features at each scale. The first scale is 

computed based on the average point density of point clouds. 

Here we consider the first scale to be slightly greater than the 

value of average point density. Then the DoN is computed as the 

difference between the normal estimated at the smallest scale and 

the normals at other larger scales. All the features are combined 

as a feature vector for each point. When the feature vectors of 

points are extracted, they are input into a random forest classifier 

to train the classification model. To do so, we first need to have 

a training set that contains the defined classes of objects for the 

semantic segmentation. Based on this training set, other raw point 

clouds are classified using the trained model. The dataset in 

Figure 4(B) is chosen as the training set to train the model and 

the dataset shown in Figure 4(A) for testing. In the training set, 

there are classes of objects such as ground, bushes, trees, 

buildings, cars, curbs, light poles, sign poles, traffic indicators, 

benches, people, bus stations, etc. However, the points 

representing traffic indicators, benches, people and bus stations 

are low in proportion compared to the other object classes. In the 

testing dataset, we have similar distribution of the objects.   

 

We have defined 50 trees and Gini index as the splitting criterion 

to train the random forest classifier. Then the trained model is 

used on the testing dataset presented in Figure 4(A). The results 

of the test are presented in Table 2. The classification results of 

the testing dataset are presented in Figure 5. The analysis of the 

results reveals that in the case where objects are too close to each 

other and have similar geometric properties (such as, tree and 

bush), or are absent in training set, the classification is not very 

efficient. For instance, in the training set, bushes and trees are 

located close to each other. In the testing set, some parts of bushes 

are misclassified into the tree class. Also, when the point cloud is 

downsampled for calculating the feature vectors, the geometric 

properties of curves are not clear extracted. As the curved walls 

do not occur in the training set, the curved parts of the building 

in the given data set are misclassified into tree class. Additionally, 

the density of points for traffic indicators, benches, and people is 

not high enough and the numbers of instances of these classes are 

all less than 3, which is not enough to make the classifier learn. 

 

Classes 
Our results (%) 

Results based on features 

in (Hackel, 2016) (%) 

P R F1 P R F1 

Ground 93.92 99.88 96.81 93.85 99.90 96.78 

Bush 45.31 50.57 47.80 39.27 49.84 43.92 

Tree 78.81 98.59 87.60 80.51 96.61 87.83 

Building 88.97 71.38 79.21 84.90 70.49 77.03 

Car 93.46 45.89 61.56 95.07 45.57 61.61 

Curb 72.89 3.34 6.39 77.42 2.81 5.42 

Light 

pole 
97.94 36.52 53.20 97.40 38.00 54.67 

Sign pole 49.37 15.29 23.35 38.69 18.68 25.19 

Traffic 

indicator 
0 0 0 0 0 0 

Bench 0 0 0 0 0 0 

People 0 0 0 0 0 0 

Bus 

station 
0 0 0 0 0 0 

Overall 90.29 90.43 88.92 90.24 90.16 88.74 

Table 2. Quantitative results of testing on mobile LiDAR point 

cloud (Precision (P), Recall (R), F1-Score (F1)) 

 

  

A B 

Figure 4. Dataset for testing (A) and for training the classification 

model (B) 

 

4.2 Experiments on Airborne LiDAR Point Cloud 

The airborne LiDAR point cloud of urban areas for the 

experiment contains ground, vegetation, building, bridge, power 

line, tower, fence, car, and pole. In this experiment, we classify 

point cloud into six classes: ground, low vegetation, middle 

vegetation, high vegetation, building, and others. The bridges are 

classified into building class. The rest of the objects are given as 

other classes, including power line, cars, fences, towers, and 

poles near to railway. In Figure 7, the left part is chosen as the 

training set and the right part for testing. In the training area, there 

are bridges and tunnels in the ground class. The testing area 

contains the railway environment, and there is a changing 

topography on both sides of the railway (Figure 6). In contrast, in 

the training area, the topography is relatively smooth and flat. 

 

We chose seven scales (0.2, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8 

(meters)) for downsampling point clouds to calculate the features 

at each scale. The first scale is decided as 0.2 due to the average 

point density of airborne LiDAR point clouds is near to 0.2 

meters. After training the classification model from the training 
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area of the point cloud, we compare our results and the result 

based on the features in (Hackel, 2016) (Table 3). Our proposed 

features for semantic segmentation of airborne LiDAR point 

clouds have good performance in building class and high 

vegetation class. As shown in Figure 8, our results are better than 

the results based on features in (Hackel, 2016) in building classes. 

However, we can still see some misclassifications in the results. 

As shown the results in Figure 8(A), some points in the central 

part of the building roof is misclassified as ground class. 

 

 

A 

 

B 

Figure 5. Classification result on testing point cloud (A) and its 

3D view (B) 

 

 

Figure 6. 3D view of points for creating topography in the testing 

area 

 

Classes 
Our results(%) 

Results based on the 

features in (Hackel, 

2016) (%) 

P R F1 P R F1 

Ground 96.74 98.99 97.85 94.26 99.14 96.64 

Low 

vegetation 
83.29 1.13 2.23 71.67 1.22 2.39 

Middle 

vegetation 
75.84 10.09 17.80 75.04 11.88 20.52 

High 

vegetation 
96.96 89.59 93.13 97.08 84.4 90.26 

Building 94.70 90.28 92.44 91.44 75.52 82.72 

Others 43.26 70.99 53.67 42.54 71.12 53.24 

Overall 93.27 92.27 91.47 90.95 90.01 89.14 

Table 3. Quantitative results of testing on airborne LiDAR point 

cloud (Precision (P), Recall (R), F1-Score (F1)) 

 

4.3 Discussion  

In this experiment, the proposed features help to improve the 

overall semantic segmentation of an urban scene from mobile 

terrestrial LiDAR point clouds. More specifically, there is an 

obvious improvement of precision on the building class. For 

semantic segmentation of airborne LiDAR point cloud, our 

proposed new features are effective to ground, building and low 

vegetation classes. In the overall semantic segmentation, our 

results have 2.26% improvement from the comparison of recall 

between ours and Hackel’s results. However, due to the 

unbalance of object classes and the limited number of examples, 

the bridge class is not learned from training sets. In this case, a 

greater data set can help to produce more examples in the training 

step. In addition, the computation time for semantic segmentation 

of airborne LiDAR point clouds using our method is about 10 

minutes/million points. In general, more features require more 

computation time. In our work, the computation of directional 

height difference is easy to be parallelized based on the 

downsampling of point clouds. But the steps of downsampling 

and normal estimation are not parallelized. There is still a space 

to improve the computation time if the downsample and normal 

estimation are done using parallel computation on CPU or GPU. 

 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an improvement to previously 

proposed methods for semantic segmentation by adding features 

derived from Difference of Normal (DoN) and “directional 

height above” neighbors for semantic segmentation of mobile 

and airborne LiDAR point clouds. The proposed features allow 

to improve semantic segmentation of mobile and airborne point 

clouds in urban scenes. We use a random forest classifier for 

pointwise segmentation of point clouds. After comparing our 

results and the results based on features in (Hackel, 2016), the 

newly proposed features produce slightly improved semantic 

segmentation results of vegetation and building classes in mobile 

LiDAR point clouds. However, there are significant 

improvements on the vegetation and building classes in the 

semantic segmentation of airborne LiDAR point clouds. As 

future work, we plan to integrate other features that can be 

extracted from supplementary data sources into the proposed 

approach that will allow to further improve semantic 

segmentation of a LiDAR point cloud. 
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Figure 7. Datasets for training (left) and testing (right) 

 

 

A 

 

B 

Figure 8. Comparison of semantic segmentation results of airborne LiDAR point cloud. (A) our result and (B) result based on features 

in (Hackel, 2016) 
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