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ABSTRACT:

We introduce a pipeline that reconstructs buildings of urban environments as concise polygonal meshes from airborne LiDAR scans.
It consists of three main steps : classification, building contouring, and building reconstruction, the two last steps being achieved
using computational geometry tools. Our algorithm demonstrates its robustness, flexibility and scalability by producing accurate
and compact 3D models over large and varied urban areas in a few minutes only.

1. INTRODUCTION

Urban reconstruction techniques have attracted an increasing
attention from the scientific community over the last decade.
Applications of such techniques include, for instance, urban
planning, natural disaster management, or radio-wave propa-
gation (Biljecki et al. 2015).

Various data sources are considered by such algorithms, such
as ground imagery, satellite imagery, or pre-existing GIS data.
However, despite high acquisition costs, LiDAR point clouds
are more accurate and remain a data source commonly used by
land surveying offices or civil engineers (Musialski et al. 2013).

Yet, models generated by current city modeling techniques may
be enriched with semantic information, or represented using
progressive levels of detail. The CityGML standard (Gröger
et al. 2012) considers four coarse-to-fine levels applicable to
airborne datasets, from LOD0 to LOD3.

In this paper, we present a pipeline that receives as input an un-
structured point set describing a urban environment, and gener-
ates as output a LOD2 representation of the scene in compliance
with the CityGML standard. More precisely, we aim at provid-
ing a faithful reconstruction of buildings with tilted roofs. The
representation of superstructures like dormers or chimneys is
beyond the scope of this paper. Our main idea is to make use of
powerful computational geometry tools to extract the geometric
signatures of the observed buildings. We emphasize the accu-
racy and the scalability of our method, since it is able to process
large datasets with millions of points, dense or sparse, in a few
minutes.

2. RELATED WORKS

There exists a vast literature on automatic urban reconstruction
techniques, (Haala and Kada 2010, Rottensteiner et al. 2014,
Musialski et al. 2013), demonstrating the deep interest of scien-
tists and industrials for this research topic. Various data sour-
ces may be considered, leading us to draw a first distinction
between all existing approaches, based on this criterion. In-
deed, some algorithms may specifically address the problem
∗Corresponding author

of large-scale urban reconstruction from aerial imagery (Zebe-
din et al. 2008, Zeng et al. 2018), satellite imagery (Duan and
Lafarge 2016) or multi-view stereo dense meshes (Zhu et al.
2018, Verdie et al. 2015, Salinas et al. 2015). Some others com-
bine different sources of data to generate urban models with the
finest level of detail (Kelly et al. 2017).

In this work, we focus on the problem of city modeling from Li-
DAR point clouds. Roof height estimation and building recon-
struction is often the most valuable information to extract from
such data, which is acquired using terrestrial or aerial devices.
In particular, nadir or near-nadir acquisitions pose a specific
constraint, as facades are missed by scanners. Current state-of-
the-art approaches have been extensively reviewed (Wang et al.
2018) and can be divided in three categories.

Data-driven methods are probably the most popular techniques.
These are bottom-up approaches, in which parametric primi-
tives are extracted from the data and assembled to form a re-
constructed model. Existing pipelines typically consist of three
successive steps : classification, segmentation and geometric
modeling. The semantic interpretation of the data, and the clus-
tering of buildings into individual structures may involve sta-
tistical arguments (Poullis and You 2009) or discriminative ge-
ometric features coupled with energetic formulations (Lafarge
and Mallet 2011). However, the models produced by such tech-
niques do not achieve the same level of detail. For instance, the
methods proposed in (Zhou and Neumann 2009) and (Poullis
2013) only reconstruct multi-level flat buildings from airborne
point clouds, which is suitable for Manhattan-like districts but
less accurate for residential areas. In contrast, the algorithm
of (Sohn et al. 2008) considers a binary space partitioning tree
to generate LOD2 polyhedral meshes from a point cloud. The
one of (Zhou and Neumann 2010) reaches a similar level of
detail by minimizing 2.5D quadric error functions, i.e. taking
into account both the surface being reconstructed and its pro-
jected boundary. However, due to the projection of the points
on a 2D grid, the reconstructed facades show a zig-zagging ef-
fect, which might be corrected by the mesh simplification pro-
cedure described in (Zhou and Neumann 2012). The cell de-
composition approach proposed in (Kada and McKinley 2009)
allows to reconstruct buildings with a compact representation,
but requires precise building footprints as input. The method
of (Lafarge and Mallet 2011) also returns persuasive results
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Figure 1. Overview of our pipeline. Our method consists of three main steps. We first label points of the LiDAR scan as
ground, vegetation or roof. Then, we apply a contouring algorithm to the height map, revealing the facades initially

absent in the point set. Finally, we extract and propagate planar primitives from the point cloud, dividing the space into
polyhedra that are labelled to obtain a 3D reconstruction of buildings.

over large-scale areas, but suffers from the same failing. Re-
cently, deep-learning-based methods have also been developed
in a context of LOD2 urban modeling and achieve very promis-
ing results (Zhang and Zhang 2018).

Model-driven methods, for their part, represent the opposite,
top-down strategy. This family of techniques considers a pre-
defined library of template structures (e.g. flat, gable, hip or
mansard roofs) that is matched to the input data. The work of
(Verma et al. 2006) offers a first example of model-driven algo-
rithm : elements of the point cloud are first classified as flat or
non-flat and a roof topology graph is considered to decompose
a complex building into simpler structures. Another example
is the work of (Huang et al. 2013) in which a stochastic ap-
proach is used to select the roof templates that best fit the input
data. Also requiring building footprints as prior knowledge, the
method of (Henn et al. 2013) uses Ransac and supervised ma-
chine learning techniques to generate a LOD2 reconstruction of
a sparse LiDAR point in a model-driven way. However, such
approaches may lack of flexibility with respect to the variety
of urban landscapes. Finally, hybrid-driven methods try to take
the best of both worlds : parameterized primitives are extracted
and assembled with respect to a set of constraints derived from
constructive solid geometry (Xiong et al. 2014) (Lafarge et al.
2010).

In the following, we present an algorithm that addresses the
problems we exposed before by exploiting powerful compu-
tational geometry tools. Given an airborne input point cloud,
we design a scalable and data-driven algorithm that generates
LOD2 representations of different urban environments as con-
cise polyhedral meshes.

3. ALGORITHM

3.1 Input

As depicted by Figure 1, our algorithm takes as input a point
cloud with oriented normals. Normals can be easily estimated
thanks to the acquisition system information. If not provided,
then basic mathematical tools like principal component analysis
can be used.

3.2 Classification

The first step of our pipeline consists in assigning semantic la-
bels to points of the point cloud. Three labels are considered :
ground, vegetation, and building.

To this end, we rely on the classification package provided by
the CGAL library (Giraudot and Lafarge 2019). For each point
of the input dataset, this method computes multi-scale geomet-
ric features such as elevation, planarity or vertical dispersion
for instance. Extra features provided along with the dataset,
like the number of returns, are also taken into account. Given a
ground truth training set, these features are then used to train a
classifier. The default choice for the classifier is a random for-
est, that constructs several decision trees to assign each point to
one of the three aforementioned subsets.

Interactively labelling the data to get a representative training
dataset is a tedious work. However, the CGAL library offers
the possibility to save and reuse a trained classifier, which is
particularly useful for processing urban scenes of similar nature
(dense or surburban areas, downtowns, historical centers...).
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3.3 Building contouring

Facades of buildings are often partially or completely missing
in aerial point clouds. To obtain accurate reconstructions of
cities from such data, we first need a robust method that detects
significant height discontinuities in the classified point cloud.

To this end, we project all points on a horizontal, uniformly
sampled grid, in order to generate two kinds of maps : (i) a
height map, normalized as a grayscale image, (ii) a probability
map, measuring the proportion of projected points labelled as
buildings in each cell of the grid.

These two maps are then processed by the polygonal partition-
ing technique of (Bauchet and Lafarge 2018). Given an input
image, this algorithm first detects line-segments, which are lin-
ear approximations of regions where the image gradient is high
and regular. These line-segments propagate across the image,
until intersecting each other, resulting in a decomposition of
the image into convex polygons. Here, we generate a polygo-
nal decomposition of the height map. Intuitively, the detected
line-segments, later included in the edges of the partition, corre-
spond to regular height discontinuities in a given direction, i.e.
to facades.

Using the probability map previously defined, we further assign
a binary activation variable to each polygonal cell, indicating if
it is part, or not, of a building footprint. In order to simplify the
partition, and decrease the number of cells, we finally apply a
clustering algorithm that merges neighbor cells upon condition
that there is no height discontinuity at their common border.

3.4 Building reconstruction

To obtain a LOD2 reconstruction from an oriented point cloud,
from which we discard all points labelled as vegetation, we pro-
pose an algorithm in three steps.

First of all, we extract planar primitives from the point cloud.
We apply a region-growing algorithm, implemented in the CGAL
library (Oesau et al. 2019). A plane hypothesis is iteratively
propagated from a point to its neighbors. It is accepted if it
has a minimum number of inliers N , with respect to a maximal
point-to-plane distance ε. If input points are noisy, more ro-
bust methods such as efficient Ransac (Schnabel et al. 2007) or
structure-aware shape collapse (Fang et al. 2018) can be consid-
ered. The threshold N should be set depending on the density
of the cloud, so that N points cover an area of 5 m2 approxi-
mately, whereas ε is typically set to 0.5 m. Once all planes have
been extracted, we obtain a set of primitives represented by the
planar convex hulls of the different sets of inliers associated to
those planes.

The second step of our algorithm consists in performing a ki-
netic propagation of the primitives in the 3D space. Similarly to
the work of (Bauchet and Lafarge 2018), we initialize and pro-
cess a priority queue to predict and sort intersections between
extending primitives. We choose to apply homothetic transfor-
mations of ratio (1 + t), where t ≥ 0 represents the current
simulation time. Assuming the existence of a bounding box
containing all primitives, processing all intersections results in
a polyhedral decomposition of the space.

However, predicting the intersection time between two planar
primitives is a costly operation. For large datasets with millions
of points, the simultaneous propagation of thousands of primi-
tives is a very complex and time-consuming operation. On the

other hand, vertical planes corresponding to facades cannot be
extracted from the input point cloud, since the data is missing.

This is the reason why we split the spatial propagation problem
into F subproblems, where F is the number of polygonal foot-
prints returned by the procedure described in section 3.3. More
precisely, for each footprint we get the list of primitives that in-
tersect or are included in it by projection, and perform a spatial
propagation restricted to the dimensions of the footprint. We
obtain a set of F 3D subgraphs G1, G2, . . . GF .

The third and final step of our pipeline consists in labelling the
polyhedra of each subgraph Gi as inside or outside the build-
ings to reconstruct. The facets at the interface between outside
and inside polyhedra then correspond to the output surface.

We use a voting scheme, based on the observation that in aerial
datasets, points delimit the upper parts of the objects of interest.
Let Pi be the set of polyhedrons of the subgraph Gi. For each
polyhedron pj ∈ Pi, where j = 1, 2 . . . |Pi|, we initialize a
counter cj to 0. All polyhedrons located below (resp. above)
any plane inlier decrement (resp. increment) their counters.

Let us now consider a vectorX with |Pi| binary activation vari-
ables : xj = 1 (resp. xj = 0) if the polyhedron pj is labelled
as inside (resp. outside) a building to extract. We measure the
quality of an output surface using a two-term energy of the form

U(X) = D(X) + λV (X) (1)

D(X) is a data term that encourages the selection of a poly-
hedron pj when cj < 0, and its rejection when cj > 0. We
have :

D(X) =
1

|I|

|Pi|∑
j=1

dj(xj) (2)

where

dj(xj) =

{
−cj when xj = 0

cj when xj = 1
(3)

and |I| is twice the number of inliers. V (X), for its part, is
a generalized Potts model that penalizes the total area of the
surface :

V (X) =
1

A

∑
j∼k

ajk · 1xj 6=xk (4)

where j ∼ k denotes an adjacency relationship between two
polyhedra pj and pk, ajk is the surface of their common facet,
andA is a normalization term defined as the sum of the areas of
all facets of the subgraph Gi.

Given a balancing term λ ∈ [0, 1], the optimal surface that min-
imizes energy U is determined by a min-cut algorithm (Boykov
and Kolmogorov 2004). A low value of λ returns a too large and
too complex surface, while a high value of λ tends to shrink it.
In our experiments, we typically set λ to 0.5.

4. EXPERIMENTS

Datasets. We tested our algorithm on four datasets, represent-
ing various urban landscapes. The covered cities are listed in
Table 1. The size is given in millions of points.
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(a) Biberach.
0

≥ 1 m

(b) Vaihingen.

0

≥ 1 m

Figure 2. Results on European-style urban landscapes. Left column : classified point clouds. Points labelled as ground,
vegetation or buildings are colored in gray, green and red, respectively. Center column : reconstructed models. Right

column : altimetric error map, in which a darker color represents a larger error. From left to right : classified point cloud,
reconstructed model, and altimetric error map. Some close-ups are showed in Figures 4 and 5.

Qualitative results. We present in Figures 2, 3, 4 and 5 the
models generated by our algorithm for these cities. From a
qualitative point of view, we obtain persuasive LOD2 recon-
structions of most buildings. The Biberach and Vaihingen data-
sets contain a lot of gable and hip roofs which are correctly
approximated by our algorithm. As for the Portland and San
Diego datasets, our technique also succeeds in determining in-
termediate levels in complex structures, as well as tilted roofs if

any. Facades, which are almost completely missing in the input
scans, are generally recovered by a single plane in a given direc-
tion. Some of them, however, might be affected by an unwanted
zig-zagging effect, reflecting errors in the building contouring
procedure. Note that trees could be also reconstructed in 3D by
template matching (Verdie and Lafarge 2012) to better repre-
sent the urban landscapes.
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(a) Portland.

0

≥ 3 m

(b) San Diego.

0

≥ 3 m

Figure 3. Results on American-style urban landscapes. Some close-ups are showed in Figures 4 and 5.

City Type Size Density (pts/m2)
Biberach Historical center 2.3M 3.0
Vaihingen Residental area 7.3M 6.3
Portland Downtown 8.7M 7.8

San Diego Downtown 4.5M 1.6

Table 1. Presentation of the dataset.

Quantitative results. In Figures 2 and 3, we provide altimet-
ric error maps for each dataset. To generate them, we restrict the
input point cloud to elements labelled as rooftops, and compute
the one-sided Hausdorff distance from every point to the recon-
structed surface. This way, we can evaluate the precision of our
method. We compute a raw reconstruction error : the mean
one-sided Hausdorff distance. However, this measure may be
biased. Indeed, isolated mislabelled points in the classification
process, and a few buildings missed by the contouring algo-
rithm and further ignored in the reconstruction phase, tend to
overestimate the average reconstruction error. That is why we
suggest, on an indicative basis, a corrected reconstruction er-
ror, which discards points located at more than 3 meters from
a building which corresponds to the average height of a floor.

Our measures are listed in Table 2.

City Raw error (m) Corrected error (m)
Biberach 0.85 0.31
Vaihingen 1.91 0.43
Portland 1.75 0.53

San Diego 2.34 0.62

Table 2. Geometric error for each dataset.

The geometric error is typically caused by : (i) undetected su-
perstructures on rooftops, (ii) uncorrectly approximated prim-
itives in the plane extraction procedure (e.g. a unique plane
approximates the two sides of a gable roof) and (iii) the reso-
lution of the generated height map, that may shift the extracted
footprints towards one direction or another.

Performances. We list in Table 3 the performances of our al-
gorithm for our two biggest datasets, Vaihingen and Portland, in
terms of memory peak and running times. Measures were per-
form on a machine equiped with an Intel R© CoreTM i7-6700HQ
processor clocked at 2.60 GHz and a 32 GB RAM. The obtained
values demonstrate the ability of our algorithm to process large
volumes of data in a short time.
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Figure 4. Close-ups on the reconstructed models. From top to bottom : church (Biberach), tent (Biberach), residential
area (Vaihingen).
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Figure 5. Close-ups on the reconstructed models. From top to bottom : multi-level building (Portland), urban landscape
(San Diego).

Vaihingen Portland
Building contouring (s) 13.5 20.9

Building reconstruction (s) 509.3 872.8
Memory peak (GB) 2.2 2.6

Table 3. Performance measures for datasets Vaihingen
and Portland.

Limitations. Despite its advantages, our algorithm suffers from
a few shortcomings. Any error caused by an intermediate step
of the pipeline has an impact on the final result. Parts of the
cloud representing buildings mislabelled by the classifier will
not be reconstructed. Besides, the reconstruction is very sensi-
tive to building contouring errors : if some footprints or inter-
mediate heights inside multi-level structures are missed in the
coutouring process, then buildings will also be missing or badly
approximated in the final result.

Besides, our primitive detection scheme only extracts planes
from the input point cloud. This feature is sufficient for recon-
structing accurately most buildings, but free-form shapes like
domes or curved walls will only be approximated as a set of
planar shapes. Small structures like dormers and chimneys may
also be ignored in the reconstructed model, if the minimal num-
ber of inliers by the plane extraction procedure is too high.

5. CONCLUSIONS

In this paper, we presented a pipeline for automatically recon-
structing a urban scene from an airborne LiDAR scan at the
level of detail LOD2. We used a kinetic approach, in which a
set of predetected line-segments and planar polygons propagate
to decompose the 2D and 3D spaces into cells that are labelled
and assembled in our final model. Our approach is fast, scalable

and delivers simple polyhedral meshes. It returns promising re-
sults on various datasets, representing different types of urban
environments.

In future works, we plan to refine the building contouring al-
gorithm in order to simplify and improve the accuracy of our
reconstructed models. We might resort to deep-learning-based
methods to this end. Another research path would consist in in-
tegrating non-linear primitives to our kinetic scheme to achieve
better reconstructions of free-form structures.
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