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ABSTRACT: 

Virtual city models are important for many applications such as urban planning, virtual and augmented reality, disaster management, 

and gaming. Urban features such as buildings, roads, and trees are essential components of these models and are subject to frequent 

change and alteration. It is laborious to manually build and update virtual city models, due to a large number of instances and 

temporal changes on such features. The increase of publicly available spatial data provides an important source for pipelines that 

automate virtual city model generation. The large quantity of data also opens an opportunity to use Deep Learning (DL) as a 

technique that minimizes the need for expert domain knowledge. In addition, many Deep Learning models calculations can be 

parallelized on modern hardware such as graphical processing units, which reduces the computation time substantially. 

We explore the opportunity of using publicly available data in computing multiple thematic data layers from Digital Surface Models 

(DSMs) using an automatic pipeline that is powered by a semantic segmentation network. To evaluate this design, we implement our 

pipeline using multiple Convolutional Neural Networks (CNN) with an encoder-decoder architecture. We produce a variety of two 

and three-dimensional thematic data. We focus our evaluation on the pipeline’s ability to produce accurate building footprints. In our 

experiments we vary the depths, the number of input channels and data resolutions of the evaluated networks. Our experiments 

process public data that is provided by New York City. 

1. INTRODUCTION

Virtual 3D city models are used in many planning, analysis, 

simulation, and visualization applications in an urban context 

especially ones that relate to the environment, renewable 

energy, natural hazards, mobility (including navigation and 

autonomous driving), city marketing and cultural heritage 

(Biljecki et al., 2015). Buildings are one of the most prominent 

features in an urban scene. But not all applications require 3D 

building models in the same level of detail. For example, 

buildings models with differentiable roof structures are suitable 

for projects on the scale of city districts such as shadowing, 

mobile signal, and line-of-sight analysis (Kolbe et al., 2005). 

Within this paper, we focus on generating so-called block 

models of buildings with discretized roof structures as a 

geometric approximation of building roof shapes. 

Large cities and metropolitan areas consist of an enormous 

number of objects that belong to a variety of thematic feature 

types such as buildings, trees, streets, etc. These objects can 

change over time as new construction and development projects 

happen on a frequent basis. Therefore, generating up-to-date 3D 

city models is laborious, time-consuming as well as expensive, 

and raises the need for automatic methods for generating such 

large area 3D models. A further necessity is the availability of 

an up-to-date data basis, e.g. 3D point cloud data. Fortunately, 

more and more geo data are being made open for public use and 

they are rich in geometric and thematic information. 

On the methodological side, Deep Learning recently achieved 

human-level performance on many challenging computer vision 

tasks such as image classification (Krizhevsky et al., 2012), 

object detection (Liu et al., 2016; Redmon et al., 2016), 

instance segmentation (He et al., 2017), sequence-to-sequence 

translation (Sutskever et al., 2014) and data synthesis 

(Goodfellow et al., 2014). This recent comeback of neural 

networks can be credited by the abundance of data available for 

training and the increase in computing power. We, therefore, 

see an opportunity to design a processing pipeline using recent 

Deep Learning techniques that is able to generate large area 3D 

building representations. The parameters (i.e. weights) of the 

mentioned neural network models can be trained through an 

optimization process on publicly available data. Hence this 

approach minimizes the need for expert domain knowledge (e.g. 

deriving normals and designing morphological filters) required 

in approaches such as in (Nex et al., 2012; Poullis et al., 2009). 

We explore this new technology by designing a simple pipeline 

that can generate multiple thematic data layers; such as 

buildings, trees, and roads; from digital surface models (DSMs). 

To evaluate our method, we implemented this pipeline with 

multiple Deep Learning semantic segmentation networks. We 

trained these networks on an open dataset of New York City 

and designed a data augmentation module specific for DSMs. 

Our evaluation of the neural networks’ performances is focused 

on building footprints and includes neural network models of 

different depths (i.e. the number of layers), multiple inputs and 

output resolutions, and varied thematic output layers. To 

demonstrate the pipelines’ potentials, we reconstructed the 3D 

city scene of the Manhattan area of interest (AOI) as shown in 

Figure 1. 
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2. RELATED WORK 

Deep Learning techniques have achieved impressive results in 

solving object recognition problems such as object detection, 

semantic segmentation, and instance segmentation. 

 

2.1 Object detection 

Approaches that deal with object detection problem can be 

divided into two categories: region-based and single-pass. 

Predictions produced by region-based DL models usually go 

through two stages. In the first stage, the model identifies 

minimum bounding box proposals of possible objects in the 

input image or feature maps. In the second stage, the model 

evaluates the proposals with the help of a predicted confidence 

score (e.g. using a classifier) and further refines the bounding 

box to match object boundaries (e.g. using a regressor). R-CNN 

(Girshick, et al. 2014) is an example of such an approach, where 

a selective search algorithm (Uijlings, 2013) is used to produce 

a large number of object proposals (~2000). Each of these 

proposals is then inferred by a convolutional neural network 

(CNN) to produce a classification for each region. Compared to 

its predecessor R-CNN, Fast R-CNN (Girshick, 2015) reduces 

the model’s overall prediction time by inferring each input 

image once then sharing the CNN calculations between all 

predicted regions. This improvement leaves the heuristic 

selective search algorithm to be the most time-consuming 

component in this approach. Faster R-CNN (Ren et al., 2015) 

replaces this component with a Region Proposal Network 

(RPN), which dramatically increases the overall speed. 

 

Contrary to region-based approaches, single-pass approaches 

view the objection detection as a regression problem and not as 

a classification problem. Prediction tensors mimic a grid that 

divides the input image into sections. After training a single-

pass network, it produces high score predictions for tensors that 

correspond to grid cells that contain objects and refinements to 

anchor box coordinates. Such anchor boxes are typically added 

to each grid cell to simulate common width to height ratio in the 

data samples. Examples for such approaches are Single Shot 

MultiBox Detector (SSD) (Liu et al., 2016) and You Only Look 

Once (YOLO) (Redmon et al., 2016).  

 

2.2 Semantic segmentation 

Object detection approaches are successful in determining a 

minimum bounding box around each object instance. However, 

precise pixel-wise object boundaries are also necessary for 

many applications. Many Deep Learning models are used in 

approaches that address the semantic segmentation task, e.g., 

fully convolutional networks (FCN) (Long, 2015), auto-

encoders, and conditional generative adversarial networks 

(cGANs) (Isola, et al. 2017). Such networks are strong 

candidates to use for the task of building detection and outline 

generation. For example, the winning solution in the second 

SpaceNet challenge (Etten et al., 2018) for the task of automatic 

footprint detection from satellite images is based on U-Net 

(Ronneberger, 2015), an established semantic segmentation 

network. 

 

2.3 Instance Segmentation 

Semantic segmentation predictions require post-processing to 

calculate object instances from predicted segmentation maps. A 

combination of object detection and semantic segmentation can 

eliminate the need for many of these steps. For example, Mask 

R-CNN (He et al., 2017) is a network that adds an FCN 

segmentation branch to Faster R-CNN. This branch allows for 

pixel-wise segmentation for each detected object separately. 

Object boundaries produced by Mask R-CNN contain many 

points that follow the segmentation map pixel corners. Zhao et 

al. (2018) extend the Mask R-CNN model with a building 

boundary regularization technique to counter this issue. In 

another view of the building detection problem, Marcos et al. 

(2018) propose Deep Structured Active Contours (DSAC) and 

 

Figure 1. Results from our proposed 3D city reconstruction pipeline depicting the 3D city block models of the Manhattan area. The 

semantic segmentation was conducted with model denoted as b1_2_128 in Table 1. 
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calculate building boundaries from initial polygons with 

promising results. 

3. METHODOLOGY 

We propose a pipeline that uses a CNN to process DSMs and 

produces different thematic features. The complete design is 

shown in Figure 2. 

 

3.1 CNN architecture 

Mask R-CNN network can perform instance segmentation from 

image or raster data and is a strong candidate for this 

experiment. However, this network has a number of modules 

that add many unknowns to the experiment. For example, the 

network contains a Region Proposal Network (RPN), Region of 

interest (ROI) pooling and the complete architecture of Faster 

R-CNN. Increasing the number of unknowns might hinder the 

evaluation process. Therefore, as the core of our pipeline, we 

implement a simple encoder-decoder architecture that is 

inspired by (Ronneberger, 2015). However, to preserve locality, 

we decrease feature maps size using strided convolution rather 

than pooling.  

 

 
 

Figure 3. Encoder-decoder with mirrored architecture. Arrows 

depicted in the figure represent concatenation connections. The 

depth of the model changes according to the number of blocks. 

For each down-sample block, an up-sample block is added. W, 

H, C are the width, height, and the number of output channel 

respectively. 

 

We argue that the encoder-decoder architecture represents a 

compromise between complexity and performance. In addition, 

the simplicity of the encoder-decoder architectures supports the 

incorporation of additional techniques such as in (Isola, et al. 

2017; Wang, et al. 2018). The suggested encoder-decoder 

network shown in Figure 3 and consists of two mirrored 

reparative blocks (down-sampling and up-sampling) that are 

connected through concatenation. The use of concatenation 

allows the network to pass important information between 

feature maps at multiple scales regardless of the network depth. 

The number of the encoder-decoder output feature maps in our 

pipeline reflects the number of thematic data layers that were 

included in the training process explained in section 5. The 

minimum number of output channels in our experiments is two, 

corresponding to building footprints and background. The 

background feature map is a binary mask featuring non-objects 

locations set to 1. 

 

3.2 Geodata inputs and pre-processing 

The input size of semantic segmentation networks is usually 

fixed and determined as a design choice. Increasing the 

geographical extent of the input to cover an area of interest 

while preserving pixel count means a lower spatial resolution. 

Therefore, as an initial step, large areas of interest (AOIs) are 

divided using a regular grid as shown in Figure 9. Each grid cell 

span a small geographical area which increases the spatial 

resolution of each pixel. 

 

CNN's predictions are typically represented as a multi-

dimensional array of numeric values (images) which lacks 

geographical information. In order to enable spatial operations 

that are performed in the post-processing step on large AOIs, 

the pipeline stores an affine matrix for each input sample. This 

matrix represents projection parameters from local image space 

to a predefined coordinate system (CRS). And it is used to 

project the model’s output to the correct geographical context. 

 

3.3 Post processing 

In order to pair height information and model prediction, input 

depth maps from the DSM and predicated features are stacked 

vertically. The depth map is then masked by the predicted 

segmentation map. Depth map pixels that correspond to the 

value of ‘one’ prediction at the segmentation map keep their 

intensity values. All other pixels are given the value zero. 

Figure 4 shows that many points on building roofs tend to 

cluster within small height ranges. Using this observation, 

values that belong to a certain range (bin) are mapped to a 

specific integer as a rough approximation of building roof 

shapes. These bins are calculated empirically in our 

experiments. 

The vector data representation is well supported in many 

geographical information systems (GIS). For example, simple 

feature access, a well-known standard, (Herring, 2006) defines 

 
 

Figure 2.  Proposed pipeline. BG Background channel. FP Footprint channel. CNN Convolutional Neural Network. The word 

vector refers to a specific data representation that is used in the context of geographical information systems (GIS). 
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many geometries that can be used as a base to spatially model 

real-world features as vector data structures.  Therefore, we 

convert the raster output of the model to a boundary model 

representation (vector) by using a 2D version of the marching 

cubes algorithm (Lorensen and Cline, 1987).   

 
Figure 4. Input LiDAR data in red masked by the corresponding 

semantic segmentation network prediction in grey.  

 

The marching cubes algorithm produces vector data that follows 

pixel edges and yields discretized vector data with a large 

number of boundary points. The boundary point count increases 

when increasing the input raster resolution. To counter this 

challenge, a simplification algorithm is used to eliminate the 

intermediate points (Douglas and Peucker, 1973). In order to 

acquire the 3D block city model, predicted building footprints 

are extruded to the individual height calculated in the previous 

steps. 

 

4. EXPERIMENT 

New York City offers a variety of open datasets that covers the 

entire city area. To label the data needed for our experiments, 

we prepare and process a LiDAR survey that contains approx. 

thirteen billion points, over a million building footprints, 

roadbeds, and street tree locations. We use these datasets in our 

experiments to train the semantic segmentation network and 

evaluate the suggested pipeline. 

 

 
Figure 5. Districts of New York City and the experiment dataset 

geographical extent. Original data source (New York City Open 

Data Portal). 

 

We divide the dataset into three non-overlapping locations that 

correspond to training, validation, and testing AOIs as shown in 

Figure 5. Each AOI is divided further using a grid. Each grid 

cell represents a data point (input raster). Training, validation, 

and testing AOIs has 6000, 1200, 420 cells respectively.  Each 

cell spans a geographical area of 150x150 meters as shown in 

Figure 6. In addition, to experiment with models ability to 

generalize, we use a separate area ‘Manhattan’ as an additional 

test. This area is not included in the training or validation 

process, nor in the calculation of the evaluation of the results. 

The buildings of the Manhattan area are different from most of 

the buildings in the rest of NYC. The area contains dense 

building distribution, many skyscrapers, and large buildings. 

Therefore, we argue that a model’s good prediction on this area 

gives a strong indicator of its ability to generalize on other 

geographical locations. 

 

4.1 Training data 

To leverage the use of well-established 2D CNNs techniques, 

we convert the input LiDAR data to a raster format (DSM). 

LiDAR data that corresponds to the cell location is converted to 

a depth map by an inverse weighted interpolation process. Each 

pixel is given the weighted average height value of the nearest 

three LiDAR points to the two-dimensional location of the 

pixel’s center. This depth map is used as the input to the 

semantic segmentation network. For each of the thematic 

features used in the training process, we prepare a binary (label) 

mask as shown in Figure 6. Pixels that correspond to feature 

locations are given the value one while all other pixels are given 

the value zero. 

 

Figure 6. Example of one training data sample. The 

geographical extent of the input and output raster corresponds to 

the extent of each grid cells introduced in Section 4. 

 

5. TRAINING 

5.1 Network selection 

We experiment with multiple encoder-decoder configurations 

that follow the design mentioned in subsection 3.1. In addition, 

we include a test on a well-known semantic segmentation 

network U-Net as demonstrated in Table 1 as a baseline. For the 

purpose of this experiment each model is trained on the training 

AOI and validated on the validation AOI. The used 

hyperparameters are the same for all tested models. We use 

Adam optimizer (Kingma & Ba, 2014) with a learning rate of 

10-3. 

 

5.2 Loss function 

In our experiments, we vary the CNN output labels. An example 

is shown in Figure 7.  

 

Figure 7. Class imbalance. The number of background pixels is 

much higher than those of corresponding thematic features. This 

imbalance increases when the image resolution is higher 

(sparsity problem). 

 

The number of pixels in the output is unbalanced. Weights are 

calculated through a spatial analysis to collect the ratio of pixel 

count imbalance on each resolution. For example, we estimate 

that the number of pixels representing trees in the output 

channel is one to ten compared to the background channel on a 

data sample with 128 by 128 resolution. For this reason, we 
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chose weighted categorical-cross-entropy as the loss function 

for this experiment. 

5.3 Challenges 

The geographical extent of the training AOI spans Brooklyn and 

Staten Island. Brooklyn has a grid-like building footprints 

pattern. While the eastern side Staten Island building footprints 

have a combination of a grid pattern and single standing houses. 

 
(a) 

 
(b) 

 

Figure 8. (a) left-hand side plot shows a boxplot of roof heights 

of all buildings in NYC. (a) right-hand side plot shows a 

boxplot of roof heights without including outliers. (b) left-hand 

side plot shows a boxplot of footprint areas of all buildings in 

NYC. (b) right-hand side plot shows a boxplot of footprint areas 

without outliers. 

 

While some variation exists in the training datasets, both these 

locations have building footprints and heights that differ from 

the test and Manhattan datasets. Figure 8 shows a box plot of 

the height and area ranges of all buildings in the New York City 

dataset. According to these plots, most of the buildings have 

heights under 10 meters and most of the building footprints 

have an area between 50 and 125 meters.  

 

  
(a) (b) 

Figure 9. (a) shows the building footprints grid pattern in 

Brooklyn overlaid with the training cell grid. (b) shows LiDAR 

values on one data sample where height values for all buildings 

are almost identical. 

 

In addition, due to the grid-like pattern planning of Brooklyn 

area, buildings of the same size and height follow the same 

orientation yielding a training dataset with a low degree of 

variation. See Figure 9. There is a risk of overfitting when 

training a Deep Learning model on such a dataset that has 

strong similarity between its samples. In this case, the model 

might not generalize when making predictions on new datasets. 

For example, our initial experiments showed that skyscrapers 

were not recognized as buildings by a CNN trained solely on 

the training AOI. Hence producing a city model without many 

of the recognizable landmarks. To counter this issue, we 

implemented a specialized data augmentation module. 

 

5.4 Data augmentation 

During training, random values are added on each input depth 

map for each building footprint location. This produces depth 

maps with exaggerated height differences between buildings. 

Hence, increasing the building roof height variation of the 

training dataset. Results of this process on a normalized data 

sample are shown in Figure 10. 

 

 
Figure 10. Comparisons between original and augmented data 

both examples are normalized. Each point’s coordinates are the 

pixel locations on a 2D image elevated to the intensity value at 

that pixel. Grey 3D points represent the normalized values and 

the red points represent the augmented data. Both are masked 

by building footprints feature map for demonstration purposes. 

 

To simulate different footprint sizes, we use multiple factors to 

scale each training and validation sample. Additionally, we add 

a random skewing and mirroring that is applied to both 

horizontal axes of the input and output as well as scaling. The 

complete process is shown in Figure 11. 

 

 
Figure 11. Data augmentation module applied on each cell for 

each building footprint F that is located with this cell C. 

 

5.5 Early stopping condition 

Each of the models in our experiments was trained with an 

early-stopping condition which is a common technique used 

when training CNNs. We believe that this condition is a good 
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measure of the model’s ability to generalize since our data 

augmentation module produces novel data samples on each 

iteration. The value of the loss function is calculated both on 

training and validation AOI. The training is stopped when the 

validation loss value stagnates or drops compared to previous 

values or training loss value with a patience value of three 

epochs. Only the model with the minimum loss on validation is 

selected for further tests. 

 

5.6 Segmentation networks results 

The semantic segmentation CNN produces multiple feature 

maps of floating point number predictions. An equality test of 

pixel intensity values is necessary in order to group pixels and 

identify feature instances using the marching squares algorithm 

and floating point numbers are, therefore, not suitable for this 

procedure. To avoid this problem, the predictions in the feature 

maps are converted to binary masks. The feature map with the 

highest confidence score at each pixel location is given the 

value of one. The remaining feature maps are given the value of 

zero at that location. Figure 12 shows some example results. 

 

 

 
 

Figure 12. Semantic segmentation network prediction using 

model b5_2_512 in Table 1. The binary conversion process is 

expressed in the figure as Argmax(). 

 

6. EVALUATION 

Due to the class imbalance between background and building 

footprints, per pixel accuracy is not a sufficient metric to 

evaluate the overall model performance. For example, positive 

prediction for all pixels within a channel that contains a small 

building yields a high accuracy score. We use the F1 score as 

the main evaluation metric (Chinchor, 1992) for this 

experiment. The F1 score is used as an evaluation metric in the 

SpaceNet (Etten et al., 2018) challenge and International 

Society for Photogrammetry and Remote Sensing (ISPRS) 

benchmark on object classification and 3D building 

reconstruction (Rottensteiner et al., 2012).  

We follow a similar evaluation approach to the one suggested 

by (Etten et al., 2018). In order to calculate this score, we made 

the following assumptions: We evaluate the vector data that 

resulted from the proposed pipeline. Building footprints are 

considered to be correctly detected if they exceed a pre-

determined threshold to the Jaccard distance (Jaccard, 1908) or 

Intersection Over Union (IOU) compared to the ground truth 

data. We set the IOU threshold to 0.5 following the suggested 

value by Etten et al. (2018) and if the ratio of building footprint 

prediction intersection area with the ground truth area is larger 

than (0.5) then the footprint is considered to be detected 

correctly and one is added to the true positive count (TP). False 

Negative (FN) count is increased by one if a ground truth 

sample had no intersection with the prediction or in case the 

IOU value of this sample is less than 0.5 as shown in Figure 13. 

False Positive (FP) count is increased by one if predictions have 

no intersection with the ground truth. 

The ground truth data differentiate between building footprint 

instances not only based on building geometry but also on 

cadastre information. Information that relates to cadastre 

ownership cannot be derived from the LiDAR data alone. 

Hence using ground truth data in this way will yield many FN 

even if the segmentation prediction where correct. Therefore, in 

this experiment, building footprints with touching geometries 

are dissolved in the ground truth and prediction data. 

 

 
Figure 13. Pipeline predictions are depicted in grey and ground 

truth in red. FP outlines are shown in red using model 

b1_2_128 in Table 1. 

 
6.1 Discussion and limitation 

Table 1 shows the results of our experiment. Most models 

resulted in a high TP score.  

 

 

Figure 14. Shows a 2D map of thematic features predicted using 

model b3_4_256 with the extruded predictions. 

The best performing models are the ones with the highest input 

resolution and depth and are able to achieve a low FP score. 

Adding labels that indicate the location of green objects was 

expected to reduce the number of FP predictions. However, our 

experiment showed that this addition decreased the models’ 
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performances and binary classification models are with the 

highest performance. 

 

Adding roadbed labels, on the other hand, improved the 

model’s performance compared to when adding only green 

object labels. The green object training data only depicts a 

buffer around the centroid location street trees; Many trees are 

missing in the dataset. Therefore, this is not sufficient to draw a 

conclusion about the correlation between adding tree labels and 

the poor performance of a CNN. 

 

Many hyperparameters and thresholds were used in our 

experiment. These decisions might have a large impact on the 

outcome of the network and the pipeline. Hence changing these 

thresholds might yield different evaluation metrics than 

conducted in the experiment. These parameters are: in the pre- 

processing step the number of neighboring points, input image 

size, spatial resolution; in the CNN training step the number of 

convolutional layers and filters, activation functions, weight 

initialization, and batch normalization frequency, stop 

condition, data augmentation random ranges and loss function; 

in the post-processing step the number of minimum pixels 

forming a polygon, the minimum area of an accepted building. 

Another limitation is that predictions in our experiment were 

calculated on small regions (cells) then merged. Buildings or 

other objects of interest that are located on the boundaries of 

these cells might be divided into smaller parts and get ignored 

due to certain thresholds in the post-processing steps. 

 

The post-processing step is sensitive to the outliers in the input 

LiDAR data. Any erroneous continuous batch will be detected 

as a building and our visual inspection showed that many 

elevated structures such as bridges were falsely predicted by the 

CNN as buildings. 

 

To demonstrate the pipeline’s ability to parallelize 

computations we select use CNN b3_4_256 referenced in Table 

1 to compute green objects, roads in addition to building 

footprints as predictions from the input DSM. The same post-

processing pipeline is used on green objects and building 

footprints predictions to acquire the 3D extruded representation. 

Results are shown in Figure 14. 

 

7. CONCLUSION AND OUTLOOK 

This paper suggests a pipeline for generating block-like city 

models from depth maps. For testing purposes, the pipeline was 

implemented with encoder-decoder networks at its core and 

evaluated on a dataset that spans the geographical extent of 

New York City. Even with a comparably small dataset count, 

we were able to train this model from scratch purely on the 

mentioned data. However, although the pipeline shows good 

results in detecting accurate building footprints, it includes 

many post-processing steps in order to detect individual 

building instances. Further research aims toward end-to-end 

Deep Learning 3D block city model generation by substituting 

the post-processing steps with DL modules in a similar 

approach to (Gkioxari et al., 2017) while preserving the 

simplicity of the pipeline. 
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Model #layers #params TP FP FN Precision Recall F1 score 

b1_2_128 21 86,626 1204 353 752 0.77 0.62 0.69 

b1_4_128 21 87,204 1227 1166 729 0.51 0.63 0.56 

b2_2_128 31 136,226 1182 2970 774 0.28 0.60 0.39 

b2_4_128 31 136,804 1211 1419 745 0.46 0.62 0.53 

b3_2_128 41 185,826 1218 402 738 0.75 0.62 0.68 

b3_4_128 41 186,404 1268 1271 688 0.50 0.65 0.56 

u_2_128 49 1,943,714 1042 290 914 0.78 0.53 0.63 

u_4_128 49 1,943,748 1259 853 697 0.60 0.64 0.62 
         

b1_2_256 21 86,626 1284 678 672 0.65 0.66 0.66 

b1_4_256 21 87,204 1220 898 736 0.58 0.62 0.60 

b2_2_256 31 136,226 1287 560 669 0.70 0.66 0.68 

b2_4_256 31 136,804 1366 893 590 0.60 0.70 0.65 

b3_2_256 41 185,826 1340 662 616 0.67 0.69 0.68 

b3_4_256 41 186,404 1311 505 645 0.72 0.67 0.70 

b4_2_256 51 235,426 1343 850 613 0.61 0.69 0.65 

b4_4_256 51 236,004 1325 646 631 0.67 0.68 0.67 

u_2_256 49 1,943,714 1201 336 755 0.78 0.61 0.69 

u_4_256 49 1,943,748 1329 1212 627 0.52 0.68 0.59 
         

b1_2_512 21 86,626 1232 792 724 0.61 0.63 0.62 

b2_2_512 31 136,226 1372 457 584 0.75 0.70 0.72 

b3_2_512 41 185,826 1364 329 592 0.81 0.70 0.75 

b4_2_512 51 235,426 1278 319 678 0.80 0.65 0.72 

b5_2_512 61 285,026 1339 208 617 0.87 0.68 0.76 

u_2_512 49 1,943,714 1240 654 716 0.65 0.63 0.64 

 

Table 1. Evaluation results. Models that have the name starting with the letter b are implemented to follow the design suggested in 

subsection 3.1. Model names are arranged in this way b{#blocks}_{#label channels}_{input shape}. Models that have the name 

starting with the letter u are implemented according to U-net proposed in (Ronneberger, 2015). Model names are arranged in this 

way u_{# label channels}_{input shape}. For all implementations, if #label channels is two, then included label channels are 

building footprints and background; if three, green objects channel is included and if four, roadbeds channel is included. 
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Data Portal (https://opendata.cityofnewyork.us) and to the U.S. 

Geological Survey (USGS) for providing LiDAR point clouds 

of New York. 
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